Tableau Proofs. Preliminaries

A partial order ... a set S with a binary relation ("less than", written <, on S which is *transitive* and *irreflexive*.

A tree

König's lemma: If a finitely branching tree T is infinite, it has an infinite path.

Proof: Logic for Applications, p. 9

Tableau Proofs

- start with a signed formula, $F\alpha$, as the root of a tree
- analyze it into its components to see that any analysis leads to a contradiction

Tableau Proofs in Propositional Calculus I

- signed formula $F\alpha$, $T\alpha$
- atomic tableau, α -rules, β -rules

Tableaux I

A *finite tableau* is a binary tree, labeled with signed formulas called entries, that satisfies the following inductive definition:

- 1. All atomic tableaux are finit tableaux.
- 2. If τ is a finite tableau, P a path on τ , E an entry of τ occurning on P, and τ' is obtained from τ by adjoining the unique atomic tableau with root entry E to τ at the end of the path P, then τ' is also a finite tableau.

Tableaux II

Let τ be a tableau, P a path on τ and E an entry occuring on P.

- 1. E has been *reduced* on P if all the entries on one path through the atomic tableau with root E occur on P.
- 2. *P* is *contradictory* if, for some proposition α , $T\alpha$ and $F\alpha$ are both entries on *P*. *P* is *finished* if it is contradictory or every entry on *P* is reduced on *P*.
- 3. τ is finished if every path through τ is finished.
- 4. τ is contradictory if every path through τ is contradictory.

Tableau proof

A *tableau proof* of a proposition α is a contradictory tableau with root entry $F\alpha$.

A *tableau refutation* for a proposition α is a contradictory tableau with root entry $T\alpha$.

tableau provable/refutable proposition

Complete systematic tableaux

Let R be a signed propositin. We define the *complete systematic tableau* (CST) with root entry R by induction.

- 1. Let τ_0 be the unique tableau with R at its root.
- 2. Assume that τ_m has been defined.
- 3. Let *n* be the smallest level of τ_m containing an entry that is unreduced on some noncontradictory path in τ_m and let *E* be the leftmost such entry of level *n*.
- 4. Let τ_{m+1} be gotten by adjoining the unique atomic tableau with root E to the end of every noncontradictory path of τ_m on which E is unreduced.

5. The union of the sequence τ_m is the desired systematic tableau.

Tableaux from premises

- Σ a possibly infinite set of propositions
 - 1. Every atomic tableau is a finite tableau from $\boldsymbol{\Sigma}$.
- 2. If τ is a finite tableau from Σ and $\alpha \in \Sigma$, then the tableau formed by putting $T\alpha$ at the end of every noncontradictory path not containing it is also a finite tableau from Σ .
- 3. If τ is a finite tableau from Σ , P a path on τ , E an entry of τ occurning on P, and τ' is obtained from τ by adjoining the unique atomic tableau with root entry E to τ at the end of the path P, then τ' is also a finite tableau from Σ .

Tableaux from premises II

Every CST is finished.

Both soundness and completness of deduction from premises hold.

Every CST is finite ... ?

If a CST from Σ is a proof, it is finite

Compactness: α is a conequence of Σ iff α is a consequence of some finite subset of Σ .

Tableaux in predicate calculus

 $T(\exists x)\phi(x)$

 $\mathcal{L}_{\mathcal{C}}$ - adding on a set of constants $c_0, c_1, ...$

 γ -rules, δ -rules

Tableaux in predicate calculus

- 1. All atomic tableaux are tableaux. The requirement that c be new in (7b) and (8a) means that c is one of the constants c_i added on to \mathcal{L} to get $\mathcal{L}_{\mathcal{C}}$ (which therefore does not appear in ϕ).
- 2. ... adjoining an atomic tableau with root entry E to τ at the end of the path P: c did not appear in any entries on P.

$$\begin{split} T(\exists x)\phi(x), & F(\forall x)\phi(x) \to \text{a witness } c \\ T(\forall x)\phi(x), & F(\exists x)\phi(x) \\ \to \\ \text{add } T\phi(t) \ (F\phi(t)) \text{ for any ground term } t \dots ? \end{split}$$

Tableau is finished II

P a path in τ, E an entry on P and W the \mathbf{i}^{th} occurrence of E on P.

 \boldsymbol{w} is reduced

1. ...

2. *E* is of the form $T(\forall x)\phi(x)$ or $F(\exists x)\phi(x)$, $T\phi(t_i)$ or $F\phi(t_i)$, respectively, is an entry on *P* and there is an (i+1)st occurrence of *E* on *P*.

Note: Signed sentences like $T(\forall x)\phi(x)$ must be instantiated for each term t_i in our language before we can say that we have finished with them. 3. finished ...