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Abstract

Sequencing by hybridization is a novel DNA sequenc-
ing technique in which an array (SBH chip) of short
sequences of nucleotides (probes) is brought in contact
with a solution of (replicas of) the target DNA sequence.
A biochemical method determines the subset of probes
that bind to the target sequence (the spectrum of the
sequence), and a combinatorial method is used to re-
construct the DNA sequence from the spectrum.

Since technology limits the number of probes on the
SBH chip, a challenging combinatorial question is the
design of a smallest set of probes that can sequence an
arbitrary DNA string of a given length. We show in
this work that the use of universal bases (bases that
bind to any nucleotide [LB94]) can drastically improve
the performance of the SBH process. We present a novel
probe design with performance that asymptotically ap-
proaches the information-theoretical bound up to a con-
stant factor, and, for any number of probes, is signi�-
cantly better than previously analyzed probe patterns.
Furthermore, the sequencing algorithm we use is sub-
stantially simpler than the Eulerian path method used
in previous work.

1 Introduction

A central application in molecular biology is the se-
quencing of DNA, i.e., the determination of the sequence
of nucleotides of a chosen (fragment of a) DNAmolecule.
Recently a radically new technique has been proposed
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as an alternative to the traditional sequencing by gel
electrophoresis. Such technique, called Sequencing by
Hybridization, proposed independently by several di�er-
ent research teams (for example, [BS91, L+88, D+89]),
is based on the use of a chip, fabricated on a glass sub-
strate with photolithographic techniques analogous to
those employed in the production of integrated circuits.
Speci�cally, the active area of the chip is structured as
a matrix, each region of which (technically called a fea-
ture) is assigned to a speci�c oligonucleotide (a short
sequence of nucleotides), or to a speci�c set of oligonu-
cleotides. Oligonucleotides are biochemically attached
to the chip surface. A solution of suitably labeled target
DNA is applied to the chip. A copy of the target DNA
will bind to an oligonucleotide if the oligonucleotide is
complementary, in the Watson-Crick sense, to one of its
subsequences. The labeling of the target allows visual-
ization of the chip features containing binding oligonu-
cleotides, thereby yielding a method for automatically
probing the target sequence for speci�c subsequences.

Although probing for speci�c subsequences is possi-
ble with this technology, its general-purpose application
is DNA sequencing. In such application, the objective is
the faithful reconstruction of the target sequence using
the outcome of the probing process, which is the col-
lection of the oligonucleotides appearing, at least once,
as subsequences of the target sequence (and referred to
as the spectrum of the sequence). For a �xed cost, ex-
pressed by the area of the probe chip, a major challenge
is the design of a most eÆcient probing scheme, that
would yield the maximum length of the sequences for
which faithful reconstruction is guaranteed with a given
level of con�dence.

Pioneering work on this topic, by Bains and Smith
[BS91], Lysov et al. [L+88], and Drmanac et al. [D+89],
focused on "classical" probing schemes, i.e., chips ac-
commodating all 4k k-symbol oligonucleotide strings
( k-mers or "solid" probes with no gaps), the symbols
being the well-known DNA bases f A,C,G,T g and k
being a technology-dependent integer parameters (cur-
rently rather small, but expected to moderately grow).
To reconstruct the target sequence from probes that are
strings of k symbols, original approaches dealt with a
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subgraph G of the order-k shift-register diagram (De
Bruijn graph), so that a consistent reconstruction is
identi�ed with a Hamiltonian path in G [L+88, D+89,
BS91]. Substantial progress was made by Pevzner [P89],
who characterized a consistent reconstruction with an
Eulerian path in a subgraph G0 of the order-(k�1) shift-
register diagram, where an arc from (k � 1)-gram u to
(k � 1)-gram v exists if and only if u and v are respec-
tively pre�x and suÆx of a spectrum probe. This insight
not only drastically simpli�ed the solution of the recon-
struction problem, but it provided a characterization of
spectrum-consistency, so that a sequence is unambigu-
ously reconstructible if and only if the corresponding
graph G0 contains a unique Eulerian path. The analy-
sis of the e�ectiveness of this novel sequencing method
has been statistical (see, e.g., the work of Pevzner [P89,
P+91, PL94] and the textbook by Waterman [W95]),
based on the model that the target sequence is ran-
domly generated by a memoryless source with identical
symbol probabilities. In this model, also adopted in this
paper, Pevzner et al.[P+91] observed that the expected
length of unambiguously reconstructible sequences with
solid length-k probes is O(2k) and a tight bound of the
same order has been proven in [DFS94, A+96]. These
results were con�rmed by extensive simulations. Note,
however, that an information-theoretic argument yields
an upper bound O(4k).

Probe structures alternative to the classical one de-
scribed above have also been proposed recently [PL94].
One such structure replaces individual nucleotides with
subsets, such as fA,Tg, fC,Gg, fA,Gg, or fC,Tg. An-
other structure introduces a gap of "don't care" bases
separating a string of speci�ed nucleotides and a single
speci�ed nucleotide, but no in-depth analysis has been
reported. Originally, it was proposed to realize \don't
care"s by a mixture of probes exhibiting in the cho-
sen position all four standard bases. Recently, a much
more interesting alternative has been proposed, which
uses truly universal bases (such as naturally occurring
inosine-style bases or synthetic 5-nitroindole [LB94], that
{if used in short runs { stack correctly without binding.

In this paper we show that the use of probes with
a well de�ned periodic pattern of gaps is crucial to the
attainment of asymptotically optimal eÆciencies (i.e.,
expected sequence length �(4k)). We present a novel
probe design that for any k uses 4k probes to sequence
a target sequence of length �(4k). Our approach does
not involve the construction of an Euler path. This ap-
parent paradox (with respect to Pevzner's characteriza-
tion) is resolved by the observation that our proposed
gap structure trivializes the Euler path identi�cation
problem, guaranteeing with extremely high probabil-
ity in the chosen statistical model, that the Euler path
reduces to a simple path in a virtual �(k2)-gram De
Bruijn graph. Therefore, essential to the attainment of

the information-theoretic upper bound is the implemen-
tation of gapped probes, i.e., the safe insertion of "uni-
versal" (don't care) bases into the oligonucleotide. The
full potential of sequencing by hybridization is predi-
cated on the reliable deployment of universal bases.

The analytical results reported here are asymptotic.
To establish the validity of our approach for practical
chip sizes, we have run extensive simulations for tech-
nologically feasible parameters. The simulation results,
fully documented in [HPU98], remarkedly match the
analysis, and clearly demonstrate the advantage of our
probing scheme for any number of probes, and in par-
ticular for today's practical range of SBH chips with
thousands to (possibly) a few millions probes.

2 Preliminaries and the

(s; r)-gapped probes

A Sequencing by Hybridization (SBH) chip consists of
a �xed number of features. Each feature can accom-
modate one probe. A probe is a string of symbols (nu-
cleotides) from the alphabet A = f A,C,G,T,*g, where
A,C,G, and T denote the standard DNA bases and �
denotes the \don't care " symbol, implemented using a
universal base [LB94].

When the SBH chip is brought in contact with a so-
lution of the target DNA string, a probe binds to the
target string if and only if there is a substring of the tar-
get that is Watson-Crick complementary to the probe
(where, conventionally, any of the four bases A,C,G,T is
Watson-Crick complementary to a universal base. With
this convention, a probe is viewed as a string). Biochem-
ical labeling permits the identi�cation of the complete
set of probes ( called the string's spectrum) that bind
to the target string. In this paper, to fairly compare
the relative capabilities of di�erent methods, we assume
that hybridization is an error-free process, with no miss-
ing probes nor false positives.

A sequencing algorithm is an algorithm that, given
a set of probes and a sequence spectrum, decides if the
spectrum de�nes a unique DNA sequence, and, if so,
reconstructs that sequence.

Since the number of features on an SBH chip is lim-
ited by the technology, we are interested in the design
of a smallest set of probes adequate for sequencing an
arbitrary string of a given length.

The following simple observation gives an information-
theoretic lower bound for the size of such a set:

Theorem 1 The number of probes required for unam-
biguous reconstruction of an arbitrary string of length
m is 
(m).

Proof: The spectrum based on t probes is a binary
vector with t components. There are 2t such vectors,
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and each can de�ne no more than one possible sequence.
Thus, 4m � 2t, or t = 
(m). 2

This theorem also implies that, in the important case
t = 4k, we have m � 4k�1=2. Past research [P+91,
DFS94, A+96] analyzed the performance of SBH chips
in the context of random strings of length m, drawn
uniformly at random from the set Am. A similar lower
bound holds in that model:

Theorem 2 For any �xed probability P > 0, the num-
ber of probes required for unambiguous reconstruction
with probability P of a random string of length m is

(m).

Proof: Since the algorithm must unambiguously re-
construct P4m sequences, the number of probes t must
satisfy P4m � 2t, or t = 
(m). 2

In this paper we focus on a special pattern of probes
which we name (s; r; )-gapped probes and denote GP (s; r).

De�nition 1 For �xed parameters s and r the set
GP (s; r) of (s; r; )-gapped probes consists of all probes of
the form Xs(U s�1X)r where X ranges over the 4 stan-
dard DNA bases (A,C,G, and T) and U is the universal
base.

Since there are s + r locations with an X symbol
in each probe in GP (r; s), the set of probes GP (s; r)
consists of exactly 4r+s individual probes.

De�nition 2 Two sequences are said to agree (in a
chosen relative alignment) if their symbols are identi-
cal in any position in which they are both speci�ed.

Notationally, let a(1;m) = a1; ::::; am be the target
string, and for any 1 � i < j � m let a(i;j) = ai; ::::; aj.
Given a(i;j) and i < h < j, a(i;h) and a(h;j) are respec-
tively the (h � i + 1)-pre�x and the (j � h + 1)-suÆx
of a(i;j). Hereafter we assume that the set of probes
GP (s; r) was used to obtain a spectrum of the string
a(1;m).

3 The basic scheme

We describe a simple procedure, referred to as the "basic
scheme", for sequencing the string a using the spectrum
information. To simplify the presentation we assume
that we are given the s(r+1)-pre�x of the target string.
(We will see later how to remove this assumption.)

By b(1;::: ) we denote the putative sequence constructed
by the sequencing algorithm. The procedure starts with
the pre�x b(1;s(r+1)) = a(1;s(r+1)). At each iteration the
procedure tries to extend a current putative sequence
b(1;`�1) = b1; :::; b`�1, ` � 1 � s(r + 1) with a new sym-
bol b`.

To take full advantage of the GP (s; r) probes, each
symbol may have to be con�rmed by up to (r + 1)
probes in di�erent alignments with the current putative
sequence.

The extension is attempted as follows. We �nd the
set M0 of all probes in the spectrum such that the
(s(r + 1) � 1)-pre�x of each of the probes matches the
(s(r + 1)� 1)-suÆx b(`�s(r+1)+1;`�1) of the current pu-
tative sequence, with the stated convention about don't
care symbols. If M0 is empty, then no extension exists
and the algorithm terminates. Otherwise, if jM0j = 1 a
single extension is de�ned and the corresponding sym-
bol is appended to the putative sequence. Problematic
is the case jM0j > 1, since it suggests an ambiguous ex-
tension. Here we use the power of the GP (s; r) probes,
since an ambiguous extension is detected only if con-
�rmed by r + 1 spectrum probes, as discussed below.
If these probes con�rm the ambiguous extension, either
they occur scattered along the target sequence (and are
referred to brie
y as \fooling probes") or they originate
from a single substring (of adequate length). Intuitively,
our approach rests on the facts that (r+1) con�rmatory
fooling probes are very improbable, and that even more
improbable is their arising from a single substring.

When M0 is not a singleton, let B0 be the set of
the possible extensions. The veri�cation is executed
as follows. We construct the set M1 of all probes in
the spectrum such that their common (sr � 1)-pre�x
matches b(`�sr+1;a`�1), and their (s+1)-suÆx agrees, in
the sense of De�nition 2 and in appropriate shifts, with
the probes in M0. Let B1 be the set of symbols appear-
ing in the sr-th position of the probes inM0. If B0\B1

is a singleton, then we have a unique extension to the
string. Otherwise we continue by constructing the set
M2 of the spectrum probes whose (s(r � 1)� 1)-pre�x
matches b(`�s(r�1)+1;`�1) and (2s+1)-suÆx agrees with
the probes in M1. From M2 we construct the corre-
sponding set B2 of extensions. Again, if B0\B1\B2 is
a singleton we are done, else we proceed by considering
shorter pre�xes of lengths s(r�2); s(r�3); s(r�4); ::::; s
of the spectrum probes. If j \i

j=1 Bj j = 1 for some
i � r, then we have an unambiguous extension. Other-
wise, in the basic scheme we halt and report the current
sequence (a more thorough and better performing tech-
nique will be sketched later in this paper).

The success of the above algorithm stems from the
fact that up to r additional probes, appropriately aligned
along the current sequence, are used to con�rm the non-
uniqueness of a one-symbol extension. One could try to
extend the \power" of any set of probes by using vari-
ous alignments with the current string. The advantage
of the set GP (s; r) is that the probability of ambigu-
ous extension in each of the alignments, with respect to
a randomly generated sequence, is almost independent
of the other patterns. This property is central to the
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analysis presented in the next section.

4 Analysis of the basic scheme

We present in this section an analysis of the perfor-
mance of the simple algorithm described in the previ-
ous section when applied to a spectrum obtained using
GP (s; r) probes. We will show that the performance of
this scheme approaches the information-theoretic lower
bound of Theorem 2. To simplify the presentation we
assume again that, in addition to the spectrum, the al-
gorithm is provided with the s(r + 1)-pre�x of the tar-
get sequence. We will show in the next section that
this assumption can be removed without altering the
performance of the sequencing scheme.

Theorem 3 For constants 
 > 1 and � = o(logm),
such that r and s are integers, let:

r =
1



log4m + �

s = log4m + 1 + 
 � r:

Let E be the event: The algorithm fails to sequence a
random string of length m using a GP (s; r) spectrum of
the string. Then:

Pr(E) � 4�
(1+�):

Proof:

Let t = ft; t0; t1; : : : ; trg; denote a vector of r + 2
positions in the target string, and let A(t) denote the
event: there are substrings in the target sequence a(1;m)

that satisfy the following relations:

a(t0+1;t0+s) = a(t+1;t+s) B0(t)
at0+is = at+is 2 � i � r: C0(t)

at0+(r+1)s 6= at+(r+1)s D0(t)

For 1 � j � r:

a(tj+1;tj+s) = a(t+js+1;t+(j+1)s) Bj(t)
atj+is = atj�1+(i+1)s 2 � i � r: Cj(t)

We focus �rst on the success of the algorithm in
sequencing all but the last rs symbols of the target se-
quence.

Claim 1 The algorithm fails to sequence the m � sr
pre�x of the target string if and only if 9t such that
A(t) occurs.

Proof: Assume that the algorithm is trying to extend
the current sequence a(1;`�1) with the next symbol a`.
Let t = ` � s(r + 1). If jB0j > 1 is not a singleton
then there is a probe in the spectrum that matches
a(t+1;`�1) but its rightmost symbol b 6= a`. Denoting by

a(t0+1;t0+s(r+1)) the substring of the target string that
binds with that probe, conditions B0 ,C0 and D0 hold.

If \r
j=0Bj is not a singleton, then it contains both a`

and b. Thus, for each j there is a probe in the spectrum,
and a corresponding substring a(tj+1;tj+(r+1)s) in the
target sequence, such that the s-pre�x of that substring
matches a(t+js+1;t+(j+1)s), and the locations tj + is of
the substring, for 2 � i � r match the corresponding
locations (with a shift of s positions) of the substring
a(tj�1+1;tj�1+(r+1)s) as formulated in conditions Bj and
Cj.

2

Let T denote the set of all possible vectors t, i.e.:

jT j =

�
m

r + 2

�
(r + 2)!:

For a given vector t 2 T , let C(t) denote the set of
components of t that are within a distance 3rs from
any other component of t (in the following de�nition
t � t�1):

C(t) = fj : 9j0 < j with jtj0 � tj j � 3rsg:

Let Ti denote the set of vectors with jC(t)j = i, i.e.:

Ti = ft 2 T : jC(t)j = ig:

Next we bound the probability of a given event A(t).
If t 2 T0 then the r+ 1 probes in the de�nition of A(t)
are associated with disjoint regions of the string a(1;m),
and thus the r + 1 events are independent. If t 2 Ti,
then all of the B events are still independent, and all
but at most i of the C events are independent (a B event
involves s+r�1 symbols (s+r for B0), a C event r�1).
Thus we prove:

Pr(A(t)) = 3�

�
1

4

�(r+1)s+r2

t 2 T0 (1)

and

Pr(A(t)) � 3�

�
1

4

�(r+1)s+r2�i(r�1)

t 2 Ti (2)

If t 2 Ti then at least i of t's components are re-
stricted to the 3rs-neighborhood of other r + 1 compo-
nents. Thus

jTij � jT j

�
r + 1

i

��
3rs(r + 1)

m

�i

�

�
r + 1

i

�
mr+2

�
3rs(r + 1)

m

�i

: (3)

We can now bound the probability of an event A(t)
for t 2 Ti, i � 1:

Pr(9t 62 T0 : A(t)) �

4



r+1X
i=1

�
r + 1

i

�
(3rs(r + 1))imr+2�i3

�
1

4

�(r+1)s+r2�i(r�1)

= 3
m2

4(
+1)r+s

r+1X
i=1

�
r + 1

i

��
3rs(r + 2)4r�1

m

�i

= o(1):

(This bound makes use of the condition � = o(logm).)
Let I(t) be a binary variable such that I(t) = 1 if

and only if event A(t) occurs, and let Z =
P

t2T0
I(t).

Then
Pr(9t 2 T0 : A(t)) � E[Z]:

Using (1) we get

E(Z) �

�
m

r + 2

�
(r + 2)!� 3�

�
1

4

�(r+1)s+r2

�
3m2

4s

� m

4s+r

�r
�

3m2

4s4(
+1)r
� 3� 4�(�
+
+1)

Thus, the probability that the algorithm fails to se-
quence all but the last rs symbols of the sequence is
bounded from above by

Pr(9t 62 T0 : A(t)) + Pr(9t 2 T0 : A(t))

� o(1) + 3� 4�(�
+
+1) � 4�
(�+1):

Finally, if for all m � rs < t < m we do not have
the event B0(t) \ C0(t) \ D0(t) the last rs symbols are
uniquely determined,i.e.:

Pr
� m[
j=m�rs

(B0(t)\C0(t)\D0(t)
�
� rs4�(r+s) = o(1):

2

Remark The previous theorem outlines a criterion
for the selection of the parameters r and s. For given
log4m (assumed integer), in order to reduce the cost of
the chip we choose a small value of 
 > 1, say, 
 = 2.
To reduce the probability of failure we choose as large a
value of � as is compatible with its de�ning constraint
(o(logm)), so that r = log4m=2+� and s = log4m=2+
3� �.

The procedure described and analyzed above, which
involves (r + 1) fooling probes shifted at regular inter-
vals of s positions, will be brie
y referred to as forward
sequencing with shift s. We now observe that the same
GS(s; r) spectrum, used in forward sequencing, can also
be used for sequencing in reverse. Indeed, reverse se-
quencing using a standard pattern Xs(U s�1X)r with
shift 1 is trivially equivalent to forward sequencing us-
ing the reverse pattern (XU s�1)rXs with shift 1. The
latter can be readily shown to be equivalent to forward
sequencing using the standard pattern Xr+1(U rX)s�1

with shift (r+1), to which Theorem 3 fully applies, with
the simple modi�cation of interchanging parameters r
and s� 1. We conclude:

Theorem 4 For constants 
 > 1 and � = o(logm),
such that r and s are positive integers, let:

s = 1 +
1



log4m

r = log4m + 1 + 
 � s:

The algorithm fails to sequence in reverse a random
string of length m using the GP (s; r) spectrum of the
string with probability at most 4�
(1+�).

5 Removing the pre�x

requirements

The sequencing procedure outlined above requires a
\seed" of length s(r + 1) = O((logm)2) symbols to
\bootstrap" the process. We o�er three solutions, two
biochemical and one algorithmic, to remove this require-
ment. The two biochemical methods are more practical.

If the SBH process is used to sequence one string of
length m, the simplest solution is to synthesize a short
\primer' (a string of length O((logm)2) ) and attach it
to the beginning of the string, thus providing the re-
quired pre�x of the target string.

In most applications, however, one needs to sequence
a string that is substantially longer than can be han-
dled by SBH chips, even using our novel scheme. The
standard solution is to fragment the target sequence by
means of restriction enzymes to produce a collection of
overlapping substrings of sizes that can be handled by
the SBH method. Once each of the substrings is se-
quenced, standard techniques [W95] reconstruct the en-
tire string. Since the substrings overlap, it is not neces-
sary to sequence the beginning and the end of each sub-
string. We still, however, need to provide the algorithm
with a seed sequence of length O((logm)2) for each sub-
string of lengthm. This could be achieved by the follow-
ing three steps: (1) Isolate a short, O((logm)2), piece
of the target sequence and sequence it using O(logm)4)
solid (no gaps) probes of length 2 logm (standard method).
(2) Use GP (s; r) probes for the forward sequencing of
the portion of the target from the isolated piece to
(almost) the sequence end. (3) Use the same set of
GP (s; r) probes for the reverse sequencing of the por-
tion from the isolated piece to the sequence beginning.

A third approach to the construction of a \seed" se-
lects a probe � at random from the spectrum. Of course,
such a probe is not a string of speci�ed symbols (it has
all the gaps corresponding to the \don't care's" of the
probing pattern), so that it must be "�lled", i.e., all un-
speci�ed positions must be �lled consistently with the
spectrum. This is done using the initial s-symbol solid
segment of � as the guide, namely, accepting as a pos-
sible candidate any probe whose (s�1)-pre�x coincides
with the homologous suÆx of the initial segment of the
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seed, and so on, s�1 times, until a set R(�) of strings of
length s(r+1)+ s�1 = s(r+2)�1 has been obtained.
Presumably, especially if m is very large and s is rather
small, the size of R(�) may be quite large.

Once the set R(�) has been obtained, we begin the
forward extension process. In the general case when
jR(�)j > 1, each of its members is successively extended
one symbol at a time by the process described earlier.
In principle, only a small number (possibly, just one) of
the members of R(�) are actual substrings of the target
sequence (are legitimate) and all the others are spurious
\paths". We have shown that the expected length of
spurious paths is very small, so that the extension pro-
cess will rapidly eliminate them and concentrate on the
legitimate members of R(�) (not belonging to spurious
paths). Again, this approach involves both forward and
reverse reconstruction.

6 Further results

In the absence of ambiguous extensions, the basic scheme
is perfectly adequate in reconstructing the target se-
quence. However, we have already observed that an
ambiguous extension spawns a spurious path, for which
the spectrum is very unlikely to contain con�rmatory
evidence. This case is addressed by a more advanced
algorithm which does not to halt when encountering an
ambiguous extension, but rather extends both the (un-
known) legitimate path and the spurious path(s), till ei-
ther all but the legitimate path cannot be extended, or
two branching paths have been both extended beyond a
threshold length h. Such policy is based on the expecta-
tion that a spurious path will rapidly terminate because
found to be non-extensible. This policy is obviously ex-
pected to process correctly larger target sequences. In-
deed, it can be shown that by choosing an appropriate
value of h (and tolerating the ensuing computational
overhead) the length of the target sequence which can
be reliably reconstructed can be made as close to the
information-theoretic upper bound (4k�1) as desired.

Finally, we wish to substantiate our earlier asser-
tion that our approach trivializes the Euler path diÆ-
culties. In fact, the probability of a recurrent state is
negligibly small for the chosen length m of the target
sequence. so that the Euler path with very high prob-
ability degenerates to a simple path (the states being
the ((r + 1)s � 1)-grams of the sequence, linked, where
appropriate, through the shift-register relation). It can
be shown, that for practical values of the parameter k,
the expected number of pairs of recurrent states is less
than 1.

It is also signi�cant to compare the probabilities that
an ambiguous extension is due either to (r + 1) fooling
probes scattered along the sequence or to a single sub-
string of minimal length that contains them all, since

their relative values is the cornerstone of our approach.
These two probabilities are, respectively,

�
m

r + 2

�
(r + 2)!

3

4

1

4(k�1)(r+1)
and

�
m

2

�
2
3

4

1

4(r+1)s�1
:

The �rst of these expressions has been previously com-
puted (refer to the analysis of set T0 in the proof of The-
orem 3), while the second one is based on the fact that
the two con�gurations coincide in their �rst (r+1)s�1
symbols and di�er in their last one. These two proba-
bilities become identical for r = 0 (since, in this case,
s = k), i.e, for ungapped probes. This illustrates in the
clearest way the unique role of gaps (universal bases), in
achieving the full potential of sequencing by hybridiza-
tion.
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7 Appendix

To experimentally validate the approach, we have re-
cently undertaken a thorough simulation program, cur-
rently under way. Our current plan is to assess the
cost/e�ectiveness (in terms of running time vs. length of
correctly reconstructed sequence) of several algorithms
of increasing complexity. The �rst coded algorithm is
our basic scheme, described in Section 3.

The simulation has been conducted as follows. For a
�xed value of k (i.e., for a chip of cost 4k), we select all
possible values of the parameter r, i.e., r = 0; 1; : : : ; k�
2 (note that the designs GP(k; 0) and GP(1; k�1) coin-
cide). For each such selection, increasing values of the
length m are adopted. For each value of m a random-
number generator is used to generate a suÆciently large
sample of target sequences a(1;m). For each such se-
quence a separate routine produces the spectrum, which
then forms the input to the reconstruction algorithm.
Once the reconstruction is completed, it is compared
with the original sequence and a statistic of failures is
compiled.

The results of a sample run are displayed in Figure
1, for k = 9 and various values of r. Each plotted point
corresponds to a sample of size 250. The leftmost curve
corresponds to the classical ungapped probes. Note that
for a con�dence level 95% the classical approach yields
m � 100, whereas the best result of our method (for
r = 5) is m =� 8800.
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Figure 1: Frequency of successful reconstruction as a
function of sequence length for arti�cially generated ran-
dom data, k = 9 and all possible choices of (s; r).
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