

Modal Logic II

If \mathcal{L} is a language for (classical) predicate logic, we extend it to a *modal language* $\mathcal{L}_{\Box,\diamondsuit}$ by adding two new primitive symbols \Box and \diamondsuit , and a new clause to the definition of formulas

If ϕ is a formula, then so are $(\Box \phi)$ and $(\diamondsuit \phi)$.

Semantics(informal) Relation between \Box and \diamondsuit similar to that between \forall and \exists Kripke frames - a collection W of *possible worlds* $w \Vdash \phi$ " ϕ is true at w"

Semantics for modal logic

 $\ensuremath{\mathcal{L}}$ has at least one constant symbol but no function symbols other than constants

 $C=\{W,S,\{C(p)\}_{p\in W}\}$

 $\boldsymbol{W} \dots$ a set of words

S ... an accessibility (or successor) relation between worlds C(p) ... an assignement of a classical structure C(p) for ${\cal L}$ to each $p\in W$

C is a *frame* for the language \mathcal{L} (\mathcal{L} -frame) if, for every p and q in W, pSq implies that $C(p) \subseteq C(q)$ and the interpretation of constants in $\mathcal{L}(p) \subseteq \mathcal{L}(q)$ are the same in C(p) as in C(q).

Forcing for frames

Let $C = \{W, S, \{C(p)\}_{p \in W}\}$ be a frame for a language \mathcal{L} , p be in W and ϕ be a sentence of the language $\mathcal{L}(p)$.

 $p \text{ forces } \phi \text{, written } p \Vdash \phi$

1. For atomic ϕ , $p \Vdash \phi \Leftrightarrow \phi$ is true in C(p).

2.
$$p \Vdash (\phi \to \psi) \Leftrightarrow p \Vdash \phi$$
 implies $p \Vdash \psi$.

3. \land, vee ; $\forall, \exists \dots c \text{ in } \mathcal{L} \left(p \right)$

4.
$$p \Vdash \neg \phi \Leftrightarrow$$
. p does not force ϕ , $p \not\vDash \phi$.

5.
$$p \Vdash \Box \phi \Leftrightarrow$$
 for all $q \in W$ such that pSq , $q \Vdash \phi$.

6. $p \Vdash \Diamond \phi \Leftrightarrow$ there is a $q \in W$ such that pSq and $q \Vdash \phi$.

