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Inductive Logic Programming. Part 2 

Based partially on Luc De Raedt’s slides http://
www.cs.kuleuven.be/~lucdr/lrl.html 



Specialisation and generalisation 

A formula  G is a specialisation of a formula F  
 iff  F  entails from G 

 G |= F  

= each model of G is also a model of F.  

Specialisation operator  
 assign a formula a set of all its specialisations  

Generalisation = the other direction 
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G |= F  

F follows deductively from G 
G follows inductively from F 

therefore induction is the inverse of deduction 

this is an operational point of view because there are 
many deductive operators |- that implement |= 

take any deductive operator and invert it and one 
obtains an inductive operator 
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Resolution 

father(X,Y) :- male(X)               male(adam) 

father(adam,kain) 
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Inverse resolution 

Example: Learn a relation father/2 given domain knowledge parent/2 and 
male/2: 
male(adam). male(kain). male(abdullah). male(muhammad). male(moses). 
parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and 
an example father(adam,kain). 
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Inverse resolution 

father(adam,kain) 

Example: Learn a relation father/2 given domain knowledge parent/2 and 
male/2: 
male(adam). male(kain). male(abdullah). male(muhammad). male(moses). 
parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and 
an example father(adam,kain). 
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Inverse resolution 

                                                  male(adam) 

father(adam,kain) 

Example: Learn a relation father/2 given domain knowledge parent/2 and 
male/2: 
male(adam). male(kain). male(abdullah). male(muhammad). male(moses). 
parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and 
an example father(adam,kain) 
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Inverse resolution 

                   ?                                 male(adam) 

father(adam,kain) 

Example: Learn a relation father/2 given domain knowledge parent/2 and 
male/2: 
male(adam). male(kain). male(abdullah). male(muhammad). male(moses). 
parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and 
an example father(adam,kain) 
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Inverse resolution 

father(X,Y) :- male(X)               male(adam) 

father(adam,kain) 
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Inverse resolution 

                           ?                             parent(adam, kain) 

father(X,Y) :- male(X)               male(adam) 

father(adam,kain) 
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Inverse resolution 

father(X,Y) :- male(X),parent(X,Y)        parent(adam, kain) 

father(X,Y) :- male(X)               male(adam) 

father(adam,kain) 
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Inverse resolution 

Given C1 which is of the form A∨B, and resolvent which is 
of the form B∨C, the aim is to find C2. 

In propositional logic: 
1.  Find a literal L that appears in C1 but not in the 

resolvent. 
2.  Then C2 is given by either 

  (Resolvent - (Resolvent ∩ C1)) ∪ {¬L} 
 or by 
  (Resolvent - (C1 - {L})) ∪ {¬L} 
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Inverse resolution 

1.  Find a literals L1 in C1 that is not in the resolvent.  
 Then in C2 there must be L2 that L1 Θ=L2Θ. 

2.  Assume Θ=Θ1Θ2 such that  L1Θ1=L2Θ2 .Then L2 = ¬L1Θ1Θ2
-1 

3.  Then C2 = (Resolvent - (C1 - {L1}Θ1)) Θ2
-1  ∪ ¬L1Θ1Θ2

-1 

4.   C1 is ground  => Θ1={}  
  C2 = (Resolvent - (C1 - {L1})) Θ2

-1  ∪  ¬L1Θ2
-1 

father(X,Y) :- male(X)               male(adam) 

father(adam,kain) 

In predicate logic: 
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Inverse resolution 

Main drawback 

 nondeterminism 

father(X,Y) :- male(X)                          
father(X,kain) :- male(X)                     male(adam) 
father(adam,kain) :- male(adam)          

father(adam,kain) 
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Subsumption and Θ-subsumption  

Clause G subsumes clause F if and only G |= F or, 
equivalently G ⊆  F 

Example - propositional logic 

   pos :- p,q,r |= pos :- p,q,r,s,t 

 because 

  {pos, ¬p, ¬q,¬r} ⊆ {pos, ¬p, ¬q,¬r, ¬s,¬t} 
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Subsumption in propositional logic 

pos 

pos :-p          pos :-q         pos :-r 

pos :-p,q     pos:- p,r      pos :-q,r  

pos :- p,q,r 
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Subsumption in propositional logic 

•  Perfect structure 
•  Complete lattice 

–  any two clauses have unique  
•  least upper bound (least general generalization) 
•  greatest lower bound 

•  No syntactic variants 
•  Easy specialization, generalization 
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Subsumption in predicate logic 

Subsumption in logical atoms 

•  g subsumes s if and only if there is a substiution θ 
such that gθ = s  

•  e.g. p(X,Y,X) subsumes p(a,Y,a) 
•  e.g. p(f(X),Y) subsumes p(f(a),Y) 
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Subsumption in simple logical atoms   

P(X,Y,Z) 

P(a,Y,Z)  ...  P(X,b,Z)  ...   P(X,Y,c) 

P(a,b,Z)   … P(a,Y,c)  ...     P(X,b,c)  

P(a,b,c) 
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Subsumption in simple logical atoms   

P(X,Y) 

P(X,X)  ...  P(a,Y)   P(b,Y) …  P(X,a) … P(X,b) 

P(a,a)  …  P(a,b)  ...    P(b,b)  ... 
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Subsumption in logical atoms   

P(X) 

P(f(Y))  ...  P(g(Y))  ...  P(h(Y,Z))  ... 

P(f(f(W))         P(f(g(W))) 

P(f(f(f(U))))       … 

P(f(f(f(f(V))))         ... 
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Subsumption in logical atoms 

G subsumes F iff  there is a substitution θ such that Gθ = F 

•  Still nice properties and complete lattice up to variable renaming 

–  p(X,a) and p(U,a) 
–  greatest lower bound = unification 
–  unification p(X,a) and p(b,U) gives p(b,a) 

–  least upper bound = anti-unification = lgg 
–  lgg p(X,a,b) and p(c,a,d) = p(X,a,Y) 
–  lgg p(X,f(X,c)) and p(a,f(a,Y)) gives p(U,f(U,T)) 
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Ideal Specialization Operator 

•  Ideal Specialization operator : 
–  apply a substitution { X / Y } where  X,Y already appear in atom 
–  apply a substitution { X / f(Y1, … , Yn)} where Yi new variables 
–  apply a substitution {X / c } where c is a constant 

•  Ideal Generalization operator : 
–  apply an inverse substitution 

•  Inverse substitution substitutes terms at specified places by variables 
•  Invert one of the specialization steps above 

–  Replace some (but not all) occurences of a variable X by a different variable Y 
–  Replace all terms f(Y1,...,Yn) where Yi are distinct by a new variable X 
–  Replace some occurences of a constant by a new variable 
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Ideal Specialization Operator 

Properties 

Ideal specialisation operator must be 

•  locally complete 

•  globally complete 

•  proper 
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Ideal Specialization Operator 
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Optimal Specialization Operator  
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Optimal Specialization Operator 
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Theta-subsumption (Plotkin 70) 

•  Most important framework for inductive logic programming. Used by 
all major ILP systems. 

•  F and G are single clauses 
•  Combines propositional subsumption and subsumption on logical 

atoms  

•  c1 theta-subsumes c2 if and only if there is a substitution θ such that    
c1 θ ⊆ c2 

•  c1 : father(X,Y) :- parent(X,Y),male(X) 
•  c2 : father(adam,kain) :- parent(adam,kain), parent(adam,an), 

male(adam), female(an) 
•  θ = { X / adam, Y /kain } 
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Example 

•  d1 : p(X,Y) :- q(X,Y), q(Y,X)  
•  d2 : p(Z,Z) :- q(Z,Z) 
•  d3 : p(a,a) :- q(a,a) 
•  theta(1,2) : {X / Z, Y /Z} 
•  theta(2,3) : {Z/a} 
•  d1 is a generalization of d3  
•  Mapping several literals onto one leads 

(sometimes) to combinatorial problems 
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Properties 

•  Soundness : if c1 theta-subsumes c2 then  
c1 |= c2 
•  Incompleteness (but only for self-recursive clauses) wrt 

logical entailment 
–  c1 : p(f(X)) :- p(X) 
–  c2 : p(f(f(Y))) :- p(Y) 

•  Decidable (but NP-complete) 
•  transitive and reflexive but not anti-symmetric 



Specialisation operations 

binding of two distinct variables  
 path(X,Y) . . . There is a path between nodes X and Y in a 
graph 

 edge(X,Y). . . There is an edge between X and Y 
 spec(path(X, Y )) = path(X, X) 

 adding a most general atom into a clause body  
 arguments are distinct and so far unused variables  
 spec(path(X,Y)) =  ( path(X,Y) :- edge(U,V) ) 

= a minimal set of specialisation operations for logic 
programs without function symbols: 



Specialisation operations 

Logic programs with functions: 

A minimal set extended with  
 Substitution a variable with a most general term 
 arguments are distinct and so far unused variables  

 spec(number(X)) = number(0)   
 spec(number(X)) = number(s(Y)) .  



Specialisation and generalisation 

Domain-dependent operations - examples 

 triangle  ≤  n-angle  ≤  plannar object 

 town ≤ district ≤  region ≤ country ≤ continent 

 [0,1)  ≤  [0,11)  ≤  [0,111)  ≤  [0,inf) 


