
LICS’01 workshop The logic of learning

The logic of learning:
logic and knowledge representation

in machine learning

The logic of learning:
logic and knowledge representation

in machine learning

Peter A. Flach

Department of Computer Science

University of Bristol

www.cs.bris.ac.uk/~flach/

LICS’01 workshop The logic of learning

Overview of this talkOverview of this talk

z A quick overview of ILP

z Knowledge representation
y individual-centred representations

z Learning as inference
y inductive consequence relations

z Conclusions and outlook

z A quick overview of ILP

z Knowledge representation
y individual-centred representations

z Learning as inference
y inductive consequence relations

z Conclusions and outlook

LICS’01 workshop The logic of learning

Overview of this talkOverview of this talk

z A (very) quick overview of ILP

z Knowledge representation
y individual-centred representations

z Learning as inference
y inductive consequence relations

z Conclusions and outlook

z A (very) quick overview of ILP

z Knowledge representation
y individual-centred representations

z Learning as inference
y inductive consequence relations

z Conclusions and outlook

LICS’01 workshop The logic of learning

Inductive concept learningInductive concept learning

z Given : descriptions of instances and non-
instances

z Find : a concept covering all instances
and no non-instances

z Given : descriptions of instances and non-
instances

z Find : a concept covering all instances
and no non-instances

——
——

——

++
++

++

——

++

not yet refuted
=

Version Space

not yet refuted
=

Version Space

too general
(covering non-instances)
too general
(covering non-instances)

too specific
(not covering instances)
too specific
(not covering instances)

LICS’01 workshop The logic of learning

z Given :
y positive examples P : facts to be entailed,
y negative examples N : facts not to be entailed,
y background knowledge B : a set of predicate

definitions;

z Find : a hypothesis H (one or more predicate
definitions) such that
y for every p∈ P: B ∪ H |= p (completeness),
y for every n∈ N: B ∪ H |≠ n (consistency).

z Given :
y positive examples P : facts to be entailed,
y negative examples N : facts not to be entailed,
y background knowledge B : a set of predicate

definitions;

z Find : a hypothesis H (one or more predicate
definitions) such that
y for every p∈ P: B ∪ H |= p (completeness),
y for every n∈ N: B ∪ H |≠ n (consistency).

Concept learning in logicConcept learning in logic

LICS’01 workshop The logic of learning

ILP methodsILP methods

z top-down (language-driven)
y descend the generality ordering

x start with short, general rule

y specialise by
x substituting variables

x adding conditions

z bottom-up (data-driven)
y climb the generality ordering

x start with long, specific rule

y generalise by
x introducing variables

x removing conditions

z top-down (language-driven)
y descend the generality ordering

x start with short, general rule

y specialise by
x substituting variables

x adding conditions

z bottom-up (data-driven)
y climb the generality ordering

x start with long, specific rule

y generalise by
x introducing variables

x removing conditions

LICS’01 workshop The logic of learning

Top-down induction: exampleTop-down induction: example

example action hypothesis

+p(b,[b]) add clause p(X,Y).

-p(x,[]) specialise p(X,[V|W]).

-p(x,[a,b]) specialise p(X,[X|W]).

+p(b,[a,b]) add clause p(X,[X|W]).
p(X,[V|W]):-p(X,W).

exampleexample actionaction hypothesishypothesis

+p(b,[b]) add clause p(X,Y).

-p(x,[]) specialise p(X,[V|W]).

-p(x,[a,b]) specialise p(X,[X|W]).

+p(b,[a,b]) add clause p(X,[X|W]).
p(X,[V|W]):-p(X,W).

LICS’01 workshop The logic of learning

Bottom-up induction: exampleBottom-up induction: example

z Treat positive examples + ground background facts as body

z Choose two examples as heads and anti-unify

q([1,2],[3,4],[1,2,3,4]):-
q([1,2],[3,4],[1,2,3,4]),q([a],[],[a]),q([],[],[]),q([2],[3,4],[2,3,4])

q([a],[],[a]):-
q([1,2],[3,4],[1,2,3,4]),q([a],[],[a]),q([],[],[]),q([2],[3,4],[2,3,4])

q([A|B],C,[A|D]):-
q([1,2],[3,4],[1,2,3,4]),q([A|B],C,[A|D]),q(W,C,X),q([S|B],[3,4],[S,T,U|V]),
q([R|G],K,[R|L]),q([a],[],[a]),q(Q,[],Q),q([P],K,[P|K]),
q(N,K,O),q(M,[],M),q([],[],[]),q(G,K,L),
q([F|G],[3,4],[F,H,I|J]),q([E],C,[E|C]),q(B,C,D),q([2],[3,4],[2,3,4])

z Generalise by removing literals until negative examples
covered

z Treat positive examples + ground background facts as body

z Choose two examples as heads and anti-unify

q([1,2],[3,4],[1,2,3,4]) :-
q([1,2],[3,4],[1,2,3,4]),q([a],[],[a]),q([],[],[]), q([2],[3,4],[2,3,4])

q([a],[],[a]) :-
q([1,2],[3,4],[1,2,3,4]),q([a],[],[a]), q([],[],[]) ,q([2],[3,4],[2,3,4])

q([A|B],C,[A|D]) :-
q([1,2],[3,4],[1,2,3,4]) ,q([A| B], C,[A| D]),q(W, C,X),q([S| B],[3,4],[S,T,U|V]),
q([R|G],K,[R|L]), q([a],[],[a]) ,q(Q,[],Q),q([P],K,[P|K]),
q(N,K,O),q(M,[],M), q([],[],[]) ,q(G,K,L),
q([F|G],[3,4],[F,H,I|J]),q([E], C,[E| C]), q(B,C,D) , q([2],[3,4],[2,3,4])

z Generalise by removing literals until negative examples
covered

LICS’01 workshop The logic of learning

Progol predicting carcinogenicityProgol predicting carcinogenicity

zA molecular compound is carcinogenic if:
(1) it tests positive in the Salmonella assay; or
(2) it tests positive for sex-linked recessive lethal mutation in Drosophila; or
(3) it tests negative for chromosome aberration; or
(4) it has a carbon in a six-membered aromatic ring with a partial charge of

-0.13; or
(5) it has a primary amine group and no secondary or tertiary amines; or
(6) it has an aromatic (or resonant) hydrogen with partial charge ≥ 0.168; or
(7) it has an hydroxy oxygen with a partial charge ≥ -0.616 and an aromatic

(or resonant) hydrogen; or
(8) it has a bromine; or
(9) it has a tetrahedral carbon with a partial charge ≤ -0.144 and tests

positive on Progol’s mutagenicity rules.

zA molecular compound is carcinogenic if:
(1) it tests positive in the Salmonella assay; or
(2) it tests positive for sex-linked recessive lethal mutation in Drosophila; or
(3) it tests negative for chromosome aberration; or
(4) it has a carbon in a six-membered aromatic ring with a partial charge of

-0.13; or
(5) it has a primary amine group and no secondary or tertiary amines; or
(6) it has an aromatic (or resonant) hydrogen with partial charge ≥ 0.168; or
(7) it has an hydroxy oxygen with a partial charge ≥ -0.616 and an aromatic

(or resonant) hydrogen; or
(8) it has a bromine; or
(9) it has a tetrahedral carbon with a partial charge ≤ -0.144 and tests

positive on Progol’s mutagenicity rules.

LICS’01 workshop The logic of learning

ILP example: East-West trainsILP example: East-West trains

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

LICS’01 workshop The logic of learning

Prolog representation (flattened)Prolog representation (flattened)

z Example:
eastbound(t1).

z Background knowledge:
car(t1,c1). car(t1,c2). car(t1,c3). car(t1,c4).
rectangle(c1). rectangle(c2). rectangle(c3). rectangle(c4).
short(c1). long(c2). short(c3). long(c4).
open(c1). open(c2). peaked(c3). open(c4).
two_wheels(c1). three_wheels(c2). two_wheels(c3). two_wheels(c4).
load(c1,l1). load(c2,l2). load(c3,l3). load(c4,l4).
circle(l1). hexagon(l2). triangle(l3). rectangle(l4).
one_load(l1). one_load(l2). one_load(l3). three_loads(l4).

z Hypothesis:
eastbound(T):-car(T,C),short(C),not open(C).

z Example:
eastbound(t1).

z Background knowledge:
car(t1,c1). car(t1,c2). car(t1,c3). car(t1,c4).
rectangle(c1). rectangle(c2). rectangle(c3). rectangle(c4).
short(c1). long(c2). short(c3). long(c4).
open(c1). open(c2). peaked(c3). open(c4).
two_wheels(c1). three_wheels(c2). two_wheels(c3). two_wheels(c4).
load(c1,l1). load(c2,l2). load(c3,l3). load(c4,l4).
circle(l1). hexagon(l2). triangle(l3). rectangle(l4).
one_load(l1). one_load(l2). one_load(l3). three_loads(l4).

z Hypothesis:
eastbound(T):-car(T,C),short(C),not open(C).

LICS’01 workshop The logic of learning

Prolog representation (flattened)Prolog representation (flattened)

z Example:
eastbound(t1).

z Background knowledge:
car(t1,c1). car(t1,c2). car(t1,c3). car(t1,c4).
rectangle(c1). rectangle(c2). rectangle(c3). rectangle(c4).
short(c1). long(c2). short(c3). long(c4).
open(c1). open(c2). peaked(c3). open(c4).
two_wheels(c1). three_wheels(c2). two_wheels(c3). two_wheels(c4).
load(c1,l1). load(c2,l2). load(c3,l3). load(c4,l4).
circle(l1). hexagon(l2). triangle(l3). rectangle(l4).
one_load(l1). one_load(l2). one_load(l3). three_loads(l4).

z Hypothesis:
eastbound(T):- car(T,C),short(C),not open(C) .

z Example:
eastbound(t1).

z Background knowledge:
car(t1,c1). car(t1,c2). car(t1,c3). car(t1,c4).
rectangle(c1). rectangle(c2). rectangle(c3). rectangle(c4).
short(c1). long(c2). short(c3). long(c4).
open(c1). open(c2). peaked(c3). open(c4).
two_wheels(c1). three_wheels(c2). two_wheels(c3). two_wheels(c4).
load(c1,l1). load(c2,l2). load(c3,l3). load(c4,l4).
circle(l1). hexagon(l2). triangle(l3). rectangle(l4).
one_load(l1). one_load(l2). one_load(l3). three_loads(l4).

z Hypothesis:
eastbound(T):- car(T,C), short(C),not open(C) .

LICS’01 workshop The logic of learning

Prolog representation (terms)Prolog representation (terms)

z Example:
eastbound([c(rectangle,short,open,2,l(circle,1)),
 c(rectangle,long,open,3,l(hexagon,1)),
 c(rectangle,short,peaked,2,l(triangle,1)),
 c(rectangle,long,open,2,l(rectangle,3))]).

z Background knowledge: member/2 , arg/3

z Hypothesis:
eastbound(T):-member(C,T),arg(2,C,short),
 not arg(3,C,open).

z Example:
eastbound([c(rectangle,short,open,2,l(circle,1)),
 c(rectangle,long,open,3,l(hexagon,1)),
 c(rectangle,short,peaked,2,l(triangle,1)),
 c(rectangle,long,open,2,l(rectangle,3))]).

z Background knowledge: member/2 , arg/3

z Hypothesis:
eastbound(T):-member(C,T),arg(2,C,short),
 not arg(3,C,open).

LICS’01 workshop The logic of learning

Prolog representation (terms)Prolog representation (terms)

z Example:
eastbound([c(rectangle,short,open,2,l(circle,1)),
 c(rectangle,long,open,3,l(hexagon,1)),
 c(rectangle,short,peaked,2,l(triangle,1)),
 c(rectangle,long,open,2,l(rectangle,3))]).

z Background knowledge: member/2 , arg/3

z Hypothesis:
eastbound(T):- member(C,T),arg(2,C,short),
 not arg(3,C,open).

z Example:
eastbound([c(rectangle,short,open,2,l(circle,1)),
 c(rectangle,long,open,3,l(hexagon,1)),
 c(rectangle, short , peaked ,2,l(triangle,1)),
 c(rectangle,long,open,2,l(rectangle,3))]).

z Background knowledge: member/2 , arg/3

z Hypothesis:
eastbound(T):- member(C,T), arg(2,C,short),
 not arg(3,C,open).

LICS’01 workshop The logic of learning

Machine learning vs. ILPMachine learning vs. ILP

attribute-value
concept learning
attribute-value

concept learning

Prolog program
synthesis

Prolog program
synthesis

individual-centred
representations

individual-centred
representations

multi-instance
learning

multi-instance
learning ??

LICS’01 workshop The logic of learning

Overview of this talkOverview of this talk

z A quick overview of ILP

z Knowledge representation
y individual-centred representations

z Learning as inference
y inductive consequence relations

z Conclusions and outlook

z A quick overview of ILP

z Knowledge representation
y individual-centred representations

z Learning as inference
y inductive consequence relations

z Conclusions and outlook

LICS’01 workshop The logic of learning

Knowledge RepresentationKnowledge Representation

z Entity-Relationship (ER) diagrams

z Relational Database

z Individual-Centred Representations

z Strongly typed language

z XML?

z Entity-Relationship (ER) diagrams

z Relational Database

z Individual-Centred Representations

z Strongly typed language

z XML?

LICS’01 workshop The logic of learning

ER diagram for East-West trainsER diagram for East-West trains

TrainTrainDirectionDirection

HasHas

CarCar

ShapeShape

LengthLength

RoofRoof

WheelsWheels

11

MM

HasHas LoadLoad
11 11

NumberNumber ObjectObject

LICS’01 workshop The logic of learning

A particular trainA particular train

train1train1DirectionDirection

HasHas

car1car1

ShapeShape

LengthLength

RoofRoof

WheelsWheels

HasHas

load1load1
NumberNumber

ObjectObject

HasHas

car2car2

ShapeShape

LengthLength

RoofRoof

WheelsWheels

HasHas

load2load2
NumberNumber

ObjectObject

HasHas

car3car3

ShapeShape

LengthLength

RoofRoof

WheelsWheels

HasHas

load3load3
NumberNumber

ObjectObject

LICS’01 workshop The logic of learning

LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 t riangle 1

l4 c4 rec tangle 3

… … …

LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 t riangle 1

l4 c4 rec tangle 3

… … …

LOAD_TABLELOAD_TABLE

Database representationDatabase representation

TRAIN DIRECTION
t 1 EAST

t 2 EAST

… …

t6 WEST
… …

TRAIN DIRECTION
t 1 EAST

t 2 EAST

… …

t6 WEST
… …

TRAIN_TABLETRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS
c1 t1 rec tangle short open 2

c2 t1 rec tangle long open 3

c3 t1 rec tangle short peaked 2

c4 t1 rec tangle long open 2

… … … …

CAR TRAIN SHAPE LENGTH ROOF WHEELS
c1 t1 rec tangle short open 2

c2 t1 rec tangle long open 3

c3 t1 rec tangle short peaked 2

c4 t1 rec tangle long open 2

… … … …

CAR_TABLECAR_TABLE

SELECT DISTINCT TRAIN_TABLE.TRAIN FROM TRAIN_TABLE, CAR_TABLE WHERE
TRAIN_TABLE.TRAIN = CAR_TABLE.TRAIN AND
CAR_TABLE.SHAPE = 'rectangle' AND
CAR_TABLE.ROOF != 'open'

SELECT DISTINCT TRAIN_TABLE.TRAIN FROM TRAIN_TABLE , CAR_TABLE WHERE
TRAIN_TABLE.TRAIN = CAR_TABLE.TRAIN AND
CAR_TABLE.SHAPE = 'rectangle' AND
CAR_TABLE.ROOF != 'open'

LICS’01 workshop The logic of learning

Individual-centred representationsIndividual-centred representations

z ER diagram is a tree (approximately)
y root denotes individual
y looking downwards from the root, only one-to-one or

one-to-many relations are allowed
y one-to-one cycles are allowed

z Database can be partitioned into sub-databases
each describing a single individual

z Alternative: all information about a single
individual packed together in a term
y tuples, lists, sets, multisets, trees, …

z ER diagram is a tree (approximately)
y root denotes individual
y looking downwards from the root, only one-to-one or

one-to-many relations are allowed
y one-to-one cycles are allowed

z Database can be partitioned into sub-databases
each describing a single individual

z Alternative: all information about a single
individual packed together in a term
y tuples, lists, sets, multisets, trees, …

LICS’01 workshop The logic of learning

Strongly typed languagesStrongly typed languages

z Type signature specifies ‘data model’
y similar to ER diagram

z Each example described by single statement

z Hypothesis construction guided by types
y interaction between structural functions/predicates

referring to subterms and utility predicates giving
properties of subterms

z Example language: Escher
y functional logic programming

z Type signature specifies ‘data model’
y similar to ER diagram

z Each example described by single statement

z Hypothesis construction guided by types
y interaction between structural functions/predicates

referring to subterms and utility predicates giving
properties of subterms

z Example language: Escher
y functional logic programming

LICS’01 workshop The logic of learning

East-West trains in EscherEast-West trains in Escher

z Type signature:
data Shape = Rectangle | Hexagon | …; data Length = Long | Short;
data Roof = Open | Peaked | …; data Object = Circle | Hexagon | …;

type Wheels = Int; type Load = (Object,Number); type Number = Int
type Car = (Shape,Length,Roof,Wheels,Load); type Train = [Car];

eastbound::Train->Bool;

z Example:
eastbound([(Rectangle,Short,Open,2,(Circle,1)),
 (Rectangle,Long,Open,3,(Hexagon,1)),
 (Rectangle,Short,Peaked,2,(Triangle,1)),
 (Rectangle,Long,Open,2,(Rectangle,3))]) = True

z Hypothesis:
eastbound(t) = (exists \c -> member(c,t) &&

 LengthP(c)==Short && RoofP(c)!=Open)

z Type signature:
data Shape = Rectangle | Hexagon | …; data Length = Long | Short;
data Roof = Open | Peaked | …; data Object = Circle | Hexagon | …;

type Wheels = Int; type Load = (Object,Number); type Number = Int
type Car = (Shape,Length,Roof,Wheels,Load); type Train = [Car];

eastbound::Train->Bool;

z Example:
eastbound([(Rectangle,Short,Open,2,(Circle,1)),
 (Rectangle,Long,Open,3,(Hexagon,1)),
 (Rectangle,Short,Peaked,2,(Triangle,1)),
 (Rectangle,Long,Open,2,(Rectangle,3))]) = True

z Hypothesis:
eastbound(t) = (exists \c -> member(c,t) &&

 LengthP(c)==Short && RoofP(c)!=Open)

LICS’01 workshop The logic of learning

East-West trains in EscherEast-West trains in Escher

z Type signature:
data Shape = Rectangle | Hexagon | …; data Length = Long | Short;
data Roof = Open | Peaked | …; data Object = Circle | Hexagon | …;

type Wheels = Int; type Load = (Object,Number); type Number = Int
type Car = (Shape,Length,Roof,Wheels,Load); type Train = [Car];

eastbound::Train->Bool;

z Example:
eastbound([(Rectangle, Short ,Open,2,(Circle,1)),
 (Rectangle,Long,Open,3,(Hexagon,1)),
 (Rectangle, Short , Peaked ,2,(Triangle,1)),
 (Rectangle,Long,Open,2,(Rectangle,3))]) = True

z Hypothesis:
eastbound(t) = (exists \c -> member(c,t) &&

 LengthP(c)==Short && RoofP(c)!=Open)

z Type signature:
data Shape = Rectangle | Hexagon | …; data Length = Long | Short;
data Roof = Open | Peaked | …; data Object = Circle | Hexagon | …;

type Wheels = Int; type Load = (Object,Number); type Number = Int
type Car = (Shape,Length,Roof,Wheels,Load); type Train = [Car];

eastbound::Train->Bool;

z Example:
eastbound([(Rectangle, Short ,Open,2,(Circle,1)),
 (Rectangle,Long,Open,3,(Hexagon,1)),
 (Rectangle, Short , Peaked ,2,(Triangle,1)),
 (Rectangle,Long,Open,2,(Rectangle,3))]) = True

z Hypothesis:
eastbound(t) = (exists \c -> member(c,t) &&

 LengthP(c)==Short && RoofP(c)!=Open)

LICS’01 workshop The logic of learning

MutagenesisMutagenesis

HasHas

AtomAtom

ElementElement

AtomTypeAtomType

ChargeCharge

11

MM

BondTypeBondTypeBondBond

1111

MoleculeMoleculeClassClass

Ind1Ind1

IndAIndA

LumoLumo

LogPLogP

LICS’01 workshop The logic of learning

Mutagenesis in Escher

z Type signature:
data Element = Br | C | Cl | F | H | I | N | O | S;

type Ind1 = Bool;

type IndA = Bool;

type Lumo = Float;

type LogP = Float;
type AtomID = Int;

type AtomType = Int;

type Charge = Float;

type BondType = Int;

type Atom = (AtomID ,Element,AtomType,Charge);

type Bond = ({ AtomID },BondType);

type Molecule = (Ind1,IndA,Lumo,LogP, {Atom} , {Bond});

mutagenic::Molecule->Bool;

LICS’01 workshop The logic of learning

z Examples:
mutagenic(True,False,-1.246,4.23,

{(1,C,22,-0.117),
 (2,C,22,-0.117),
 …,
 (26,O,40,-0.388)},
{({ 1, 2},7),
 …,
 ({ 24, 26},2)})
= True;

z NB. Naming of sub-terms cannot be avoided here,
because molecules are graphs rather than trees

Mutagenesis in Escher

atoms

bonds

LICS’01 workshop The logic of learning

Hypothesis:
mutagenic(m) =

ind1P(m) == True || lumoP(m) <= -2.072 ||

(exists \a -> a 'in' atomSetP(m) && elementP(a)==C &&
 atomTypeP(a)==26 && chargeP(a)==0.115) ||

(exists \b1 b2 -> b1 'in' bondSetP(m) && b2 'in' bondSetP(m) &&
 bondTypeP(b1)==1 && bondTypeP(b2)==2 &&
 not disjoint(labelSetP(b1),labelSetP(b2)) ||

(exists \a -> a 'in' atomSetP(m) &&
 elementP(a)==C && atomTypeP(a)==29 &&
 (exists \b1 b2 ->
 b1 'in' bondSetP(m) && b2 'in' bondSetP(m) &&
 bondTypeP(b1)==7 && bondTypeP(b2)==1 &&
 labelP(a) 'in' labelSetP(b1) &&
 not disjoint(labelSetP(b1),labelSetP(b2)))) ||

…;

Mutagenesis in Escher

LICS’01 workshop The logic of learning

Complexity of classification problemsComplexity of classification problems

z Simplest case: single table with primary key
y attribute-value or propositional learning
y example corresponds to tuple of constants

z Next: single table without primary key
y multi-instance problem
y example corresponds to set of tuples of constants

z Complexity resides in many-to-one foreign keys
y non-determinate variables
y lists, sets, multisets

z Simplest case: single table with primary key
y attribute-value or propositional learning
y example corresponds to tuple of constants

z Next: single table without primary key
y multi-instance problem
y example corresponds to set of tuples of constants

z Complexity resides in many-to-one foreign keys
y non-determinate variables
y lists, sets, multisets

LICS’01 workshop The logic of learning

Understanding ILPUnderstanding ILP

z Back to Prolog: what do we learn from all this?
y structural predicates introduce local variables, utility

predicates consume them
y interactions between local variables should not be

broken up ===> features
y enhancement of existing transformation methods

(e.g. LINUS) through feature construction

z Back to Prolog: what do we learn from all this?
y structural predicates introduce local variables, utility

predicates consume them
y interactions between local variables should not be

broken up ===> features
y enhancement of existing transformation methods

(e.g. LINUS) through feature construction

LICS’01 workshop The logic of learning

The key steps in rule learningThe key steps in rule learning

z Hypothesis construction : find a set of n rules
y usually simplified by n separate rule constructions

z Rule construction : find a pair (Head, Body)
y e.g. select class and construct body

z Body construction : find a set of m literals
y usually simplified by adding one literal at a time

z Hypothesis construction : find a set of n rules
y usually simplified by n separate rule constructions

z Rule construction : find a pair (Head, Body)
y e.g. select class and construct body

z Body construction : find a set of m literals
y usually simplified by adding one literal at a time

LICS’01 workshop The logic of learning

The key steps in rule learningThe key steps in rule learning

z Hypothesis construction : find a set of n rules
y usually simplified by n separate rule constructions

z Rule construction : find a pair (Head, Body)
y e.g. select class and construct body

z Body construction : find a set of m features
y usually simplified by adding one feature at a time

z Feature construction : find a set of k literals
y e.g. interesting subgroup, frequent itemset
y discovery task rather than classification task

z Hypothesis construction : find a set of n rules
y usually simplified by n separate rule constructions

z Rule construction : find a pair (Head, Body)
y e.g. select class and construct body

z Body construction : find a set of m features
y usually simplified by adding one feature at a time

z Feature construction : find a set of k literals
y e.g. interesting subgroup, frequent itemset
y discovery task rather than classification task

LICS’01 workshop The logic of learning

First-order featuresFirst-order features

z Features concern interactions of local variables

z The following rule has one feature ‘has a short
closed car ’:
eastbound(T):-car(T,C),short(C),not open(C).

z The following rule has two features ‘has a short car ’
and ‘has a closed car ’:
eastbound(T):-

car(T,C1),short(C1),
car(T,C2),not open(C2).

z Features concern interactions of local variables

z The following rule has one feature ‘has a short
closed car ’:
eastbound(T):- car(T,C),short(C),not open(C) .

z The following rule has two features ‘has a short car ’
and ‘has a closed car ’:
eastbound(T):-

car(T,C1),short(C1) ,
car(T,C2),not open(C2) .

LICS’01 workshop The logic of learning

Propositionalising rulesPropositionalising rules

z Equivalently:

eastbound(T):-hasShortCar(T),hasClosedCar(T).

hasShortCar(T):- car(T,C1),short(C1) .

hasClosedCar(T):- car(T,C2),not open(C2) .

z Given a way to construct and select first-order
features, body construction in ILP is semi-
propositional
y head and all literals in body have the same global

variable(s)
y corresponds to single table, one row per example

z Equivalently:

eastbound(T):- hasShortCar(T) , hasClosedCar(T) .

hasShortCar(T):- car(T,C1),short(C1) .

hasClosedCar(T):- car(T,C2),not open(C2) .

z Given a way to construct and select first-order
features, body construction in ILP is semi-
propositional
y head and all literals in body have the same global

variable(s)
y corresponds to single table, one row per example

LICS’01 workshop The logic of learning

Prolog feature biasProlog feature bias

z Flattened representation, but derived from
strongly-typed term representation
y one free global variable
y each (binary) structural predicate introduces a new

existential local variable and uses either global
variable or local variable introduced by other
structural predicate

y utility predicates only use variables
y all variables are used

z NB. features can be non-boolean
y if all structural predicates are one-to-one

z Flattened representation, but derived from
strongly-typed term representation
y one free global variable
y each (binary) structural predicate introduces a new

existential local variable and uses either global
variable or local variable introduced by other
structural predicate

y utility predicates only use variables
y all variables are used

z NB. features can be non-boolean
y if all structural predicates are one-to-one

LICS’01 workshop The logic of learning

Example: mutagenesisExample: mutagenesis

y 42 regression-unfriendly molecules
y 57 first-order features with one utility literal
y LINUS using CN2: 83%

mutagenic(M,false):- not (has_atom(M,A),atom_type(A,21)) ,
logP(M,L),L>1.99,L<5.64.

mutagenic(M,false):- not (has_atom(M,A),atom_type(A,195)) ,
lumo(M,Lu),Lu>-1.74,Lu<-0.83,
logP(M,L),L>1.81.

mutagenic(M,false):-lumo(M,Lu),Lu>-0.77.

mutagenic(M,true):- has_atom(M,A),atom_type(A,21) ,
lumo(M,Lu),Lu<-1.21.

mutagenic(M,true):-logP(M,L),L>5.64,L<6.36.
mutagenic(M,true):-lumo(M,Lu),Lu>-0.95,

logP(M,L),L<2.21.

y 42 regression-unfriendly molecules
y 57 first-order features with one utility literal
y LINUS using CN2: 83%

mutagenic(M,false):- not (has_atom(M,A),atom_type(A,21)) ,
logP(M,L),L>1.99,L<5.64.

mutagenic(M,false):- not (has_atom(M,A),atom_type(A,195)) ,
lumo(M,Lu),Lu>-1.74,Lu<-0.83,
logP(M,L),L>1.81.

mutagenic(M,false):-lumo(M,Lu),Lu>-0.77.

mutagenic(M,true):- has_atom(M,A),atom_type(A,21) ,
lumo(M,Lu),Lu<-1.21.

mutagenic(M,true):-logP(M,L),L>5.64,L<6.36.
mutagenic(M,true):-lumo(M,Lu),Lu>-0.95,

logP(M,L),L<2.21.

LICS’01 workshop The logic of learning

Feature construction: summaryFeature construction: summary

z All the expressiveness of ILP is in the features
y body construction is essentially propositional
y every ILP system does constructive induction

z Feature construction is a discovery task
y use of discovery systems such as Warmr, Tertius or

Midos
y alternative: use a relevancy filter

z All the expressiveness of ILP is in the features
y body construction is essentially propositional
y every ILP system does constructive induction

z Feature construction is a discovery task
y use of discovery systems such as Warmr, Tertius or

Midos
y alternative: use a relevancy filter

LICS’01 workshop The logic of learning

Overview of this talkOverview of this talk

z A quick overview of ILP

z Knowledge representation
y individual-centred representations

z Learning as inference
y inductive consequence relations

z Conclusions and outlook

z A quick overview of ILP

z Knowledge representation
y individual-centred representations

z Learning as inference
y inductive consequence relations

z Conclusions and outlook

LICS’01 workshop The logic of learning

Inductive consequence relationsInductive consequence relations

z I write E |< H for ‘H is a possible inductive
hypothesis given evidence E’
y like deduction: from input to output
y unlike deduction: possibly unsound

z What are sensible properties of |< ?

z What are possible material definitions of |< ?

z I write E |< H for ‘H is a possible inductive
hypothesis given evidence E’
y like deduction: from input to output
y unlike deduction: possibly unsound

z What are sensible properties of |< ?

z What are possible material definitions of |< ?

LICS’01 workshop The logic of learning

(I1) If α |< β and =α∧β→γ , then α∧γ |< β.

(I2) If α |< β and =α∧β→γ , then α∧¬γ |< β.

(I2′) If =β→¬α , then α |< β.

(I3) If α |< β and =α∧β→γ , then α |< β∧γ .

(I4) If α |< β, then α |< α.

(I5) If α |< β, then β |< β.

(I6) If α |< β and =β↔γ, then α |< γ.

(I7) If α |< γ and =α↔β, then β |< γ.

(I1) If α |< β and =α∧ β→γ, then α∧ γ |< β.

(I2) If α |< β and =α∧ β→γ, then α∧¬ γ |< β.

(I2′) If =β→¬α, then α |< β.

(I3) If α |< β and =α∧ β→γ, then α |< β∧ γ.

(I4) If α |< β, then α |< α.

(I5) If α |< β, then β |< β.

(I6) If α |< β and =β↔γ, then α |< γ.

(I7) If α |< γ and =α↔β, then β |< γ.

/

General induction postulatesGeneral induction postulates

/

LICS’01 workshop The logic of learning

Explanatory inductionExplanatory induction

z E |< H is interpreted as ‘evidence E is
explained by hypothesis H’
y induction as reverse deduction

z Close link with abduction
y Peirce: ‘if A were true, C would be a matter of course’

z Depends on notion of explanation

z E |< H is interpreted as ‘evidence E is
explained by hypothesis H’
y induction as reverse deduction

z Close link with abduction
y Peirce: ‘if A were true, C would be a matter of course’

z Depends on notion of explanation

LICS’01 workshop The logic of learning

(E1) If α |< β, =γ→β and γ |< γ, then α |< γ.

(E2) If γ |< γ and ¬α |< γ, then α |< α.

(E3) If α |< β∧γ , then β→α |< γ.

(E4) If α |< γ and β |< γ, then α∧β |< γ.

(E5) If α |< γ and =α→β, then β |< γ.

(E1) If α |< β, =γ→β and γ |< γ, then α |< γ.

(E2) If γ |< γ and ¬α |< γ, then α |< α.

(E3) If α |< β∧γ , then β→α |< γ.

(E4) If α |< γ and β |< γ, then α∧β |< γ.

(E5) If α |< γ and =α→β, then β |< γ.

/

Explanatory induction postulatesExplanatory induction postulates

LICS’01 workshop The logic of learning

z Let |~ be an explanation mechanism ,
and define the explanatory power of a
formula α as C~ = { γ | α |~ γ }

z The explanatory consequence relation
|< based on |~ is defined as

α |< β iff C~(α) ⊆ C~(β) ⊂ L

z (E1–5) are sound and complete if |~ = |=

z Let |~ be an explanation mechanism ,
and define the explanatory power of a
formula α as C~ = { γ | α |~ γ }

z The explanatory consequence relation
|< based on |~ is defined as

α |< β iff C~(α) ⊆ C~(β) ⊂ L

z (E1–5) are sound and complete if |~ = |=

Explanatory semanticsExplanatory semantics

LICS’01 workshop The logic of learning

Confirmatory inductionConfirmatory induction

z E |< H is interpreted as ‘evidence E confirms
hypothesis H’

z A kind of closed-world reasoning
y ‘assume that everything you haven’t seen behaves

like something you have seen’
y closely related to non-monotonic reasoning

z E |< H is interpreted as ‘evidence E confirms
hypothesis H’

z A kind of closed-world reasoning
y ‘assume that everything you haven’t seen behaves

like something you have seen’
y closely related to non-monotonic reasoning

LICS’01 workshop The logic of learning

(C1) If α |< β and =β→γ, then α |< γ.

(C2) If α |< α and α |< ¬β , then β |< β.

(C3) If α |< β and α |< γ, then α |< β∧γ .

(C4) If α |< γ and β |< γ, then α∨β |< γ.

(C5) If α |< β and α |< γ, then α∧γ |< β.

(C1) If α |< β and =β→γ, then α |< γ.

(C2) If α |< α and α |< ¬β , then β |< β.

(C3) If α |< β and α |< γ, then α |< β∧γ .

(C4) If α |< γ and β |< γ, then α∨β |< γ.

(C5) If α |< β and α |< γ, then α∧γ |< β.

Confirmatory induction postulatesConfirmatory induction postulates

/

LICS’01 workshop The logic of learning

z Let Reg be a function constructing a set of
regular models from observations α

z The confirmatory consequence relation
|< based on Reg is defined as

α |< β iff ∅ ⊂ Reg(α) ⊆ [β]

z (C1–5) are sound and complete if Reg(α)
are the most preferred models of α

z Let Reg be a function constructing a set of
regular models from observations α

z The confirmatory consequence relation
|< based on Reg is defined as

α |< β iff ∅ ⊂ Reg(α) ⊆ [β]

z (C1–5) are sound and complete if Reg(α)
are the most preferred models of α

Confirmatory semanticsConfirmatory semantics

LICS’01 workshop The logic of learning

Overview of this talkOverview of this talk

z A quick overview of ILP

z Knowledge representation
y individual-centred representations

z Learning as inference
y inductive consequence relations

z Conclusions and outlook

z A quick overview of ILP

z Knowledge representation
y individual-centred representations

z Learning as inference
y inductive consequence relations

z Conclusions and outlook

LICS’01 workshop The logic of learning

First-order representations inÉFirst-order representations inÉ

z …probabilistic models
y Koller’s probabilistic relational models
y first-order Bayesian classification with 1BC
y towards first-order Bayesian networks

z …support vector machines
y kernels on sequences
y a kernel on Escher terms

z …neural networks
y recurrent NN for Escher terms

z …probabilistic models
y Koller’s probabilistic relational models
y first-order Bayesian classification with 1BC
y towards first-order Bayesian networks

z …support vector machines
y kernels on sequences
y a kernel on Escher terms

z …neural networks
y recurrent NN for Escher terms

LICS’01 workshop The logic of learning

The naive Bayes classifierThe naive Bayes classifier

z Bayesian classifier:

z Naive Bayes assumption (propositional case):

z Bayesian classifier:

z Naive Bayes assumption (propositional case):

argmax (|)

argmax
(|) ()

()

argmax (|) ()

argmax () (|)

c

c

c

c
i i

i

P c d

P d c P c

P d

P d c P c

P c P A a c

=

=

= =∏

argmax (|)

argmax
(|) ()

()

argmax (|) ()

argmax () (|)

c

c

c

c
i i

i

P c d

P d c P c

P d

P d c P c

P c P A a c

=

=

= =∏

LICS’01 workshop The logic of learning

Individual

Naive Bayes netNaive Bayes net

Class

A1 A2 A3

ClassClass IndividualIndividual

A1A1 A2A2 A3A3

LICS’01 workshop The logic of learning

Molecule

Towards first-order Bayes netsTowards first-order Bayes nets

Class

AtomSetLogPLUMO {Atom}

MoleculeMoleculeClassClass

ContainsContains

AtomAtom

ElementElement

AtomTypeAtomType

11

MM

LumoLumo

LogPLogP

HasHas

AtomSetAtomSet

11

11

ChargeCharge

11

LICS’01 workshop The logic of learning

Support vector machinesSupport vector machines

z Wide margin classifier
y support vectors are the datapoints closest to the

separating hyperplane

z Kernel: (implicit) transformation to feature space
y to deal with problems that are not linearly separable

in input space
y feature space is often high-dimensional

z Wide margin classifier
y support vectors are the datapoints closest to the

separating hyperplane

z Kernel: (implicit) transformation to feature space
y to deal with problems that are not linearly separable

in input space
y feature space is often high-dimensional

LICS’01 workshop The logic of learning

Primal and dual formPrimal and dual form

z Linear classifiers construct a hyperplane
separating the input points

y decision rule

y hypothesis

y equivalently

where α i represent hypothesis in dual co-ordinates

z Linear classifiers construct a hyperplane
separating the input points

y decision rule

y hypothesis

y equivalently

where α i represent hypothesis in dual co-ordinates

h b() sgn()x w x= ⋅ +h b() sgn()x w x= ⋅ +

w x= ∑ α i i ii
yw x= ∑ α i i ii
y

h y bi i ii
() sgnx x x= ⋅ +()∑ αh y bi i ii
() sgnx x x= ⋅ +()∑ α

LICS’01 workshop The logic of learning

KernelsKernels

z Learning in feature space:

z A kernel calculates the inner product directly in
input space:

y This measures the similarity between x and z in
terms of features φ

z Learning in feature space:

z A kernel calculates the inner product directly in
input space:

y This measures the similarity between x and z in
terms of features φ

h y bi i ii
() sgn () ()x x x= ⋅ +()∑ α φ φh y bi i ii
() sgn () ()x x x= ⋅ +()∑ α φ φ

K(,) () ()x z x z= ⋅φ φK(,) () ()x z x z= ⋅φ φ

LICS’01 workshop The logic of learning

A kernel for Escher termsA kernel for Escher terms

z Let x and z be terms of type T. We define
KT(x,z) recursively as follows:

y If T = T1 x ... x Tn is a tuple type, x = (x1,...,xn) and z =
(z1,...,zn), then KT(x,z) = KT1(x1,z1) + ... + KTn(xn,zn).

y If T = {T'} is a set type, x = {x1,...,xn} and z = {z1,...zm},
then KT(x,z) = KT'(x1,z1) + ... + KT'(x1,zm) + KT'(x2,z1) +
... + KT'(x2,zm) + ... + KT'(xn,zm).

y If x = f(x1,...,xn) and z = f(z1,...,zn) where f is a data
constructor of type T1 -> ... -> Tn -> T, then KT(x,z) = 1
+ KT1(x1,z1) + ... + KTn(xn,zn); if x and z have different
data constructors then KT(x,z) = 0.

z Let x and z be terms of type T. We define
KT(x,z) recursively as follows:

y If T = T1 x ... x Tn is a tuple type, x = (x1,...,xn) and z =
(z1,...,zn), then KT(x,z) = KT1(x1,z1) + ... + KTn(xn,zn).

y If T = {T'} is a set type, x = {x1,...,xn} and z = {z1,...zm},
then KT(x,z) = KT'(x1,z1) + ... + KT'(x1,zm) + KT'(x2,z1) +
... + KT'(x2,zm) + ... + KT'(xn,zm).

y If x = f(x1,...,xn) and z = f(z1,...,zn) where f is a data
constructor of type T1 -> ... -> Tn -> T, then KT(x,z) = 1
+ KT1(x1,z1) + ... + KTn(xn,zn); if x and z have different
data constructors then KT(x,z) = 0.

LICS’01 workshop The logic of learning

Recurrent neural networksRecurrent neural networks

z Consist of a recurrent or folding part that is
unfolded to encode a given input tree, followed
by a traditional feed-forward network

z Folding part trained by backpropagation through
structure

z Generalises naturally to terms

z Consist of a recurrent or folding part that is
unfolded to encode a given input tree, followed
by a traditional feed-forward network

z Folding part trained by backpropagation through
structure

z Generalises naturally to terms

LICS’01 workshop The logic of learning

(f((a,b),(c,d)),
[4,21,42])

f((a,b),(c,d))

[4,21,42]

f

(a,b)

(c,d)

a

b

c

d

4

[21,42]

(:)

21

[42]

(:)

42

[]

(:)

Recurrent NN for Escher termsRecurrent NN for Escher terms

T x List Int
T' x T' -> T' x T' -> T
Int -> List Int -> List Int
T' x T'

T x List Int
T' x T' -> T' x T' -> T
Int -> List Int -> List Int
T' x T'

LICS’01 workshop The logic of learning

Concluding remarksConcluding remarks

z Data models and knowledge representation are
integral parts of any approach to learning,
modelling and reasoning

z Individual-centred representation are natural in
classification and provide better understanding
of the relation with propositional approaches

z There is still much to explore in upgrading
existing propositional approaches with richer
knowledge representation

z Data models and knowledge representation are
integral parts of any approach to learning,
modelling and reasoning

z Individual-centred representation are natural in
classification and provide better understanding
of the relation with propositional approaches

z There is still much to explore in upgrading
existing propositional approaches with richer
knowledge representation

LICS’01 workshop The logic of learning

AcknowledgementsAcknowledgements

z Joint work with
y Nicolas Lachiche
y John Lloyd
y Christophe Giraud-Carrier
y Nada Lavrac
y Thomas Gaertner
y Elias Gyftodimos

z Joint work with
y Nicolas Lachiche
y John Lloyd
y Christophe Giraud-Carrier
y Nada Lavrac
y Thomas Gaertner
y Elias Gyftodimos

