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Inductive concept learningInductive concept learning
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z Given :
y positive examples P : facts to be entailed,
y negative examples N : facts not to be entailed,
y background knowledge B : a set of predicate

definitions;

z Find : a hypothesis H  (one or more predicate
definitions) such that
y for every p∈ P: B ∪  H |= p   (completeness ),
y for every n∈ N: B ∪  H |≠ n   (consistency ).

z Given :
y positive examples P : facts to be entailed,
y negative examples N : facts not to be entailed,
y background knowledge B : a set of predicate

definitions;

z Find : a hypothesis H  (one or more predicate
definitions) such that
y for every p∈ P: B ∪  H |= p   (completeness ),
y for every n∈ N: B ∪  H |≠ n   (consistency ).

Concept learning in logicConcept learning in logic



LICS’01 workshop The logic of learning
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z top-down  (language-driven)
y descend the generality ordering

x start with short, general rule
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x adding conditions
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Top-down induction: exampleTop-down induction: example

example action hypothesis

+p(b,[b]) add clause p(X,Y).

-p(x,[]) specialise p(X,[V|W]).

-p(x,[a,b]) specialise p(X,[X|W]).

+p(b,[a,b]) add clause p(X,[X|W]).
p(X,[V|W]):-p(X,W).

exampleexample actionaction hypothesishypothesis

+p(b,[b]) add clause p(X,Y).

-p(x,[]) specialise p(X,[V|W]).

-p(x,[a,b]) specialise p(X,[X|W]).

+p(b,[a,b]) add clause p(X,[X|W]).
p(X,[V|W]):-p(X,W).
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Bottom-up induction: exampleBottom-up induction: example

z Treat positive examples + ground background facts as body

z Choose two examples as heads  and anti-unify

q([1,2],[3,4],[1,2,3,4]):-
q([1,2],[3,4],[1,2,3,4]),q([a],[],[a]),q([],[],[]),q([2],[3,4],[2,3,4])

q([a],[],[a]):-
q([1,2],[3,4],[1,2,3,4]),q([a],[],[a]),q([],[],[]),q([2],[3,4],[2,3,4])

q([A|B],C,[A|D]):-
q([1,2],[3,4],[1,2,3,4]),q([A|B],C,[A|D]),q(W,C,X),q([S|B],[3,4],[S,T,U|V]),
q([R|G],K,[R|L]),q([a],[],[a]),q(Q,[],Q),q([P],K,[P|K]),
q(N,K,O),q(M,[],M),q([],[],[]),q(G,K,L),
q([F|G],[3,4],[F,H,I|J]),q([E],C,[E|C]),q(B,C,D),q([2],[3,4],[2,3,4])

z Generalise by removing literals  until negative examples
covered

z Treat positive examples + ground background facts as body

z Choose two examples as heads  and anti-unify

q([1,2],[3,4],[1,2,3,4]) :-
q([1,2],[3,4],[1,2,3,4]),q([a],[],[a]),q([],[],[]), q([2],[3,4],[2,3,4])

q([a],[],[a]) :-
q([1,2],[3,4],[1,2,3,4]),q([a],[],[a]), q([],[],[]) ,q([2],[3,4],[2,3,4])

q([A|B],C,[A|D]) :-
q([1,2],[3,4],[1,2,3,4]) ,q([ A| B], C,[ A| D]),q(W, C,X),q([S| B],[3,4],[S,T,U|V]),
q([R|G],K,[R|L]), q([a],[],[a]) ,q(Q,[],Q),q([P],K,[P|K]),
q(N,K,O),q(M,[],M), q([],[],[]) ,q(G,K,L),
q([F|G],[3,4],[F,H,I|J]),q([E], C,[E| C]), q(B,C,D) , q([2],[3,4],[2,3,4])

z Generalise by removing literals  until negative examples
covered
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Progol predicting carcinogenicityProgol predicting carcinogenicity

zA molecular compound is carcinogenic if:
(1) it tests positive in the Salmonella assay; or
(2) it tests positive for sex-linked recessive lethal mutation in Drosophila; or
(3) it tests negative for chromosome aberration; or
(4) it has a carbon in a six-membered aromatic ring with a partial charge of

-0.13; or
(5) it has a primary amine group and no secondary or tertiary amines; or
(6) it has an aromatic (or resonant) hydrogen with partial charge ≥ 0.168; or
(7) it has an hydroxy oxygen with a partial charge ≥ -0.616 and an aromatic

(or resonant) hydrogen; or
(8) it has a bromine; or
(9) it has a tetrahedral carbon with a partial charge ≤ -0.144 and tests

positive on Progol’s mutagenicity rules.

zA molecular compound is carcinogenic if:
(1) it tests positive in the Salmonella assay; or
(2) it tests positive for sex-linked recessive lethal mutation in Drosophila; or
(3) it tests negative for chromosome aberration; or
(4) it has a carbon in a six-membered aromatic ring with a partial charge of

-0.13; or
(5) it has a primary amine group and no secondary or tertiary amines; or
(6) it has an aromatic (or resonant) hydrogen with partial charge ≥ 0.168; or
(7) it has an hydroxy oxygen with a partial charge ≥ -0.616 and an aromatic

(or resonant) hydrogen; or
(8) it has a bromine; or
(9) it has a tetrahedral carbon with a partial charge ≤ -0.144 and tests

positive on Progol’s mutagenicity rules.



LICS’01 workshop The logic of learning

ILP example: East-West trainsILP example: East-West trains

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.



LICS’01 workshop The logic of learning

Prolog representation (flattened)Prolog representation (flattened)

z Example:
eastbound(t1).

z Background knowledge:
car(t1,c1).      car(t1,c2).        car(t1,c3).      car(t1,c4).
rectangle(c1).   rectangle(c2).     rectangle(c3).   rectangle(c4).
short(c1).       long(c2).          short(c3).       long(c4).
open(c1).        open(c2).          peaked(c3).      open(c4).
two_wheels(c1).  three_wheels(c2).  two_wheels(c3).  two_wheels(c4).
load(c1,l1).     load(c2,l2).       load(c3,l3).     load(c4,l4).
circle(l1).      hexagon(l2).       triangle(l3).    rectangle(l4).
one_load(l1).    one_load(l2).      one_load(l3).    three_loads(l4).

z Hypothesis:
eastbound(T):-car(T,C),short(C),not open(C).
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Prolog representation (terms)Prolog representation (terms)

z Example:
eastbound([c(rectangle,short,open,2,l(circle,1)),
           c(rectangle,long,open,3,l(hexagon,1)),
           c(rectangle,short,peaked,2,l(triangle,1)),
           c(rectangle,long,open,2,l(rectangle,3))]).

z Background knowledge: member/2 , arg/3

z Hypothesis:
eastbound(T):-member(C,T),arg(2,C,short),
                          not arg(3,C,open).

z Example:
eastbound([c(rectangle,short,open,2,l(circle,1)),
           c(rectangle,long,open,3,l(hexagon,1)),
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Prolog representation (terms)Prolog representation (terms)

z Example:
eastbound([c(rectangle,short,open,2,l(circle,1)),
           c(rectangle,long,open,3,l(hexagon,1)),
           c(rectangle,short,peaked,2,l(triangle,1)),
           c(rectangle,long,open,2,l(rectangle,3))]).

z Background knowledge: member/2 , arg/3

z Hypothesis:
eastbound(T):- member(C,T),arg(2,C,short),
                          not arg(3,C,open).

z Example:
eastbound([c(rectangle,short,open,2,l(circle,1)),
           c(rectangle,long,open,3,l(hexagon,1)),
           c(rectangle, short , peaked ,2,l(triangle,1)),
           c(rectangle,long,open,2,l(rectangle,3))]).

z Background knowledge: member/2 , arg/3

z Hypothesis:
eastbound(T):- member(C,T), arg(2,C,short),
                          not arg(3,C,open).
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ER diagram for East-West trainsER diagram for East-West trains
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A particular trainA particular train

train1train1DirectionDirection
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LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 t riangle 1

l4 c4 rec tangle 3

… … …

LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 t riangle 1

l4 c4 rec tangle 3

… … …

LOAD_TABLELOAD_TABLE

Database representationDatabase representation

TRAIN DIRECTION
t 1 EAST

t 2 EAST

… …

t6 WEST
… …

TRAIN DIRECTION
t 1 EAST

t 2 EAST

… …

t6 WEST
… …

TRAIN_TABLETRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS
c1 t1 rec tangle short open 2

c2 t1 rec tangle long open 3

c3 t1 rec tangle short peaked 2

c4 t1 rec tangle long open 2

… … … …

CAR TRAIN SHAPE LENGTH ROOF WHEELS
c1 t1 rec tangle short open 2

c2 t1 rec tangle long open 3

c3 t1 rec tangle short peaked 2

c4 t1 rec tangle long open 2

… … … …

CAR_TABLECAR_TABLE

SELECT DISTINCT TRAIN_TABLE.TRAIN FROM TRAIN_TABLE, CAR_TABLE WHERE 
TRAIN_TABLE.TRAIN = CAR_TABLE.TRAIN AND 
CAR_TABLE.SHAPE = 'rectangle' AND 
CAR_TABLE.ROOF != 'open'

SELECT DISTINCT TRAIN_TABLE.TRAIN  FROM TRAIN_TABLE , CAR_TABLE  WHERE 
TRAIN_TABLE.TRAIN  = CAR_TABLE.TRAIN  AND 
CAR_TABLE.SHAPE  = 'rectangle' AND 
CAR_TABLE.ROOF  != 'open'
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Individual-centred representationsIndividual-centred representations

z ER diagram is a tree (approximately)
y root denotes individual
y looking downwards from the root, only one-to-one or

one-to-many relations are allowed
y one-to-one cycles are allowed

z Database can be partitioned into sub-databases
each describing a single individual

z Alternative: all information about a single
individual packed together in a term
y tuples, lists, sets, multisets, trees, …

z ER diagram is a tree (approximately)
y root denotes individual
y looking downwards from the root, only one-to-one or

one-to-many relations are allowed
y one-to-one cycles are allowed

z Database can be partitioned into sub-databases
each describing a single individual

z Alternative: all information about a single
individual packed together in a term
y tuples, lists, sets, multisets, trees, …



LICS’01 workshop The logic of learning

Strongly typed languagesStrongly typed languages

z Type signature specifies ‘data model’
y similar to ER diagram

z Each example described by single statement

z Hypothesis construction guided by types
y interaction between structural functions/predicates

referring to subterms and utility predicates  giving
properties of subterms

z Example language: Escher
y functional logic programming
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referring to subterms and utility predicates  giving
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z Example language: Escher
y functional logic programming
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East-West trains in EscherEast-West trains in Escher

z Type signature:
data Shape  = Rectangle | Hexagon | …; data Length = Long | Short;
data Roof   = Open | Peaked | …; data Object = Circle | Hexagon | …;

type Wheels = Int; type Load = (Object,Number); type Number = Int
type Car    = (Shape,Length,Roof,Wheels,Load); type Train = [Car];

eastbound::Train->Bool;

z Example:
eastbound([(Rectangle,Short,Open,2,(Circle,1)),
           (Rectangle,Long,Open,3,(Hexagon,1)),
           (Rectangle,Short,Peaked,2,(Triangle,1)),
           (Rectangle,Long,Open,2,(Rectangle,3))]) = True

z Hypothesis:
eastbound(t) = (exists \c -> member(c,t) &&

   LengthP(c)==Short && RoofP(c)!=Open)
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           (Rectangle,Long,Open,3,(Hexagon,1)),
           (Rectangle,Short,Peaked,2,(Triangle,1)),
           (Rectangle,Long,Open,2,(Rectangle,3))]) = True

z Hypothesis:
eastbound(t) = (exists \c -> member(c,t) &&

   LengthP(c)==Short && RoofP(c)!=Open)
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MutagenesisMutagenesis

HasHas

AtomAtom

ElementElement

AtomTypeAtomType

ChargeCharge
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MM

BondTypeBondTypeBondBond

1111

MoleculeMoleculeClassClass

Ind1Ind1

IndAIndA

LumoLumo

LogPLogP
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Mutagenesis in Escher

z Type signature:
data Element = Br | C | Cl | F | H | I | N | O | S;

type Ind1 = Bool;

type IndA = Bool;

type Lumo = Float;

type LogP = Float;
type AtomID = Int;

type AtomType = Int;

type Charge = Float;

type BondType = Int;

type Atom = ( AtomID ,Element,AtomType,Charge);

type Bond = ({ AtomID },BondType);

type Molecule = (Ind1,IndA,Lumo,LogP, {Atom} , {Bond} );

mutagenic::Molecule->Bool;
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z Examples:
mutagenic(True,False,-1.246,4.23,

{( 1,C,22,-0.117),
 ( 2,C,22,-0.117),
  …,
 ( 26,O,40,-0.388)},
{({ 1, 2},7),
  …,
 ({ 24, 26},2)})
= True;

z NB. Naming  of sub-terms cannot be avoided here,
because molecules are graphs rather than trees

Mutagenesis in Escher

atoms

bonds
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Hypothesis:
mutagenic(m) =

ind1P(m) == True || lumoP(m) <= -2.072 ||

(exists \a -> a 'in' atomSetP(m) && elementP(a)==C &&
        atomTypeP(a)==26 && chargeP(a)==0.115) ||

(exists \b1 b2 -> b1 'in' bondSetP(m) && b2 'in' bondSetP(m) &&
        bondTypeP(b1)==1 && bondTypeP(b2)==2 &&
        not disjoint(labelSetP(b1),labelSetP(b2)) ||

(exists \a -> a 'in' atomSetP(m) &&
        elementP(a)==C && atomTypeP(a)==29 &&
        (exists \b1 b2 ->
                b1 'in' bondSetP(m) && b2 'in' bondSetP(m) &&
                bondTypeP(b1)==7 && bondTypeP(b2)==1 &&
                labelP(a) 'in' labelSetP(b1) &&
                not disjoint(labelSetP(b1),labelSetP(b2)))) ||

…;

Mutagenesis in Escher
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Complexity of classification problemsComplexity of classification problems

z Simplest case: single table with primary key
y attribute-value  or propositional  learning
y example corresponds to tuple of constants

z Next: single table without primary key
y multi-instance  problem
y example corresponds to set of tuples of constants

z Complexity resides in many-to-one foreign keys
y non-determinate  variables
y lists, sets, multisets
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y lists, sets, multisets
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Understanding ILPUnderstanding ILP

z Back to Prolog: what do we learn from all this?
y structural predicates introduce local variables, utility

predicates consume them
y interactions between local variables should not be

broken up ===> features
y enhancement of existing transformation methods

(e.g. LINUS) through feature construction

z Back to Prolog: what do we learn from all this?
y structural predicates introduce local variables, utility

predicates consume them
y interactions between local variables should not be

broken up ===> features
y enhancement of existing transformation methods

(e.g. LINUS) through feature construction
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The key steps in rule learningThe key steps in rule learning

z Hypothesis construction : find a set of n rules
y usually simplified by n separate rule constructions

z Rule construction : find a pair (Head, Body)
y e.g. select class and construct body

z Body construction : find a set of m literals
y usually simplified by adding one literal at a time

z Hypothesis construction : find a set of n rules
y usually simplified by n separate rule constructions

z Rule construction : find a pair (Head, Body)
y e.g. select class and construct body

z Body construction : find a set of m literals
y usually simplified by adding one literal at a time
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First-order featuresFirst-order features

z Features concern interactions of local variables

z The following rule has one feature ‘has a short
closed car ’:
eastbound(T):-car(T,C),short(C),not open(C).

z The following rule has two features ‘has a short car ’
and ‘has a closed car ’:
eastbound(T):-

car(T,C1),short(C1),
car(T,C2),not open(C2).
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Propositionalising rulesPropositionalising rules

z Equivalently:

eastbound(T):-hasShortCar(T),hasClosedCar(T).

hasShortCar(T):- car(T,C1),short(C1) .

hasClosedCar(T):- car(T,C2),not open(C2) .

z Given a way to construct and select first-order
features, body construction in ILP is semi-
propositional
y head and all literals in body have the same global

variable(s)
y corresponds to single table, one row per example
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Prolog feature biasProlog feature bias

z Flattened representation, but derived from
strongly-typed term representation
y one free global variable
y each (binary) structural predicate introduces a new

existential local variable and uses either global
variable or local variable introduced by other
structural predicate

y utility predicates only use variables
y all variables are used

z NB. features can be non-boolean
y if all structural predicates are one-to-one
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Example: mutagenesisExample: mutagenesis

y 42 regression-unfriendly molecules
y 57 first-order features with one utility literal
y LINUS using CN2: 83%

mutagenic(M,false):- not (has_atom(M,A),atom_type(A,21)) ,
logP(M,L),L>1.99,L<5.64.

mutagenic(M,false):- not (has_atom(M,A),atom_type(A,195)) ,
lumo(M,Lu),Lu>-1.74,Lu<-0.83,
logP(M,L),L>1.81.

mutagenic(M,false):-lumo(M,Lu),Lu>-0.77.

mutagenic(M,true):- has_atom(M,A),atom_type(A,21) ,
lumo(M,Lu),Lu<-1.21.

mutagenic(M,true):-logP(M,L),L>5.64,L<6.36.
mutagenic(M,true):-lumo(M,Lu),Lu>-0.95,

logP(M,L),L<2.21.
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Feature construction: summaryFeature construction: summary

z All the expressiveness of ILP is in the features
y body construction is essentially propositional
y every ILP system does constructive induction

z Feature construction is a discovery task
y use of discovery systems such as Warmr, Tertius or

Midos
y alternative: use a relevancy filter
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Overview of this talkOverview of this talk

z A quick overview of ILP

z Knowledge representation
y individual-centred representations

z Learning as inference
y inductive consequence relations

z Conclusions and outlook
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Inductive consequence relationsInductive consequence relations

z I write E |< H for ‘H is a possible inductive
hypothesis given evidence E’
y like deduction: from input to output
y unlike deduction: possibly unsound

z What are sensible properties of |< ?

z What are possible material definitions of |< ?
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(I1) If α |< β and =α∧β→γ , then α∧γ  |< β.

(I2) If α |< β and =α∧β→γ , then α∧¬γ  |< β.

(I2′) If =β→¬α , then α |< β.

(I3) If α |< β and =α∧β→γ , then α |< β∧γ .

(I4) If α |< β, then α |< α.

(I5) If α |< β, then β |< β.

(I6) If α |< β and =β↔γ, then α |< γ.

(I7) If α |< γ and =α↔β, then β |< γ.

(I1) If α |< β and =α∧ β→γ, then α∧ γ |< β.

(I2) If α |< β and =α∧ β→γ, then α∧¬ γ |< β.

(I2′) If =β→¬α, then α |< β.

(I3) If α |< β and =α∧ β→γ, then α |< β∧ γ.

(I4) If α |< β, then α |< α.

(I5) If α |< β, then β |< β.

(I6) If α |< β and =β↔γ, then α |< γ.

(I7) If α |< γ and =α↔β, then β |< γ.

/

General induction postulatesGeneral induction postulates

/
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Explanatory inductionExplanatory induction

z E |< H is interpreted as ‘evidence E is
explained  by hypothesis H’
y induction as reverse deduction

z Close link with abduction
y Peirce: ‘if A were true, C would be a matter of course’

z Depends on notion of explanation
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(E1) If α |< β, =γ→β and  γ |< γ, then α |< γ.

(E2) If γ |< γ and ¬α  |< γ, then α |< α.

(E3) If α |< β∧γ , then β→α |< γ.

(E4) If α |< γ and β |< γ, then α∧β  |< γ.

(E5) If α |< γ and =α→β, then β |< γ.

(E1) If α |< β, =γ→β and  γ |< γ, then α |< γ.

(E2) If γ |< γ and ¬α  |< γ, then α |< α.

(E3) If α |< β∧γ , then β→α |< γ.

(E4) If α |< γ and β |< γ, then α∧β  |< γ.

(E5) If α |< γ and =α→β, then β |< γ.

/

Explanatory induction postulatesExplanatory induction postulates
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z Let |~ be an explanation mechanism ,
and define the explanatory power of a
formula α as C~ = { γ | α |~ γ }

z The explanatory consequence relation
|< based on |~ is defined as

α |< β  iff  C~(α) ⊆  C~(β) ⊂  L

z (E1–5) are sound and complete if |~  =  |=
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|< based on |~ is defined as
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z (E1–5) are sound and complete if |~  =  |=

Explanatory semanticsExplanatory semantics
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Confirmatory inductionConfirmatory induction

z E |< H is interpreted as ‘evidence E confirms
hypothesis H’

z A kind of closed-world reasoning
y ‘assume that everything you haven’t seen behaves

like something you have seen’
y closely related to non-monotonic reasoning
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(C1) If α |< β and =β→γ, then α |< γ.

(C2) If α |< α and α |< ¬β , then β |< β.

(C3) If α |< β and α |< γ, then α |< β∧γ .

(C4) If α |< γ and β |< γ, then α∨β  |< γ.

(C5) If α |< β and α |< γ, then α∧γ  |< β.

(C1) If α |< β and =β→γ, then α |< γ.

(C2) If α |< α and α |< ¬β , then β |< β.

(C3) If α |< β and α |< γ, then α |< β∧γ .

(C4) If α |< γ and β |< γ, then α∨β  |< γ.

(C5) If α |< β and α |< γ, then α∧γ  |< β.

Confirmatory induction postulatesConfirmatory induction postulates

/



LICS’01 workshop The logic of learning

z Let Reg be a function constructing a set of
regular models  from observations α

z The confirmatory consequence relation
|< based on Reg is defined as

α |< β  iff  ∅  ⊂  Reg(α) ⊆  [β]

z (C1–5) are sound and complete if Reg(α)
are the most preferred models of α
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First-order representations inÉFirst-order representations inÉ

z …probabilistic models
y Koller’s probabilistic relational models
y first-order Bayesian classification with 1BC
y towards first-order Bayesian networks

z …support vector machines
y kernels on sequences
y a kernel on Escher terms

z …neural networks
y recurrent NN for Escher terms

z …probabilistic models
y Koller’s probabilistic relational models
y first-order Bayesian classification with 1BC
y towards first-order Bayesian networks

z …support vector machines
y kernels on sequences
y a kernel on Escher terms

z …neural networks
y recurrent NN for Escher terms



LICS’01 workshop The logic of learning

The naive Bayes classifierThe naive Bayes classifier

z Bayesian classifier:

z Naive Bayes assumption (propositional case):
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Individual

Naive Bayes netNaive Bayes net

Class

A1 A2 A3

ClassClass IndividualIndividual

A1A1 A2A2 A3A3
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Molecule

Towards first-order Bayes netsTowards first-order Bayes nets
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AtomSetLogPLUMO {Atom}
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Support vector machinesSupport vector machines

z Wide margin classifier
y support vectors are the datapoints closest to the

separating hyperplane

z Kernel: (implicit) transformation to feature space
y to deal with problems that are not linearly separable

in input space
y feature space is often high-dimensional
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Primal and dual formPrimal and dual form

z Linear classifiers construct a hyperplane
separating the input points

y decision rule

y hypothesis

y equivalently

where α i represent hypothesis in dual co-ordinates

z Linear classifiers construct a hyperplane
separating the input points

y decision rule

y hypothesis

y equivalently

where α i represent hypothesis in dual co-ordinates

h b( ) sgn( )x w x= ⋅ +h b( ) sgn( )x w x= ⋅ +

w x= ∑ α i i ii
yw x= ∑ α i i ii
y

h y bi i ii
( ) sgnx x x= ⋅ +( )∑ αh y bi i ii
( ) sgnx x x= ⋅ +( )∑ α
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KernelsKernels

z Learning in feature space:

z A kernel calculates the inner product directly in
input space:

y This measures the similarity between x and z in
terms of features φ

z Learning in feature space:

z A kernel calculates the inner product directly in
input space:

y This measures the similarity between x and z in
terms of features φ

h y bi i ii
( ) sgn ( ) ( )x x x= ⋅ +( )∑ α φ φh y bi i ii
( ) sgn ( ) ( )x x x= ⋅ +( )∑ α φ φ

K( , ) ( ) ( )x z x z= ⋅φ φK( , ) ( ) ( )x z x z= ⋅φ φ
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A kernel for Escher termsA kernel for Escher terms

z Let x and z be terms of type T. We define
KT(x,z) recursively as follows:

y If T = T1 x ... x Tn is a tuple type, x = (x1,...,xn) and z =
(z1,...,zn), then KT(x,z) = KT1(x1,z1) + ... + KTn(xn,zn).

y If T = {T'} is a set type, x = {x1,...,xn} and z = {z1,...zm},
then KT(x,z) = KT'(x1,z1) + ... + KT'(x1,zm) + KT'(x2,z1) +
... + KT'(x2,zm) + ... + KT'(xn,zm).

y If x = f(x1,...,xn) and z = f(z1,...,zn) where f is a data
constructor of type T1 -> ... -> Tn -> T, then KT(x,z) = 1
+ KT1(x1,z1) + ... + KTn(xn,zn); if x and z have different
data constructors then KT(x,z) = 0.
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Recurrent neural networksRecurrent neural networks

z Consist of a recurrent or folding part that is
unfolded to encode a given input tree, followed
by a traditional feed-forward network

z Folding part trained by backpropagation through
structure

z Generalises naturally to terms
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Recurrent NN for Escher termsRecurrent NN for Escher terms

T x List Int
T' x T' -> T' x T' -> T
Int -> List Int -> List Int
T' x T'

T x List Int
T' x T' -> T' x T' -> T
Int -> List Int -> List Int
T' x T'



LICS’01 workshop The logic of learning

Concluding remarksConcluding remarks

z Data models and knowledge representation are
integral parts of any approach to learning,
modelling and reasoning

z Individual-centred representation are natural in
classification and provide better understanding
of the relation with propositional approaches

z There is still much to explore in upgrading
existing propositional approaches with richer
knowledge representation
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