Inductive Logic Programming. Part 2

Based partially on Luc De Raedt's slides http:// www.cs.kuleuven.be/~lucdr/lrl.html

Specialisation and generalisation

A formula G is a **specialisation** of a formula F iff F entails from G

 $G \models F$

= each model of G is also a model of F.

Specialisation operator

assign a formula a set of all its specialisations

Generalisation = the other direction

$G \models F$

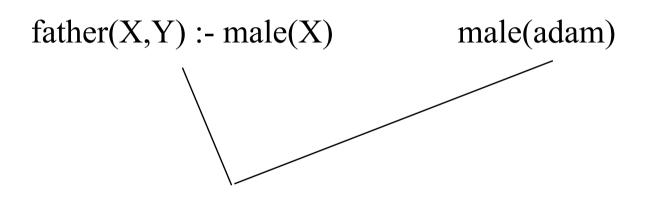
F follows *deductively* from G G follows *inductively* from F

therefore induction is the *inverse* of deduction

this is an operational point of view because there are many deductive operators |- that implement |=

take any deductive operator and invert it and one obtains an inductive operator

Resolution



father(adam,kain)

Example: Learn a relation father/2 given domain knowledge parent/2 and male/2:

male(adam). male(kain). male(abdullah). male(muhammad). male(moses). parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and an example father(adam,kain).

Example: Learn a relation father/2 given domain knowledge parent/2 and male/2:

male(adam). male(kain). male(abdullah). male(muhammad). male(moses). parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and an example father(adam,kain).

father(adam,kain)

Example: Learn a relation father/2 given domain knowledge parent/2 and male/2:

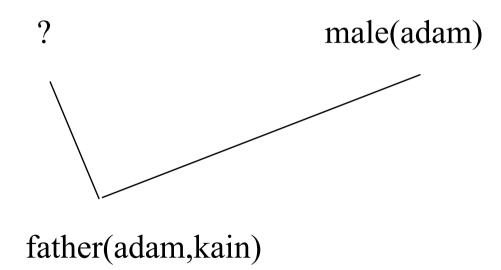
male(adam). male(kain). male(abdullah). male(muhammad). male(moses). parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and an example father(adam,kain)

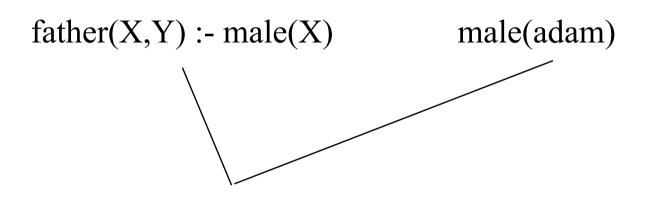
male(adam)

father(adam,kain)

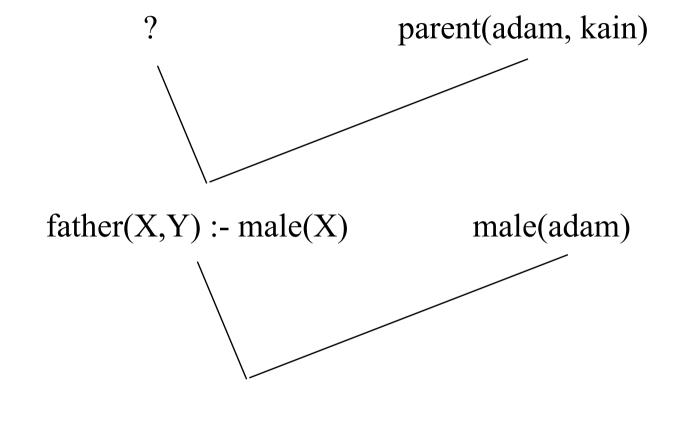
Example: Learn a relation father/2 given domain knowledge parent/2 and male/2:

male(adam). male(kain). male(abdullah). male(muhammad). male(moses). parent(adam,kain). parent(eve,kain). parent(abdullah,muhammad), and an example father(adam,kain)

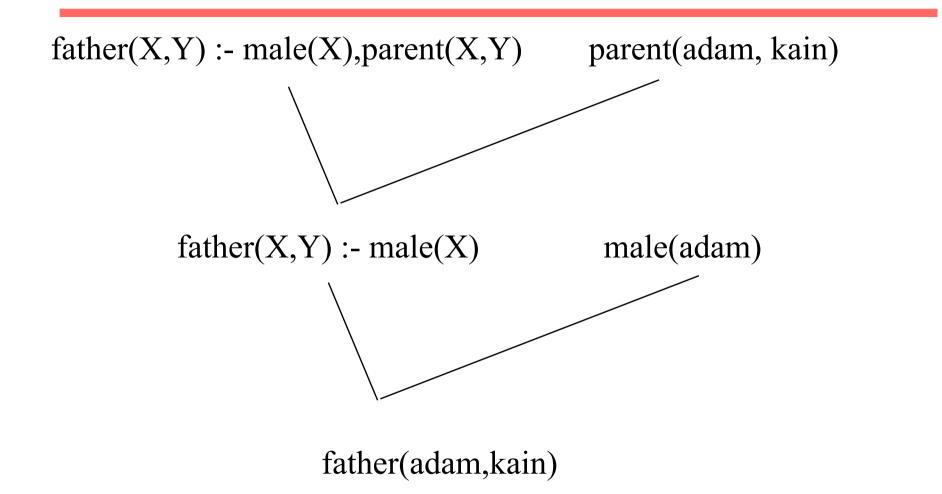




father(adam,kain)



father(adam,kain)

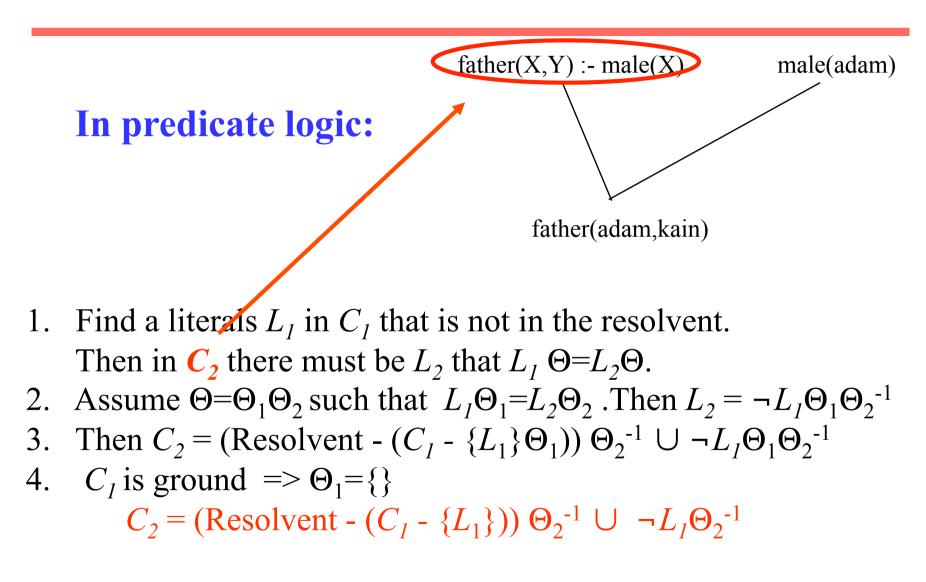


Given C_1 which is of the form AvB, and resolvent which is of the form BvC, the aim is to find C_2 .

In propositional logic:

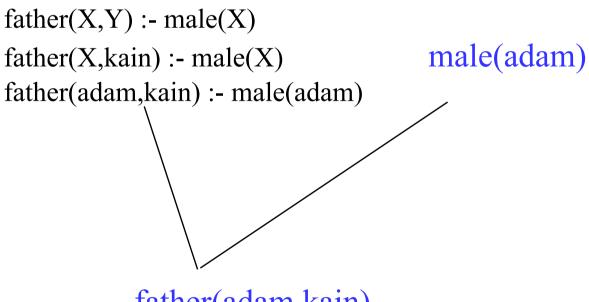
1. Find a literal *L* that appears in C_1 but not in the resolvent.

2. Then *C2* is given by either (Resolvent - (Resolvent $\cap C_1$)) $\cup \{\neg L\}$ or by (Resolvent - ($C_1 - \{L\}$)) $\cup \{\neg L\}$



Main drawback

nondeterminism



father(adam,kain)

Subsumption and Θ -subsumption

Clause G subsumes clause F if and only G \mid = F or, equivalently G \subseteq F

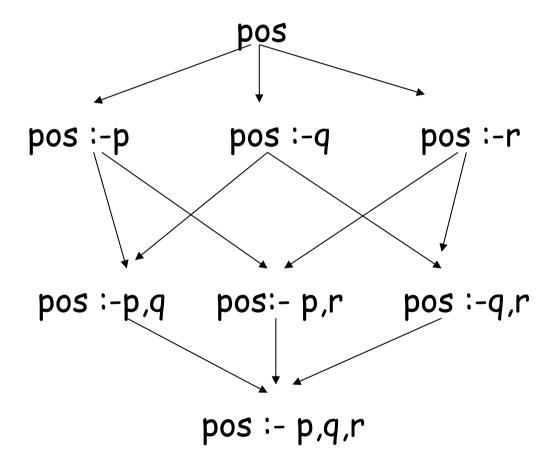
Example - propositional logic

pos :- p,q,r |= pos :- p,q,r,s,t

because

$$\{\text{pos}, \neg p, \neg q, \neg r\} \subseteq \{\text{pos}, \neg p, \neg q, \neg r, \neg s, \neg t\}$$

Subsumption in propositional logic



Subsumption in propositional logic

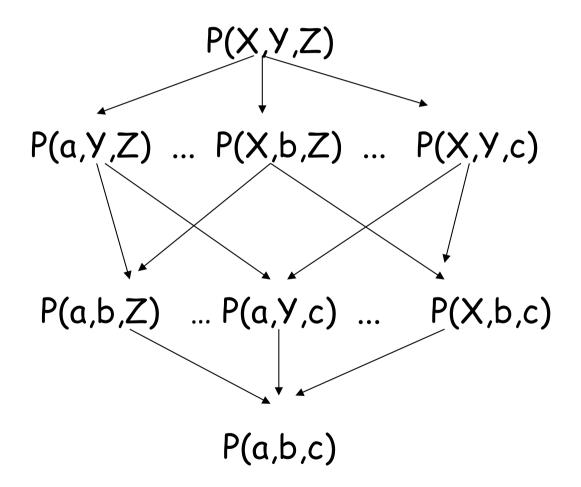
- Perfect structure
- Complete lattice
 - any two clauses have unique
 - least upper bound (least general generalization)
 - greatest lower bound
- No syntactic variants
- Easy specialization, generalization

Subsumption in predicate logic

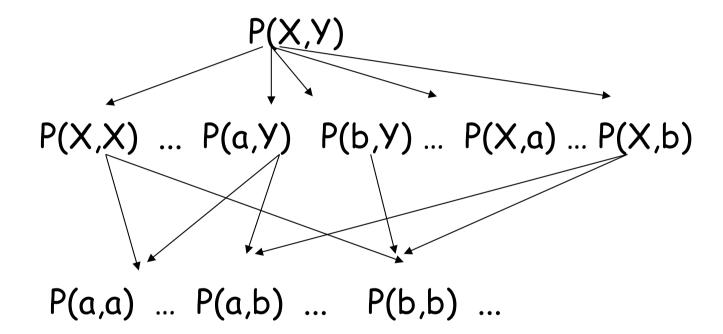
Subsumption in logical atoms

- g subsumes s if and only if there is a substituion θ such that $g\theta = s$
- e.g. p(X,Y,X) subsumes p(a,Y,a)
- e.g. p(f(X),Y) subsumes p(f(a),Y)

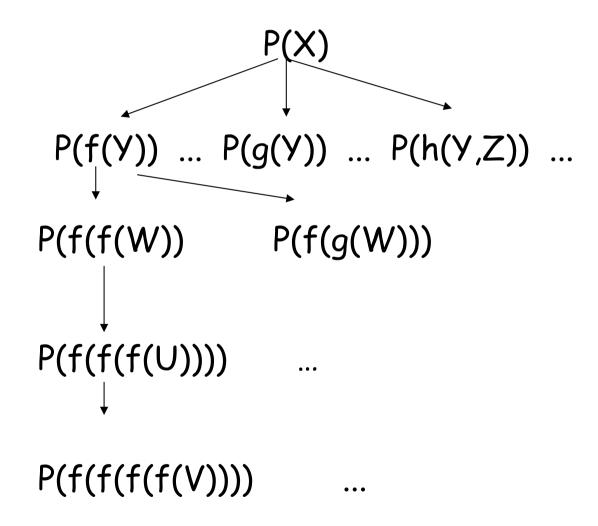
Subsumption in simple logical atoms



Subsumption in simple logical atoms



Subsumption in logical atoms



Subsumption in logical atoms

G subsumes F iff there is a substitution θ such that $G\theta = F$

- Still nice properties and complete lattice up to variable renaming
 - p(X,a) and p(U,a)
 - greatest lower bound = unification
 - unification p(X,a) and p(b,U) gives p(b,a)
 - least upper bound = anti-unification = lgg
 - lgg p(X,a,b) and p(c,a,d) = p(X,a,Y)
 - lgg p(X,f(X,c)) and p(a,f(a,Y)) gives p(U,f(U,T))

Ideal Specialization Operator

- Ideal Specialization operator :
 - apply a substitution $\{X / Y\}$ where X,Y already appear in atom
 - apply a substitution $\{X / f(Y1, ..., Yn)\}$ where Yi new variables
 - apply a substitution $\{X / c\}$ where c is a constant
- Ideal Generalization operator :
 - apply an inverse substitution
 - Inverse substitution substitutes terms at specified places by variables
 - Invert one of the specialization steps above
 - Replace some (but not all) occurences of a variable X by a different variable Y
 - Replace all terms f(Y1,...,Yn) where Yi are distinct by a new variable X
 - Replace some occurences of a constant by a new variable

Ideal Specialization Operator

Properties

Ideal specialisation operator must be

- locally complete
- globally complete
- proper

Ideal Specialization Operator

Let A be an atom. Then

 $\rho_{s,a,i}(A) = \{ A\theta \mid \theta \text{ is an elementary substitution} \}$ (5.4)

where an elementary substitution θ is of the form

$$\theta = \begin{cases} \{X/f(X_1, ..., X_n)\} & \text{with } f \text{ a functor of arity } n \text{ and} \\ & \text{the } X_i \text{ are variables not occurring in } A \\ \{X/c\} & \text{with } c \text{ a constant} \\ \{X/Y\} & \text{with } X \text{ and } Y \text{ are variables occurring in } A \end{cases}$$
(5.5)

It is relatively easy to see that $\rho_{s,a,i}$ is an ideal operator for atoms.

Optimal Specialization Operator

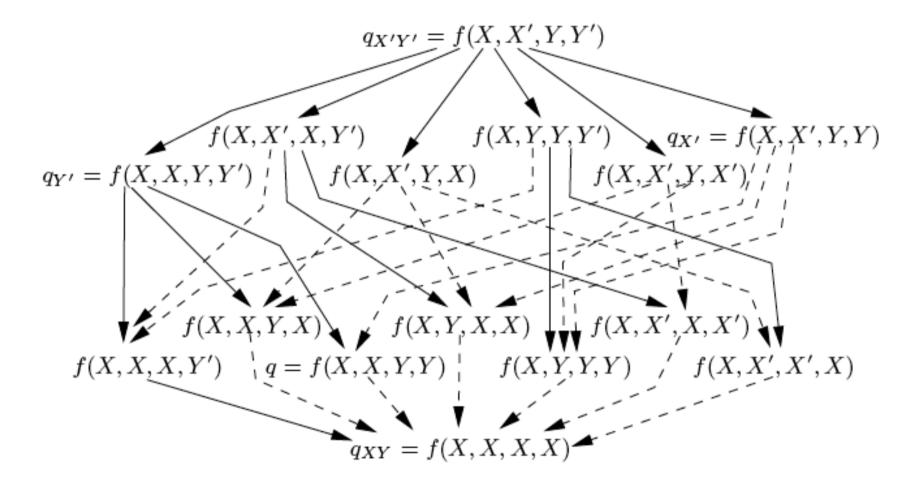


Fig. 5.6. Example of duplicate avoidance for Unification

Optimal Specialization Operator

Let A be an atom. Then

 $\rho_{s,a,o}(A) = \{ A\theta \mid \theta \text{ is an optimal elementary substitution} \}$ (5.6)

where an elementary substitution θ is of the form θ is an *optimal elementary* substitution for an atom A iff it is of the form

$$\theta = \begin{cases} \{X/f(X_1, ..., X_n)\} & \text{with } f \text{ a functor of arity } n \text{ and} \\ & \text{the } X_i \text{ variables not occurring in } A \\ \{X/c\} & \text{with } c \text{ a constant} \\ \{X/Y\} & \text{where } X \text{ and } Y \text{ are variables occurring in } A \\ & X \text{ occurs once, and all variables to the right of} \\ & X \text{ occur only once in } A \end{cases}$$
(5.7)

Theta-subsumption (Plotkin 70)

- Most important framework for inductive logic programming. Used by all major ILP systems.
- F and G are single clauses
- Combines propositional subsumption and subsumption on logical atoms
- c1 theta-subsumes c2 if and only if there is a substitution θ such that c1 $\theta \subseteq$ c2
- c1 : father(X,Y) :- parent(X,Y),male(X)
- c2 : father(adam,kain) :- parent(adam,kain), parent(adam,an), male(adam), female(an)
- $\theta = \{ X / adam, Y / kain \}$

Example

- d1: p(X,Y):-q(X,Y), q(Y,X)
- d2: p(Z,Z):-q(Z,Z)
- d3 : p(a,a) :- q(a,a)
- theta(1,2) : $\{X / Z, Y / Z\}$
- theta(2,3) : {Z/a}
- d1 is a generalization of d3
- Mapping several literals onto one leads (sometimes) to combinatorial problems

Properties

- Soundness : if c1 theta-subsumes c2 then
- c1 |= c2
- Incompleteness (but only for self-recursive clauses) wrt logical entailment
 - c1 : p(f(X)) := p(X)
 - c2: p(f(f(Y))):- p(Y)
- Decidable (but NP-complete)
- transitive and reflexive but not anti-symmetric

Specialisation operations

binding of two distinct variables

 $path(X,Y) \dots There is a path between nodes X and Y in a graph$ $edge(X,Y) \dots There is an edge between X and Y$ <math>spec(path(X, Y)) = path(X, X)

adding a most general atom into a clause body
arguments are distinct and so far unused variables
spec(path(X,Y)) = (path(X,Y) :- edge(U,V))

= a minimal set of specialisation operations for logic programs without function symbols:

Specialisation operations

Logic programs with functions:

A minimal set extended with **Substitution a variable with a most general term** arguments are distinct and so far unused variables

spec(number(X)) = number(0)
spec(number(X)) = number(s(Y)) .

Specialisation and generalisation

Domain-dependent operations - examples

triangle \leq n-angle \leq plannar object

town \leq district \leq region \leq country \leq continent

 $[0,1) \leq [0,11) \leq [0,111) \leq [0,inf)$