
1

Inductive Logic Programming. Part 2

Based partially on Luc De Raedt’s slides http://
www.cs.kuleuven.be/~lucdr/lrl.html

Specialisation and generalisation

A formula G is a specialisation of a formula F
 iff F entails from G

 G |= F

= each model of G is also a model of F.

Specialisation operator
 assign a formula a set of all its specialisations

Generalisation = the other direction

3

G |= F

F follows deductively from G
G follows inductively from F

therefore induction is the inverse of deduction

this is an operational point of view because there are
many deductive operators |- that implement |=

take any deductive operator and invert it and one
obtains an inductive operator

4

Resolution

father(X,Y) :- male(X) male(adam)

father(adam,kain)

5

Inverse resolution

Example: Learn a relation father/2 given domain knowledge parent/2 and
male/2:
male(adam). male(kain). male(abdullah). male(muhammad). male(moses).
parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and
an example father(adam,kain).

6

Inverse resolution

father(adam,kain)

Example: Learn a relation father/2 given domain knowledge parent/2 and
male/2:
male(adam). male(kain). male(abdullah). male(muhammad). male(moses).
parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and
an example father(adam,kain).

7

Inverse resolution

 male(adam)

father(adam,kain)

Example: Learn a relation father/2 given domain knowledge parent/2 and
male/2:
male(adam). male(kain). male(abdullah). male(muhammad). male(moses).
parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and
an example father(adam,kain)

8

Inverse resolution

 ? male(adam)

father(adam,kain)

Example: Learn a relation father/2 given domain knowledge parent/2 and
male/2:
male(adam). male(kain). male(abdullah). male(muhammad). male(moses).
parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and
an example father(adam,kain)

9

Inverse resolution

father(X,Y) :- male(X) male(adam)

father(adam,kain)

10

Inverse resolution

 ? parent(adam, kain)

father(X,Y) :- male(X) male(adam)

father(adam,kain)

11

Inverse resolution

father(X,Y) :- male(X),parent(X,Y) parent(adam, kain)

father(X,Y) :- male(X) male(adam)

father(adam,kain)

12

Inverse resolution

Given C1 which is of the form A∨B, and resolvent which is
of the form B∨C, the aim is to find C2.

In propositional logic:
1.  Find a literal L that appears in C1 but not in the

resolvent.
2.  Then C2 is given by either

 (Resolvent - (Resolvent ∩ C1)) ∪ {¬L}
 or by
 (Resolvent - (C1 - {L})) ∪ {¬L}

13

Inverse resolution

1.  Find a literals L1 in C1 that is not in the resolvent.
 Then in C2 there must be L2 that L1 Θ=L2Θ.

2. Assume Θ=Θ1Θ2 such that L1Θ1=L2Θ2 .Then L2 = ¬L1Θ1Θ2
-1

3. Then C2 = (Resolvent - (C1 - {L1}Θ1)) Θ2
-1 ∪ ¬L1Θ1Θ2

-1

4. C1 is ground => Θ1={}
 C2 = (Resolvent - (C1 - {L1})) Θ2

-1 ∪ ¬L1Θ2
-1

father(X,Y) :- male(X) male(adam)

father(adam,kain)

In predicate logic:

14

Inverse resolution

Main drawback

 nondeterminism

father(X,Y) :- male(X)
father(X,kain) :- male(X) male(adam)
father(adam,kain) :- male(adam)

father(adam,kain)

15

Subsumption and Θ-subsumption

Clause G subsumes clause F if and only G |= F or,
equivalently G ⊆ F

Example - propositional logic

 pos :- p,q,r |= pos :- p,q,r,s,t

 because

 {pos, ¬p, ¬q,¬r} ⊆ {pos, ¬p, ¬q,¬r, ¬s,¬t}

16

Subsumption in propositional logic

pos

pos :-p pos :-q pos :-r

pos :-p,q pos:- p,r pos :-q,r

pos :- p,q,r

17

Subsumption in propositional logic

•  Perfect structure
•  Complete lattice

–  any two clauses have unique
•  least upper bound (least general generalization)
•  greatest lower bound

•  No syntactic variants
•  Easy specialization, generalization

18

Subsumption in predicate logic

Subsumption in logical atoms

•  g subsumes s if and only if there is a substiution θ
such that gθ = s

•  e.g. p(X,Y,X) subsumes p(a,Y,a)
•  e.g. p(f(X),Y) subsumes p(f(a),Y)

19

Subsumption in simple logical atoms

P(X,Y,Z)

P(a,Y,Z) ... P(X,b,Z) ... P(X,Y,c)

P(a,b,Z) … P(a,Y,c) ... P(X,b,c)

P(a,b,c)

20

Subsumption in simple logical atoms

P(X,Y)

P(X,X) ... P(a,Y) P(b,Y) … P(X,a) … P(X,b)

P(a,a) … P(a,b) ... P(b,b) ...

21

Subsumption in logical atoms

P(X)

P(f(Y)) ... P(g(Y)) ... P(h(Y,Z)) ...

P(f(f(W)) P(f(g(W)))

P(f(f(f(U)))) …

P(f(f(f(f(V)))) ...

22

Subsumption in logical atoms

G subsumes F iff there is a substitution θ such that Gθ = F

•  Still nice properties and complete lattice up to variable renaming

–  p(X,a) and p(U,a)
–  greatest lower bound = unification
–  unification p(X,a) and p(b,U) gives p(b,a)

–  least upper bound = anti-unification = lgg
–  lgg p(X,a,b) and p(c,a,d) = p(X,a,Y)
–  lgg p(X,f(X,c)) and p(a,f(a,Y)) gives p(U,f(U,T))

23

Ideal Specialization Operator

•  Ideal Specialization operator :
–  apply a substitution { X / Y } where X,Y already appear in atom
–  apply a substitution { X / f(Y1, … , Yn)} where Yi new variables
–  apply a substitution {X / c } where c is a constant

•  Ideal Generalization operator :
–  apply an inverse substitution

•  Inverse substitution substitutes terms at specified places by variables
•  Invert one of the specialization steps above

–  Replace some (but not all) occurences of a variable X by a different variable Y
–  Replace all terms f(Y1,...,Yn) where Yi are distinct by a new variable X
–  Replace some occurences of a constant by a new variable

24

Ideal Specialization Operator

Properties

Ideal specialisation operator must be

•  locally complete

•  globally complete

•  proper

25

Ideal Specialization Operator

26

Optimal Specialization Operator

27

Optimal Specialization Operator

28

Theta-subsumption (Plotkin 70)

•  Most important framework for inductive logic programming. Used by
all major ILP systems.

•  F and G are single clauses
•  Combines propositional subsumption and subsumption on logical

atoms

•  c1 theta-subsumes c2 if and only if there is a substitution θ such that
c1 θ ⊆ c2

•  c1 : father(X,Y) :- parent(X,Y),male(X)
•  c2 : father(adam,kain) :- parent(adam,kain), parent(adam,an),

male(adam), female(an)
•  θ = { X / adam, Y /kain }

29

Example

•  d1 : p(X,Y) :- q(X,Y), q(Y,X)
•  d2 : p(Z,Z) :- q(Z,Z)
•  d3 : p(a,a) :- q(a,a)
•  theta(1,2) : {X / Z, Y /Z}
•  theta(2,3) : {Z/a}
•  d1 is a generalization of d3
•  Mapping several literals onto one leads

(sometimes) to combinatorial problems

30

Properties

•  Soundness : if c1 theta-subsumes c2 then
c1 |= c2
•  Incompleteness (but only for self-recursive clauses) wrt

logical entailment
–  c1 : p(f(X)) :- p(X)
–  c2 : p(f(f(Y))) :- p(Y)

•  Decidable (but NP-complete)
•  transitive and reflexive but not anti-symmetric

Specialisation operations

binding of two distinct variables
 path(X,Y) . . . There is a path between nodes X and Y in a
graph

 edge(X,Y). . . There is an edge between X and Y
 spec(path(X, Y)) = path(X, X)

 adding a most general atom into a clause body
 arguments are distinct and so far unused variables
 spec(path(X,Y)) = (path(X,Y) :- edge(U,V))

= a minimal set of specialisation operations for logic
programs without function symbols:

Specialisation operations

Logic programs with functions:

A minimal set extended with
 Substitution a variable with a most general term
 arguments are distinct and so far unused variables

 spec(number(X)) = number(0)
 spec(number(X)) = number(s(Y)) .

Specialisation and generalisation

Domain-dependent operations - examples

 triangle ≤ n-angle ≤ plannar object

 town ≤ district ≤ region ≤ country ≤ continent

 [0,1) ≤ [0,11) ≤ [0,111) ≤ [0,inf)

