Notes on satisfiability

Skolemization

Resolution

Skolemization. An example

Example 1: Prove that $\forall x \phi(x, f(x)) \Rightarrow \forall x \exists y \phi(x, y)$ holds..

Example 2: Prove that $\forall x \exists y \phi(x, y) \Rightarrow \forall x \phi(x, f(x))$ not.

Skolemization I

(Nerode, Shore, Logic for Applications)

Theorem 9.4 For every sentence ϕ in a given language \mathcal{L} there is a universal formula ϕ' in an expanded language \mathcal{L}' gotten by the addition of new function symbols such that ϕ and ϕ' are equisatisfiable.

Skolemization II

Theorem 9.4 For every sentence ϕ in a given language \mathcal{L} there is a universal formula ϕ' in an expanded language \mathcal{L}' gotten by the addition of new function symbols such that ϕ and ϕ' are equisatisfiable.

Lemma 9.5 For any sentence $\phi = \forall x_1 ... \forall x_n \exists y \psi$ of a language $\mathcal{L} \phi$ and $\phi' = \forall x_1 ... \forall x_n \psi(y/f(x_1, ..., x_n))$ are equisatisfiable when f is a function symbol not in \mathcal{L} .

Lemma 9.5 For any sentence $\phi = \forall x_1 ... \forall x_n \exists y \psi$ of a language $\mathcal{L} \phi$ and $\phi' = \forall x_1 ... \forall x_n \psi(y/f(x_1, ..., x_n))$ are equisatisfiable when f is a function symbol not in \mathcal{L} . **Proof:** $\mathcal{L}' \dots \mathcal{L}$ extended with the function symbol fIf $\mathcal{A}^{'}$ is a structure for $\mathcal{L}^{'}$ and \mathcal{A} is a structure obtained from $\mathcal{A}^{'}$ by omitting the function interpreting f, and $\mathcal{A}^{'} \models \phi^{'}$ then $\mathcal{A} \models \phi$. On the other hand, if \mathcal{A} is a structure for \mathcal{L} and $\mathcal{A} \models \phi$, we can extend \mathcal{A} to a structure $\mathcal{A}^{'}$ by defining $f^{\mathcal{A}^{'}}$ so that for every $a_{1}, ..., a_{n} \in A = A', \mathcal{A} \models \psi(y/f(a_{1}, ..., a_{n})).$ Then $\mathcal{A}^{'} \models \phi^{'}$. (*n* may be 0, *f* be a constant).

Resolution. An example

$$\{\{p,q\},\{r,\neg q\}\}$$
 satisfiable \Rightarrow the resolvent $\{p,r\}$ satisfiable

 $\{p,r\}$ unsatisfiable \Rightarrow $\{\{p,q\},\{r,\neg q\}\}$ unsatisfiable

Resolution

Lemma 8.12 If the formula (i.e., set of clauses) $S = \{C_1, C_2\}$ is satisfiable and C is a resolvent of C_1 and C_2 , then C is satisfiable. Any assignment \mathcal{A} satisfying S satisfies C. **Proof:** $C_1 = \{l\} \sqcup C'_1, C_2 = \{\neg l\} \sqcup C'_2$, the resolvent is $C = C'_1 \cup C'_2$. As \mathcal{A} is an assignment that satisfies $S = \{C_1, C_2\}$ it cannot be that both $l \in \mathcal{A}$ and $\neg l \in \mathcal{A}$. Say $\neg l \notin \mathcal{A}$. As $\mathcal{A} \models C_2$ and $\neg l \notin \mathcal{A}, \mathcal{A} \models C'_2$ and so $\mathcal{A} \models C$. Similarily for $l \notin \mathcal{A}$.