Inductive Logic Programming. Part 2

Based partially on Luc De Raedt’s slides http://
www.cs.kuleuven.be/~lucdr/Irl.html

Specialisation and generalisation
A formula G 1s a specialisation of a formula F
iff F entails from G
G|=F
= each model of G 1s also a model of F.

Specialisation operator
assign a formula a set of all its specialisations

Generalisation = the other direction

G|=F

F follows deductively from G
G follows inductively from F

therefore induction 1s the inverse of deduction

this 1s an operational point of view because there are
many deductive operators |- that implement |=

take any deductive operator and invert 1t and one
obtains an inductive operator

Resolution

father(X,Y) :- male(X) male(adam)

\

father(adam,kain)

Inverse resolution

Example: Learn a relation father/2 given domain knowledge parent/2 and

male/2:

male(adam). male(kain). male(abdullah). male(muhammad). male(moses).
parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and

an example father(adam,kain).

Inverse resolution

Example: Learn a relation father/2 given domain knowledge parent/2 and
male/2:
male(adam). male(kain). male(abdullah). male(muhammad). male(moses).

parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and
an example father(adam,kain).

father(adam,kain)

Inverse resolution

Example: Learn a relation father/2 given domain knowledge parent/2 and
male/2;

male(adam). male(kain). male(abdullah). male(muhammad). male(moses).

parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and
an example father(adam,kain)

male(adam)

father(adam,kain)

Inverse resolution

Example: Learn a relation father/2 given domain knowledge parent/2 and
male/2;

male(adam). male(kain). male(abdullah). male(muhammad). male(moses).

parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and
an example father(adam,kain)

? male(adam)

father(adam,kain)

Inverse resolution

father(X,Y) :- male(X) male(adam)

\

father(adam,kain)

Inverse resolution

?

\

father(X,Y) :- male(X)

\

parent(adam, kain)

male(adam)

father(adam,kain)

10

Inverse resolution

father(X,Y) :- male(X),parent(X,Y)

\

father(X,Y) :- male(X)

\

father(adam,kain)

parent(adam, kain)

male(adam)

11

Inverse resolution

Given C; which is of the form AvB, and resolvent which 1s
of the form BvC, the aim 1s to find C,.

In propositional logic:
1. Find a literal L that appears in C, but not in the
resolvent.
2. Then C2 1s given by either
(Resolvent - (Resolvent N C,)) U {—L}
or by
(Resolvent - (C, - {L})) U {—L}

12

Inverse resolution

<Eather(X,Y) ;- male(@ male(adam)

In predicate logic:

father(adam,kain)

. s L, in C, that 1s not in the resolvent.
Then in C, there must be L, that L, ©=L,0.
2. Assume ©=0,0, such that L,0,=L,0, .Then L,=-1,0,0,!
3. Then C, = (Resolvent - (C, - {L,}10,)) 0, U -L,0,0,!
4. C,1s ground => O,={}
C,= (Resolvent - (C, - {L,})) 0, U -L 06,1

13

Inverse resolution

Main drawback

nondeterminism

father(X,Y) :- male(X)
father(X,kain) :- male(X)
father(adam,kain) :- male(adam)

father(adam,kain)

male(adam)

14

Subsumption and ®-subsumption

Clause G subsumes clause F if and only G |=F or,
equivalently GC F

Example - propositional logic
pos :- p,q,r [= pos :- p,q,r,S,t

because

{pos, 7p, —q,7r} C {pos, ~p, ~q,~T, 7S, 7t}

15

Subsumption in propositional logic

OS

pos :- pos -q pos :-r

< <]

pos :-p.q pos pr pos :-q,r

pOS - pqr

16

Subsumption in propositional logic

* Perfect structure
* Complete lattice

— any two clauses have unique

e least upper bound (least general generalization)
* greatest lower bound

* No syntactic variants

» Easy specialization, generalization

17

Subsumption in predicate logic

Subsumption in logical atoms

* g subsumes s 1f and only 1f there 1s a substiution 0
such that gb =s

* e.g. p(X,Y,X) subsumes p(a,Y,a)
* e.g. p(f(X),Y) subsumes p(f(a),Y)

18

Subsumption in simple logical atoms

P(X Y Z)

P(aY Z) P(X b,Z) ... P(X)Y,c)

\o< >

P(a,b,Z) ..P(aY c) P(X,b,c)

~J

P(a,b,c)

19

Subsumption in simple logical atoms

S

P(X,X) ... P(a,Y) P(b)Y).. P(X,a)..P(X,b)

P(a,a) .. P(ab) ... P(bb) ..

20

Subsumption in logical atoms

./P?X)\
P(f(Y)) ... P(g(Y)) ... P(h(Y.2)) ..
b

P(f(f(W)) P(f(g(W)))

|

P(f(l‘(f(U))))

PCECFCE(FCV))))

21

Subsumption in logical atoms

G subsumes F iff there is a substitution 6 such that GO = F

 Still nice properties and complete lattice up to variable renaming

— p(X.,a) and p(U,a)
— greatest lower bound = unification
— unification p(X,a) and p(b,U) gives p(b,a)

— least upper bound = anti-unification = Igg

o lgg p(Xaaab) and p(C,a,d) - p(XaaaY)
— lgg p(X,f(X,c)) and p(a,f(a,Y)) gives p(U,{(U,T))

22

Ideal Specialization Operator

Ideal Specialization operator :
— apply a substitution { X /Y } where X,Y already appear in atom
— apply a substitution { X/ (Y1, ..., Yn)} where Yi new variables
— apply a substitution {X /¢ } where c 1s a constant

Ideal Generalization operator :

— apply an inverse substitution
» Inverse substitution substitutes terms at specified places by variables
» Invert one of the specialization steps above
— Replace some (but not all) occurences of a variable X by a different variable Y

— Replace all terms f(Y1,...,Yn) where Yi are distinct by a new variable X
— Replace some occurences of a constant by a new variable

23

Ideal Specialization Operator

Properties

Ideal specialisation operator must be
 locally complete

 globally complete

* proper

24

Ideal Specialization Operator

Let A be an atom. Then
ps.ail(A) ={A0 | 6 is an elementary substitution} (5.4)

where an elementary substitution # is of the form

({X/f(X1,....X,)} with f a functor of arity n and
the X; are variables not occurring in A
{X/c} with ¢ a constant
XY} with X and Y are variables occurring in A
(5.5)

It is relatively easy to see that p; . ; is an ideal operator for atoms.

25

Optimal Specialization Operator

ax'yr = f(XaX’aY’Y,)

f

gy = f

1 ' \
£ p XY X X) yyy F XXXy
FLXXY) = fX X YY) fXY.YY) [f(X XX, X)
~ ' s _ -
~ o \ | e ’,, ”/,
A AV s
axy = f(X, X, X, X)=

Fig. 5.6. Example of duplicate avoidance for Unification

Optimal Specialization Operator

Let A be an atom. Then
Ps.aolA) ={Af |0 is an optimal elementary substitution} (5.6)

where an elementary substitution 6 is of the form € is an optimal elementary
substitution for an atom A iff it is of the form

({X/f(X1,...,X,)} with f a functor of arity n and
the X; variables not occurring in A
g {X/c} with ¢ a constant
) {X/Y where X and Y are variables occurring in A
X occurs once, and all variables to the right of
X occur only once in A

(5.7)

A 11 . . 1 11 1 I i -n I

27

Theta-subsumption (Plotkin 70)

Most important framework for inductive logic programming. Used by
all major ILP systems.

F and G are single clauses

Combines propositional subsumption and subsumption on logical
atoms

cl theta-subsumes c2 if and only if there 1s a substitution 0 such that
cl 6Cc2

cl : father(X,Y) :- parent(X,Y),male(X)

c2 : father(adam,kain) :- parent(adam,kain), parent(adam,an),
male(adam), female(an)

0 ={ X/adam, Y /kain }

28

Example

12 : p(Z2,72) :- q(Z,72)

C
C
d3 : p(a,a) :- q(a,a)
theta(1,2) : {X/Z,Y /Z}
t

C

heta(2,3) : {Z/a}
11 1s a generalization of d3

Mapping several literals onto one leads
(sometimes) to combinatorial problems

Properties

e Soundness : if ¢l theta-subsumes c2 then
cl |=c2
« Incompleteness (but only for self-recursive clauses) wrt
logical entailment
- cl:p(f(X)) - p(X)
— ¢2 1 p(f(f(Y))) - p(Y)
« Decidable (but NP-complete)

« transitive and reflexive but not anti-symmetric

30

Specialisation operations

binding of two distinct variables

path(X,Y) . . . There is a path between nodes X and Y in a
graph

edge(X,Y). .. There is an edge between X and Y
spec(path(X, Y)) = path(X, X)

adding a most general atom into a clause body
arguments are distinct and so far unused variables

spec(path(X,Y)) = (path(X,Y) :- edge(U,V))

= a minimal set of specialisation operations for logic
programs without function symbols:

Specialisation operations

Logic programs with functions:

A minimal set extended with
Substitution a variable with a most general term

arguments are distinct and so far unused variables

spec(number(X)) = number(0)
spec(number(X)) = number(s(Y)) .

Specialisation and generalisation

Domain-dependent operations - examples
triangle < n-angle < plannar object
town < district < region < country < continent

[0,1) < [0,11) < [0,111) < [0,inf)

