and knowledge representation
In machine learning

Peter A. Flach
Department of Computer Science
University of Bristol

Overview of this talk

i A quick overview of ILP

I Knowledge representation
I Individual-centred representations

§ Learning as inference
I Inductive consequence relations

Conclusions and outlook

Overview of this talk

i A (very) quick overview of ILP

I Knowledge representation
I Individual-centred representations

§ Learning as inference
I Inductive consequence relations

Conclusions and outlook

Inductive concept Ieﬁa_rning

i Given: descriptions of

I Find: aconcept covering
and

too general
(covering

not yet refuted

Version Space

too specific
(not covering

Concept learning in logic

I Given:
[: facts to be entailed,
[: facts not to be entailed,

| background knowledge B . a set of predicate
definitions;

i Find: a hypothesis H (one or more predicate
definitions) such that
I for every . BUOH|=p (),
I for every . BUOH[ZEN ().

ILP methods N

(language-driven)
the generality ordering
start with

by
substituting variables
adding conditions

(data-driven)

the generality ordering
start with

by
Introducing variables
removing conditions

Top-down induction: gxample

example

action

add clause
specialise
specialise

add clause

hypothesis
p(X,Y).

p(X,[VIW]).
pCX, [X[W]).

PCX,[X]W]).
P(X,[VIW]):-p(X,W).

Bottom-up induction: he_xample

Treat positive examples + ground background facts as body
Choose two examples as heads and anti-unify

0(11,213,41,[1,2,3,41),q([a]. 0. [a), a0 0.0),

0(11,21{3,41,12,2,3,4),9(al [[a)) a([2].[3,4],[2,3,4])

q([A[B].C,[A|D]) :
q([1,2],[3,4],[1,2,3,4]) A ALEL GEATED.QW, CX),a(S| EL[S.4L[S, T.UV)),
q([RIG].K,[RIL]), q([al,[l.[a]) ,0(Q.[1.Q).a([P1.K,[PIK]),
q(N,K,0),a(M,[1.M), q(ll.0.0) aq(G.K,L),
q([FIGL.[3,41.[F.H,I13]).a([E], [El €], a(B,C.D) ., q([2].[3.4].[2.3.4])

Generalise by removing literals until negative examples
covered

Progol predicting carcinogenicity

BA molecular compound is carcinogenic If:

ILP example: East-West trains

1. TRAINS GOING EAST 2. TRAINS GOING WEST

t i} H E=3 H A H@J_@ - 1 ©C O O ;]

v <o o s Lol M

=N E NV . \o/H o HE= o/

o HT—H. a5 = i

Prolog representation (flattened)

I Example: m
eastbound(tl). tOHD A DDD}

Background knowledge:

car(tl,cl). car(tl,c2). car(tl,c3). car(tl,c4).

rectangle(cl). rectangle(c2). rectangle(c3). rectangle(c4).
short(cl). long(c2). short(c3). long(c4).

open(cl). open(c2). peaked(c3). open(c4).
two_wheels(cl). three_wheels(c2). two_wheels(c3). two_wheels(c4).
load(cl,l1). load(c2,l2). load(c3,I13). load(c4,14).

circle(I1l). hexagon(l2). triangle(13). rectangle(l4).
one_load(I1). one_load(l2). one_load(I3). three loads(l4).

Hypothesis:
eastbound(T):-car(T,C),short(C),not open(C).

Prolog representation (flattened)

I Example: m
eastbound(tl). tOHD A DDD}

Background knowledge:

car(tl,cl). car(tl,c2). car(tl,c3). car(tl,c4).
rectangle(cl). rectangle(c2). rectangle(c3). rectangle(c4).

short(cl). long(c2). short(c3). long(c4).
open(cl). open(c2). peaked(c3). open(c4).
two_wheels(cl). three_wheels(c2). two_wheels(c3). two_wheels(c4).
load(c1,I1). load(c2,I2). load(c3,I13). load(c4,l4).

circle(I1l). hexagon(l2). triangle(13). rectangle(l4).

one_load(I1). one_load(l2). one_load(I3). three loads(l4).

Hypothesis:
eastbound(T):- car(T,C), short(C),not open(C)

Prolog representation (terms)

tH:HHmJ_@*

I Example:

eastbound([c(rectangle,short,open,2,l(circle,1)),
c(rectangle,long,open,3,l(hexagon,1)),
c(rectangle,short,peaked,2,l(triangle,1)),
c(rectangle,long,open,2,l(rectangle,3))]).

i Background knowledge: member/2 , arg/3

i Hypothesis:
eastbound(T):-member(C,T),arg(2,C,short),
not arg(3,C,open).

Prolog representation (terms)

ol o [Taloool 0

I Example:

eastbound([c(rectangle,short,open,2,l(circle,1)),
c(rectangle,long,open,3,l(hexagon,1)),
c(rectangle, short , peaked ,2,l(triangle,1)),
c(rectangle,long,open,2,l(rectangle,3))]).

i Background knowledge: member/2 , arg/3

i Hypothesis:
eastbound(T):- member(C,T), arg(2,C,short),
not arg(3,C,open).

Machine learning vs. ILP

attribute-value
concept learning

\

multi-instance
learning

Prolog program
synthesis

Overview of this talk

i A quick overview of ILP

I Knowledge representation
I individual-centred representations

§ Learning as inference
I Inductive consequence relations

Conclusions and outlook

Knowledge Representation

i Entity-Relationship (ER) diagrams
I Relational Database

Individual-Centred Representations
i Strongly typed language

B XML?

ER diagram for East-West trains

- A particular train

Database representation

LOAD TABLE
LOAD CAR OBJECT NUMBER DIRECTION
cl circle EAST
c2 hexagon
c3 triangle
c4 rectangle

CAR_TABLE
CAR TRAIN SHAPE LENGTH ROOF WHEELS
cl tl rectangle short open
c2 tl rectangle long open
rectangle short peaked
rectangle long open

2
3
2
2

SELECT DISTINCT FROM , CAR_TABLE WHERE
= CAR_TABLE.TRAIN AND
CAR_TABLE.SHAPE = 'rectangle' AND
CAR_TABLE.ROOF !="open'

Individual-centred representations

I ER diagram is a tree (approximately)

I root denotes individual

I looking downwards from the root, only one-to-one or
one-to-many relations are allowed

I one-to-one cycles are allowed

i Database can be partitioned into sub-databases
each describing a single individual

i Alternative: all information about a single
iIndividual packed together in a term
I tuples, lists, sets, multisets, trees, ...

Strongly typed languages

i Type signature specifies ‘data model’
I similar to ER diagram

I Each example described by single statement

Hypothesis construction guided by types

I interaction between
referring to subterms and giving
properties of subterms

I Example language: Escher
I functional logic programming

East-West trains in Escher

i Type signature:

data Shape = Rectangle | Hexagon | ...; data Length = Long | Short;
data Roof = Open | Peaked | ...; data Object = Circle | Hexagon | ...;

type Wheels = Int; type Load = (Object,Number); type Number = Int
type Car = (Shape,Length,Roof,Wheels,Load); type Train = [Car];

eastbound::Train->Bool;

ol © I Talloool{—
Example:

eastbound([(Rectangle,Short,Open,2,(Circle,1)),
(Rectangle,Long,Open,3,(Hexagon,1)),
(Rectangle,Short,Peaked,2,(Triangle,1)),
(Rectangle,Long,Open,2,(Rectangle,3))]) = True

Hypothesis:
eastbound(t) = (exists \c -> member(c,t) &&
LengthP(c)==Short && RoofP(c)!=0pen)

East-West trains in Escher

i Type signature:

data Shape = Rectangle | Hexagon | ...; data Length = Long | Short;
data Roof = Open | Peaked | ...; data Object = Circle | Hexagon | ...;

type Wheels = Int; type Load = (Object,Number); type Number = Int
type Car = (Shape,Length,Roof,Wheels,Load); type Train = [Car];

eastbound::Train->Bool;

ol © I Talloool{—
Example:

eastbound([(Rectangle, Short ,0pen,2,(Circle,1)),
(Rectangle,Long,Open,3,(Hexagon,1)),
(Rectangle, Short , Peaked,2,(Triangle,1)),
(Rectangle,Long,Open,2,(Rectangle,3))]) = True

Hypothesis:
eastbound(t) = (exists \c -> member(c,t) &&
LengthP(c)==Short && RoofP(c)!=Open)

- Mutagenesis

Molecule

1

Mutagenesis In Escher

i Type signature:
data Element=Br|C|CI|F|H|I|N|O|S;

type Ind1 = Bool;
type IndA = Bool;
type Lumo = Float;
type LogP = Float;
type AtomlID = Int;
type AtomType = Int;
type Charge = Float;
type BondType = Int;
AtomID
type Bond = ({ AtomID },BondType);
type Molecule = (Ind1,IndA,Lumo,LogP,

mutagenic::Molecule->Bool;

Mutagenesis in Escher

I Examples:

mutagenic(True,False,-1.246,4.23,
{(1,C,22,-0.117),
(2,C,22,-0.117),

(26,0,40,-0.388)},

{{ 1,2}4L7),
} bonds
({ 24, 26},2)})

= True;

B NB. Naming of sub-terms cannot be avoided here,
because molecules are graphs rather than trees

Mutagenesis in Escher

Hypothesis:
mutagenic(m) =
INd1P(m) == True || lumoP(m) <= -2.072 ||

(exists \a -> a 'In' atomSetP(m) && elementP(a)==C &&
atomTypeP(a)==26 && chargeP(a)==0.115) ||

(exists \bl b2 -> b1l 'in' bondSetP(m) && b2 'in' bondSetP(m) &&
bondTypeP(bl)==1 && bondTypeP(b2)==2 &&
not disjoint(labelSetP(bl),labelSetP(b2)) (|

(exists \a -> a In' atomSetP(m) &&
elementP(a)==C && atomTypeP(a)==29 &&
(exists \bl b2 ->
bl ‘in' bondSetP(m) &% b2 'in' bondSetP(m) &&
bondTypeP(b1)==7 && bondTypeP(b2)==1 &&
labelP(a) 'in' labelSetP(bl) &&
not disjoint(labelSetP(bl),labelSetP(b2)))) ||

Complexity of classification problems

I Simplest case: single table with primary key
[or learning
I example corresponds to tuple of constants

I Next: single table without primary key
[problem
I example corresponds to set of tuples of constants

I Complexity resides in many-to-one foreign keys
I non-determinate variables
I lists, sets, multisets

~Understanding ILP

§ Back to Prolog: what do we learn from all this?

I structural predicates introduce local variables, utility
predicates consume them

I interactions between local variables should not be
broken up ===> features

I enhancement of existing transformation methods
(e.g. LINUS) through feature construction

The key steps in rule learning

. find a set of nrules
I usually simplified by n separate rule constructions

Rule construction : find a pair (Head, Body)
I e.g. select class and construct body

. find a set of m literals
I usually simplified by adding one literal at a time

The key steps in rule learning

. find a set of nrules
I usually simplified by n separate rule constructions

Rule construction : find a pair (Head, Body)
I e.g. select class and construct body

. find a set of m features
I usually simplified by adding one feature at a time

§ Feature construction : find a set of k literals
I e.g. interesting subgroup, frequent itemset
I discovery task rather than classification task

First-order features

I Features concern interactions of local variables

i The following rule has one feature ‘has a short
closed car ’:
eastbound(T):- car(T,C),short(C),not open(C)

§ The following rule has two features °
and L).
eastbound(T):-

Propositionalising rules

i Equivalently:
eastbound(T):-

i Given a way to construct and select first-order
features, body construction in ILP Is semi-
propositional

I head and all literals in body have the same global
EUELIETS)
I corresponds to single table, one row per example

Prolog _feature bias

I Flattened representation, but derived from
strongly-typed term representation
I one free global variable

I each (binary) structural predicate introduces a new
existential local variable and uses either global
variable or local variable introduced by other
structural predicate

utility predicates only use variables
all variables are used

§I NB. features can be non-boolean
I if all structural predicates are one-to-one

Example: mutagenesis

I 42 regression-unfriendly molecules
[
I LINUS using CN2: 83%

mutagenic(M,false):-
logP(M,L),L>1.99,L<5.64.

mutagenic(M,false):-
lumo(M,Lu),Lu>-1.74,Lu<-0.83,
logP(M,L),L>1.81.

mutagenic(M,false):-lumo(M,Lu),Lu>-0.77.

mutagenic(M,true):-
lumo(M,Lu),Lu<-1.21.
mutagenic(M,true):-logP(M,L),L>5.64,L<6.36.
mutagenic(M,true):-lumo(M,Lu),Lu>-0.95,
logP(M,L),L<2.21.

Feature construction: summary

i All the expressiveness of ILP Is in the features
I body construction is essentially propositional
I every ILP system does constructive induction

§ Feature construction is a discovery task

I use of discovery systems such as Warmr, Tertius or
Midos

I alternative: use a relevancy filter

Overview of this talk

i A quick overview of ILP

I Knowledge representation
I individual-centred representations

i Learning as inference
I inductive consequence relations

Conclusions and outlook

Inductive consequence relations

i | write for ‘H Is a possible inductive
hypothesis given evidence E’
I like deduction: from input to output
I unlike deduction: possibly unsound

I What are sensible properties of |< ?

I What are possible material definitions of |< ?

Generdif THUULCLIDIEEPUSINIates
- R
(11) If o |< f f e
(12) If o |< ' ciamesis
(12) If
(13) If a |<

(14) If o |< B,
(15) If o |< B,

(I6) If a |<
(17) If a |<

Explanatory induction

I E|<H s interpreted as ‘evidence E Is
by hypothesis H

! Induction as reverse deduction

I Close link with abduction
I Peirce: ‘if A were true, C would be a matter of course’

i Depends on notion of explanation

ExplanatorZenunsipppstulates

(E1) If a |< 3, and y|<vy, thena |<V.
(E2) If y |< yand LY, then'a [<d.
(E3) If a |< By, tER.B..0

(E4) Ifa |[<yand @< vy, thenal [<V.

(ES) Ifa |[<yand @@ -3, then B |<Y.

Explanatory semantics

i Let |~ be an

and define the
formulaadas C_={y|a|~y}

i The
|< based on |~ Is defined as

a|< B iff C_(a) 0C_(B) DL

i (E1-5) are sound and complete if |~ = |

Confirmatory induction

I E|< His Interpreted as ‘evidence E
hypothesis H

i A kind of closed-world reasoning

I ‘assume that everything you haven't seen behaves
like something you have seen’

I closely related to non-monotonic reasoning

Confirmatory ERUNGADYIWDS ulates

(CHIfal<Band @8-V, thena |<Vv.
(C2) Ifa |<aanda |[£ -, then 3 |<B.
(C3) lIfa|l<Banda |<y, thena |< BY.

(C4) Ifa|<yand B <y, thenal |<V.

(CH5 Ifa|<Banda |<y, thenaly |<f.

Confirmatory se

I Let Reg be a function const
from obser

i The
|< based on Reg Is defined ¢

al|<p iff O0OReg(a)d

i (C1-5) are sound and compjgte
are the most preferred mode

Overview of this talk

i A quick overview of ILP

I Knowledge representation
I individual-centred representations

i Learning as inference
I inductive consequence relations

B Conclusions and outlook

First-order representations

i ...probabilistic models
I Koller’s probabilistic relational models
| first-order Bayesian classification with 1BC
I towards first-order Bayesian networks

...Support vector machines
I kernels on sequences
I a kernel on Escher terms

...nheural networks
I recurrent NN for Escher terms

The naive Bayes classifier

§ Bayesian classifier:
argmax P(c|d)

rgmax PA1OPO
c P(d)

=argmax P(d | c)P(c)

I Nailve Bayes assumption (propositional case):

=i PE[P(A=alc)

- Naive Bayes net

Individual @

Towards first-order Bayes nets

Molecule

AtomSet

Support vector machines

I Wide margin classifier

I support vectors are the datapoints closest to the
separating hyperplane

i Kernel: (implicit) transformation to feature space

I to deal with problems that are not linearly separable
In Input space
I feature space is often high-dimensional

Primal and dual form

§ Linear classifiers construct a hyperplane
separating the input points

I decision rule h(x) =sgn({w [X) + b)
I hypothesis W = Zariyixi

I equivalently N(X) = sgn(zi ay, <Xi D(> + b)

where a; represent hypothesis in dual co-ordinates

~ Kernels

i Learning in feature space:
h(x) =san(>y, (@(x,) @) + b)

§ A kernel calculates the inner product directly In

input space: K(X,Z) — <§KX) _(p(z)>

I This measures the similarity between x and z in
terms of features ¢

A kernel for Escher terms

I Let x and z be terms of type T. We define
K;(x,z) recursively as follows:

| FT=T;x...xT,Is atuple type, X = (Xy,...,X,) and z =
(z4,-.,Z,), then K{(X,z2) = K11(X1,Z7) + ... + K1 (X,2)-

If T ={T"} Is a set type, X = {X;,...,X,} and z = {z,,...Z,.},
then K;(X,2) = Ky(X1,Z7) + ... + Ku(X,2) + Ke(X5,27) +
e Ki(X5,2) + oo+ Ki(X,20)-

If X = f(Xy,...,X,) and z = f(z,,...,z,) where f Is a data
constructor of type T, -> ... -> T, -> T, then K(x,z) =1
+ K(X1,2) + ... + K (X,,2,); If X and z have different
data constructors then K(x,z) = 0.

Recurrent neural networks

Consist of a recurrent or folding part that Is
unfolded to encode a given input tree, followed
by a traditional feed-forward network

Folding part trained by backpropagation through
structure

Generalises naturally to terms

Recurrent NN for Escher terms

[4,21,42]

TXT->TxT->T

(f((a,b),(c,d)),
[4,21,42])

Concluding remarks

§ Data models and knowledge representation are
Integral parts of any approach to learning,
modelling and reasoning

Individual-centred representation are natural In
classification and provide better understanding
of the relation with propositional approaches

There is still much to explore in upgrading
existing propositional approaches with richer
knowledge representation

Acknowledgements

§ Joint work with
Nicolas Lachiche
John Lloyd
Christophe Giraud-Carrier
Nada Lavrac
Thomas Gaertner
Elias Gyftodimos

