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Abstract 

Whole genome comparison and clustering cannot be 
routinely performed without access to significant 
resources. If, as expected, repositories continue to grow at 
the current rate, increasingly large and expensive systems 
will be required in order to maintain the status quo. The 
high-proportion of uncharacterised gene-sequences, 
combined with the fact that the majority of sequence 
analysis techniques are alignment-based, raises the 
possibility that alternative approaches might be able to 
identify relationships that have otherwise been missed. 
There is a need for alternative ways to predict function. 

PSST is an analysis tool with parallels to both 
pairwise algorithms and multiple motif-based pattern 
approaches. It is significantly faster than BLAST, and for 
some families including GPCRs, the tool is more sensitive 
and selective as well. For others it is worse. This paper 
describes the algorithm, its implementation, its evaluation 
against a diverse set of protein families, and discusses the 
reasons behind its behaviour. 

Introduction 

Bioinformatics is facing an onslaught of sequence 
data. Repositories continue to double in size every nine 
months or so, and the large-scale comparisons associated 
with genome projects have dramatically increased the 
complexity of the searches we wish to perform. Databases 
are already at a size where many experiments, such as 
clustering and genome-comparison are only possible for 
those with access to significant IT resources. If, as 
expected, computers continue to follow Moore’s law and 
double in power every 12-18 months, progressively larger 
and more expensive systems will be required in order to 
maintain the status quo. There is a need for faster 
sequence comparison algorithms. 

About 40% of the Open Reading Frames (ORFs) in the 
draft human genome have yet to be characterised [1,2]. 
The fact that the majority of sequence analysis techniques 
are alignment-based raises the possibility that alternative 
approaches might be able to identify relationships that 
have otherwise been missed. There is a need for 
alternative ways to predict function. 

Almost all function prediction is done by using tools 
such as BLAST [3] and FASTA [4] to generate and score 
local alignments between a query sequence and a 
repository containing previously annotated entries. High 
sequence-similarity is used as the basis from which to 
infer homology (that is, descent from a common ancestor), 
which in turn is used to infer shared function.  

This approach relies on a sufficiently similar entry 
existing in a reference database of previously 
characterised sequences, and is limited by the sensitivity 
of the search tools employed. It can also be compromised 
by the fact that high similarity does not always arise from 
homology. Gene duplication events, convergent evolution, 
and nature’s tendency to re-use the same structural 
elements (modules or domains) in functionally unrelated 
proteins can all result in strong matches between 
sequences that are not indicative of common function. The 
transfer of annotation purely on the basis of statistically 
significant similarity can be dangerous, and has resulted in 
many misclassifications that threaten the integrity of our 
databases [5,6].  

Partly in recognition of the need for increased 
sensitivity and accuracy of function prediction, family-
based techniques have been developed. These place 
sequences in functional groups and then use the combined 
set to generate a stronger diagnostic signal than a single 
entry can produce on its own. Two main approaches exist: 
Those that use profiles (e.g. [7,8,9]) and those that are 
motif-based (e.g. [10,11,12]). Both rely on multiple 
sequence alignments to place biologically related residues 
in correspondence with one another. Profiles represent the 
entire alignment, and seek to describe which residues are 
allowed at which positions, which are conserved, and 
which are degenerate, by, for example, using a Hidden 
Markov Model (HMM) to encode the alignment as a set of 
weights in a probabilistic finite-state automaton.  

Motif-based techniques identify regions of 
conservation within a multiple alignment that can be used 
as a diagnostic family signature. These ‘motifs’ usually 
reflect some vital structural or functional role (see, for 
example, Figure 1), corresponding, as they do, to islands 
of evolutionary stability in a sea of mutational change.  



Family-led approaches have resulted in a set of pattern 
databases, consisting of protein families and associated 
diagnostic profiles or motif collections. Recently, the most 
popular of these have been grouped together to form the 
integrated database, InterPro [14]. 

One such pattern database, PRINTS, is a collection of 
protein families and their associated fingerprints – ordered 
sets of motifs excised from hand-built multiple sequence 
alignments. PRINTS provided the protein sequences used 
in the results section of this paper, and is briefly described 
here. 

The current release (version 31) contains 1,550 
families, and is the largest manually annotated protein 
family database in existence. PRINTS entries are placed in 
a hierarchy such that those at progressively higher levels 
of the tree correspond to increasingly distant relationships. 
The topmost level, clan, corresponds to sequences for 
which a common evolutionary origin has been postulated 
(usually as a consequence of shared structure) but that 
have no appreciable sequence similarity. A separate class, 
domain, corresponds to sequences that have been grouped 
because they share a structural motif.  

Although the hierarchy in PRINTS arises from 
evolutionary relationships, by-and-large it reflects 
functional relationships as well. Entries near the top of the 
tree correspond to broad functional categories; those 
further down to increasingly specific activities. Associated 
with increasing specificity is an increased amount of 
sequence conservation. For example, the multiple-
alignment in Figure 1a shows a subset of the G protein 
coupled receptor (GPCR) super-family of proteins. 
GPCRs mediate the cellular response to a diverse set of 
signalling molecules and stimuli across the cell wall. Their 
role in cell signalling makes them an important 
pharmacological target, and, therefore, of major interest to 
the pharmaceutical industry. GPCRs also form one of the 
largest protein families in nature – to-date, over 200 
functionally distinct receptors have been cloned, and over 
1000 sequences or fragments can be found in the SWISS-
PROT database [15]. 

All GPCRs have a similar structure, characterised by 
seven hydrophobic transmembrane helices arranged in a 
cylinder, with loops extending on either side of the 
membrane (Figure 1c). Residues on the extra-cellular side 
of the membrane bind to specific ligands, or convey a 
response to a stimulus such as light. Those on the intra-
cellular side interact with members of specific G protein 
sub-families. These G proteins inhibit or activate various 
effector enzymes or ion-channels. 

When GPCRs are grouped together into multiple 
alignments, such as that shown in Figure 1, these 
structural considerations can be seen to result in distinct 
patterns within the sequences. The seven transmembrane 
helices that are characteristic of all GPCRs result in seven 
hydrophobic motifs, indicated by the dark grey boxes in 
the Figure. Sensitivity to different agonists allows the 

GPCRRHODOPSN* super-family to be subdivided, and 
these families and sub-families can be associated with 
their own diagnostic motifs (as shown by the boxes in 
Figure 1c). The motifs labelled with 2 correspond to the 
OPSIN* family of light-sensitive sequences, 1,3 
correspond to blue and green light sensitive sub-families, 
respectively.  

Whilst family based approaches often offer increased 
sensitivity compared to their pairwise cousins, their 
coverage is much smaller. This is because in order to use a 
pairwise technique it is necessary only to have a database 
of previously characterised sequences. Pattern approaches, 
by contrast, require these sequences to be further 
processed – by grouping them into families, generating 
biologically meaningful alignments and then constructing 
an appropriate discriminator. Producing alignments is 
typically the most problematic, because a significant 
amount of manual ‘tweaking’ of automatically generated 
ones is often necessary to make them biologically 
plausible, and because some relationships are so weak as 
to defy representation in this way. For example, lipocalins 
and fatty-acid binding proteins exhibit an almost identical 
structure, but the only sequence conservation is a GxW 
motif. In order to use patterns as discriminators, it is also 
necessary to evaluate their performance and to describe 
the diagnoses they are intended to perform. These 
validation and annotation steps are also time consuming, 

                                                           
* GPCRRHODOPSN and OPSIN are PRINTS identifier 
codes. 
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Figure 1. Alignment of the PRINTS GPCR super-family,
GPCRRHODOPSN, which includes a diverse set of GPCRS
including muscarinic and light sensitive receptors. White horizontal
bands correspond to sequences; shaded boxes within the
alignment represent PRINTS motifs. (a) The seven dark bands
show the diagnostic fingerprint for the entire super-family. Each
motif corresponds to one of the seven transmembrane helices in
the protein. (b) The last two helices and their neighbouring
residues. 1: Blue sensitive opsin motifs. 2: Opsin family motifs. 3:
Green sensitive opsin motifs. (c) 3D structure of rhodopsin, taken
from PDB [13]. (PDB code 1F88). 



but are crucial if the patterns are to be used as effective 
discriminators. 

In summary, pairwise algorithms such as BLAST and 
FASTA can rapidly identify similar sequences within a 
database, but can only do this with limited sensitivity and 
selectivity. By contrast, pattern-based approaches offer 
greater sensitivity and selectivity, but do this at the 
expense of speed and coverage. An algorithm that could 
combine the diagnostic power of the pattern-based 
approaches with the speed and coverage of pairwise 
techniques would be a useful addition to the sequence 
analyst’s armoury.  

The algorithm PSI-BLAST [16], takes a literal 
approach to this idea. Initially, it uses a BLAST search to 
compare a query sequence to a database, in order to 
generate a set of similar sequences. The algorithm then 
constructs a profile from this initial set, and performs a 
search using this profile. By combining pairwise and 
family techniques in this way, PSI-BLAST is able to offer 
increased sensitivity, but the generalisation that arises 
during the construction of profiles can reduce the 
algorithm’s selectivity. For example, a hydrophobic 
region within a query sequence will find other 
hydrophobic regions within the database. The resultant 
hit-set and profile, built from many local alignments of 
these fragments, will be a very good discriminator for 
sequences containing hydrophobic regions, rather than a 
specific functional activity. This may or may not be what 
was desired.  

Like motif-based approaches, word-based algorithms 
look for short conserved regions between sequences, 
rather than longer, contiguous weak matches. This parallel 
suggests a number of reasons why word-based approaches 
might form the basis for an alternative type of comparison 
tool. Firstly, as we have seen with GPCRs, proteins are 
three-dimensional structures, produced by folding a one-
dimensional polypeptide chain. Often residues that convey 
function are close to one another in 3D, but are separated 
by large distances in primary sequence. 

Secondly, whilst some residues are ‘functional’, others 
perform a structural role – providing a ‘scaffold’ to place, 
for example, residues that form a receptor site in the 
correct 3-dimensional orientation. These ‘structural 
residues’ are less constrained by evolution – substituting 
one for another is often possible, as long as the general 
size, shape and gross biochemical properties of its parent 
element do not change too much. This can be seen for the 
GPCR alignment in Figure 2.  

The membrane region is clearly conserved at the 
biochemical level – it is possible to swap a leucine for a 
valine, for example – but there is variability amongst the 
individual residues. By contrast, although the loop region 
is much more variable over the entire family, within the 
functionally distinct sub-families, the level of 
conservation is much higher – both at the residue and 
biochemical level. 

Thirdly, the premise behind ab initio structure 
prediction algorithms, resulting from experiments in 
ribonuclease folding by Anfinsen [17], is that all the 
information required by a protein to fold correctly can be 
found within the sequence. If this is the case, then certain 
arrangements of amino acids will fold into helices, others 
into strands, loops and turns. Since proteins consist mainly 
of helices and strands, the patterns of amino acids that 
produce these elements must in general be common. This 
argument, whilst controversial, is supported by the graphs 
in Figure 3. They were produced by using the DSSP 
classifications of sequences from PDBFINDER [18] to 
generate a set of fragments corresponding to loops, 
strands, helices and turns. Normalised 3-mer frequencies 
were determined for each of these classes and subtracted 
from the overall distribution for SWISS-PROT, allowing 
the relative representation of words in the different classes 
to be compared. From Figure 3a it can be seen that words 
over-represented in one class are under-represented in the 
others (helices and turns are grouped together in the figure 
because they were found to be correlated). Figure 3b 
confirms that common words are more likely to be found 
in helices, strands and turns than in loops. This is an 
interesting property because it is often the loops that are 
expressed on the surface of a protein, contain the specific 
function-giving residues and provide the sequences used 
for binding and specificity.  

Although the arguments outlined here are simplistic – 
a natural consequence of trying to describe something as 
complicated as protein function in a way that can be 
expressed in a sequence comparison algorithm – they do 
suggest that word-based tools, which find short exact 
matches between rare sub-sequences, might be good at 
finding specific functional correspondences between 
proteins.  

Word-based methods are not new. Algorithms such as 
BLAST and FASTA use an initial word-search to identify 
promising sequences for alignment, and improve 
efficiency by using these matches to constrain the 
alignment algorithm. FLASH [19] generates k-tuples that 

membrane loopmembrane loop  
Figure 2. Alignment of opioid-receptors, members of the
GPCR super-family. Residues in the transmembrane helix
show biochemical conservation, but, even within specific
subfamilies, show a certain amount of variation. Residues
within the loop region confer specific activity, and are highly
conserved within a sub-family – but divergent over the entire
class of opioid receptors.  



are used as the input to a geometric hashing algorithm, 
and others such as STACK_PACK [20], Miropeats [21], 
EMBLSCAN [22] and RAPID [23] forgo the alignment 
step altogether, generating a similarity score directly from 
the k-tuple matches. 

This paper describes a novel sequence analysis tool, 
the Probabilistic Sequence Search Tool (PSST) that uses a 
word-based algorithm to compute similarity. By avoiding 
alignments PSST is able to compute a similarity score 
extremely efficiently. It is a natural development of 
RAPID, generalised for both protein and DNA sequences, 
and, like RAPID, adds knowledge to the scoring system 
by using word frequencies determined empirically from 
sequence data. The hypothesis is that sequences that share 
rare words are more likely to be biologically related than 
sequences that share common ones. This is analogous to 
web search engines and information retrieval tools. If two 
pages contain rare words such as ‘sequence’, ‘analysis’, 
‘algorithm’ and ‘k-mer’ they are likely to be referring to 
the same thing, but if they only share common ones such 
as ‘because’, ‘and’, and ‘the’, they probably aren’t 
[24,25]. 

PSST, is about two orders of magnitude faster than 
BLAST, and, for some protein families, including GPCRs, 
it is significantly more sensitive and selective. For others, 
it is worse – PSST is not a replacement for existing 
algorithms. It is, however, a potential new tool in the 
toolbox. 

Algorithm 

The algorithm considers similarity to be proportional 
to the number of words shared between a pair of 
sequences, weighted by their rarity. 

Let a be a sequence, of length l built from an alphabet 
of n symbols (n=4 for DNA sequences, 20 for proteins). 

A binary vector wa, of length nk, represents the 
presence or absence of each of the possible k-mers in a, 
such that if word i is present in a, wi

a=1, otherwise wi
a=0. 

Another vector p represents the normalised frequency 
of each word occurring, such that they sum to 1. This 
allows the score for a match between two sequences q and 
t to be computed: 

t
i
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ww
p

S ××= ∑ 1
   

The lack of positional information means that the 
algorithm is unable to distinguish between a cluster of 
matches in one region of a sequence and the same set of 
matches distributed over its entire length. Whilst, for short 
sequences this is unimportant, for large ones it 
significantly reduces the algorithm’s selectivity by 
allowing chance matches summed over the entire length 
of the sequence to mask regions of local similarity. For 
this reason, large sequences are broken into smaller 
fragments and each fragment treated individually. 

Typically fragments, are 300bp long for proteins, 1000bp 
for DNA. 

Implementation 

The design of the algorithm allows an extremely 
efficient implementation that achieves speed at the 
expense of memory. This compromise was chosen 
because memory is cheap compared to processing 
capacity, and the coarse-grained nature of the task makes 
it well suited to low-cost cluster computers, built from 
standard PCs and networking components. The procedure 
uses two distinct steps:  

In the first, the target database is pre-indexed to create 
an efficient data-structure for searching. This is performed 
in a single off-line computation. The data structure lists, 
for each possible k-mer, the sequences that contain that 
word. At the same time, word frequency statistics are also 
produced. 

The second (search) step scans a window across the 
query sequence to generate its constituent overlapping k-
mers. These are treated as base 4 or 20 numbers 
(corresponding to DNA or protein sequences) and used to 
index into the word lists. This allows all the sequences 
that contain a given word to be found in constant time. 
Each word list is scanned, and for each matching 
sequence, a bin incremented by the appropriate frequency-
weighted score. Finally, the bins are iterated over, and the 
scores outputted. The process is shown diagrammatically 
in Figure 4. 

For single sequence searches, only a subset of the 
word lists are required. Loading the entire database into 
memory, in advance, provides a significant start-up cost. 
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Figure 3. 3mer distributions for helices + turns, strands and loops
were computed using data from DSSP and compared to the overall
distribution in SWISS-PROT (39). The difference between these
distributions is shown using contour plots; the axes show the
deviation in the probability distributions from that of SWISS-PROT:
(a) Strands, loops and helices + turns. The DSSP distributions
were subtracted from that of SWISS-PROT in order to give
deviations from the overall distribution. Words over-represented in
loops tend to be under-represented in strands, helices and turns
(peak 1). There is some correlation between loops and turns: this
results in peak 3. Peak 2 corresponds to a large set of words that
are generally common in all three classes. (b) ‘Scaffolding’,
loops and SWISS-PROT. Words that occur in helices, strands or
turns tend not to occur in loops, and these words tend to be
common in SWISS-PROT. Intensity is inversely proportional to
rarity in SWISS-PROT: common words are light, rare ones, dark. 



In order to avoid this, the pre-indexed data-structure is 
created as a memory image that is stored on disk. Rather 
than the software explicitly loading it, it is mapped it into 
the program’s virtual address space. This hands over the 
task of data loading to the operating system. The first time 
a word list is accessed, it is not in physical memory. A 
page-fault is generated and the operating system loads the 
data for that page directly off disk. This has two 
consequences. Firstly, the process is performed at the 
kernel level without additional buffering, making it more 
efficient. Secondly, only pages that are relevant to the 
search get loaded at all. As a search progresses, more and 
more of the database ends up in physical memory. 

Parallelisation. 
The coarse-grained nature of the task makes it 

‘embarrassingly parallel’. A fragment of the database can 
be placed on each node, query sequences distributed, 
searched, and results returned. This leads to a producer-
consumer model, with one node generating word lists and 
sorting the results from a previous search, whilst the other 
nodes look for hits against the next sequence.  

An interesting issue that arises is load balancing. 
Sequence data-files contain a significant amount of local 
structure, resulting in similar sequences – such as a batch-
submitted EST library – occurring close to each other in 
the file. 

Placing the first n sequences on the first node, the next 
n on the next one, and so on, results in search ‘hotspots’ 
occurring. In such situations, one node does most of the 
work, whilst the others sit idle. To avoid this, adjacent 
sequences are placed on different nodes. 

The program has been implemented in C using MPI. 
Binaries exist for Linux-Intel and SGI Origin 2000. 
Efficient operation on cluster computers relies on reducing 

the amount of inter-process communication to a minimum 
and on dealing with the high latency associated with cheap 
interconnects. Asynchronous communication and 
judicious hacking of data-structures have been used to 
improve network-efficiency.  
 

A note on p-scores 

Alignment techniques generally return their similarity 
score as an E- or p-value, produced by estimating the 
likelihood that the given score did not occur by chance. 
Underpinning any such calculation is the null hypothesis 
used to describe random patterns. For sequences, the 
majority of models are derived from the BLAST 
algorithm [3]. Unfortunately, no such standard models 
exist for pure word-based techniques, and as a 
consequence, no well-understood scoring system.  

The problems discussed in the introduction also 
demand caution when assessing the results of similarity 
searching. The statistical likelihood of a score provides a 
lower bound beyond which matches cannot be 
distinguished from noise, and an ordering of matches that 
can be used to evaluate relative significance. This might 
be used, with the aforementioned caveats, to infer 
common function, but success is dependent on whether 
the underlying similarity metric is appropriate. 

The community-wide experience derived from 
generating millions of BLAST searches has resulted in 
accepted score-thresholds that are many orders of 
magnitude more stringent than the statistical model 
suggests – demonstrating that even with a well-understood 
scoring system, the biological performance of a search 
tool may well be different from the model-based 
predictions. For these reasons, diverse hand-classified 
sequences were clustered in order to test sensitivity and 
selectivity, to determine score thresholds and to compare 
PSST’s performance to that of BLAST. Results of this 
analysis are presented below.   
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Figure 4. (1) Sequences are scanned to produce a set of
overlapping words. These are treated as base 4, or base 20,
numbers (for DNA or protein sequences, respectively), and used to
index into a vector listing each sequence that contains a given
word. (2) The list is scanned and the presence or absence of a
word recorded by indexing a bin. (3) once the sequence has been
scanned, the bins are read and their score outputted. 

Family identifier Description Hierarchy  

ALPHAHAEM Alpha haemoglobin  Family 
BETAAMYLOID Beta-amyloid peptide (beta-APP)  Family 

CYTOCHROMEF Cytochrome F  Family 
DPTHRIATOXIN Diphtheria toxin  Family 

EUMOPTERIN Eukaryotic molybdopterin domain  Family 
FANCONICGENE Fanconi anaemia group C protein Family 

FNTYPEIII Fibronectin type III repeat  Domain 
GLHYDRLASE3 Glycosyl hydrolase family 1 Family 

GPCRRHODOPSN Rhodopsin-like GPCR superfamily  Super-family 
HEATSHOCK90 90Kd heat shock protein  Family 

KINESINLIGHT Kinesin light chain  Family 
KRINGLE Kringle domain  Domain 

LIPOCALIN Lipocalin  Super-family 
NIHGNASESMLL Ni-Fe hydrogenase small subunit  Family 

OPSIN Opsin  Family 
PHOTOSYSPSAAB Plant photosystem I psaA and psaB  Family 

PRION Prion protein  Family 
RHODOPSIN Rhodopsin  Sub-family 

URICASE Uricase  Family 
ZINCFINGER C2H2-type zinc finger  Domain 

Table 1. Families represented in the PRINTS subset, 
miniPRINTS. 



Results 

Sensitivity and selectivity 

The PRINTS database contains a diverse set of hand-
classified sequences arranged into a family hierarchy, with 
separate classes corresponding to domains. These 
annotations make PRINTS a useful resource with which to 
evaluate sequence comparison algorithms, and form the 
basis for the results described here.  

Although PRINTS is small in comparison to a 
repository such as SWISS-PROT, it still contains over 
55,000 sequences, making it cumbersome – and 
prohibitively large for all against all clustering using 
BLAST on the hardware available. For this reason, a 
subset of PRINTS, miniPRINTS, has been created (Table 
1). miniPRINTS contains 20 families, intended to provide 
a representative cross-section of sequence-space, in order 
to highlight the different issues that arise in sequence 
classification. To this end, miniPRINTS contains 
representatives from highly divergent super-families, 
domain/modular families and sequences with repeats. 

miniPRINTS also contains members of small, well-
defined families, intended to provide a baseline set of 
sequences that are relatively easy to deal with. 

Figure 5 shows the results of clustering miniPRINTS 
using BLAST and PSST. The bars show the number of 
true and false positives occurring with a score threshold 
selected to minimise the number of misclassifications. For 
BLAST, this was an E-value of 10-4, for PSST, a score 
threshold of 12.8.  

For most of the entries in miniPRINTS, PSST 
performs similarly to BLAST. 

For super-family and domain-based relationships 
(ZINCFINGER, FNTYPEIII, ALPHAHAEM and 
GPCRRHODOPSN), BLAST is significantly more 
sensitive. These are precisely the types of matches that a 
local-alignment based tool would be expected to perform 
well with. Sequences related by domain, or super-family 
share similar structural folds, but different activities are 
produced by decorating this ‘scaffolding’ with different 
functional groups. Assigning proteins to super- or domain-
families requires spotting the kind of biochemical 
conservation seen with the transmembrane helices in the 
GPCR alignment in Figure 2.  

By contrast, successfully placing a protein into a more 
precise functional category requires matches between 
short, highly conserved sets of residues. This is the kind of 
relationship seen with the loop regions in Figure 2. PSST 
is better than BLAST for opsins and rhodopsins: families 
that require this kind of relationship to be identified if 
their members are going to be correctly classified.  

Figure 6 shows the distribution of scores resulting 
from clustering the Opsin subset of miniPRINTS, from 
which it can be seen that the choice of 12.8 as a score 
threshold results in many true positives being eliminated 
from the search. This suggests that PSST might form the 
basis of a pre-filtering step that reduces a database to a 
manageable size for processing by a more complex tool 
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Figure 5. Scores for each of the families in miniPRINTS. The
score threshold that minimised the number of misclassifications
were selected – for BLAST 10-4, for PSST, 12.8. The graph
shows the number of true and false positives arising for each
family at the given threshold. Since the comparison was a
clustering of N sequences, yielding a possible N2 hits, the figure
plots the square-root of the recorded true and false positives.  
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Figure 6. Scores distribution for the opsin family clustered using
PSST. The high number of matches is due to the fact that the
search is all-against-all – with a potential N2 matches. 



designed specifically to find GPCRs. 
  

Time and Space Complexity 

In order to measure PSST’s time and space 
performance, sequence sets of varying size were clustered. 
All experiments were conducted on a 16 processor Origin 
2000: each processor being a MIPS 195MHz R10000. The 
L2 cache was 4M and the total memory 6144M. BLAST, 
version 2.0.6 was used with default parameters 
throughout. All times stated are wall-clock times as 
reported by the UNIX ‘time’ command.  

PSST is between 2 and 3 orders of magnitude faster 
than BLAST. Figures 7a and 7b show how the running 
time for clustering 1,093 sequences varies with number of 
processors. On 4, PSST takes 5.25s compared to 7,737s 
for BLAST – 1,473 times faster. It can also be seen from 
the figure that PSST scales much better than BLAST with 
the number of processors. 

 
Since the number of words to look up is proportional 

to the size of the query sequence, PSST should scale 
linearly with the query. Similarly, the size of the pre-
computed word-lists is simply proportional to the size of 
the database to be searched – PSST should scale linearly 
in both time and space with the database size. Figures 7c,d 
shows that this is indeed the case.  

Discussion 

PSST is a novel algorithm that is significantly faster 
than alignment based techniques. The nature of the 
algorithm makes it coarse-grained and embarrassingly 

parallel – reflected by the fact that it scales well with the 
available processors.  

PSST does not achieve this speed and efficiency 
without some cost, from both an implementational and a 
biological point-of-view. Memory usage is higher than 
computationally-intensive alignment algorithms: a 
compromise chosen with multiple-node cluster computers 
in mind, which typically have at least 256Mb of memory 
per node. From a biological perspective, the tool is not 
good at spotting the kind of biochemically-conserved 
matches associated with super-families and domains. 
These relationships are characterised by relatively weak 
local alignments, and tools already exist to find this kind 
of similarity. It is also the case that as more sequences 
become characterised, and the sequence landscape 
becomes better annotated, the need to identify distant 
relationships will become less pressing as closer entries in 
the databases can be used for classification and analysis.  

Even when the only clue to a sequence’s function is a 
distant, putative, homologue, finding such a match is only 
the first step towards a more detailed characterisation: 
identifying a GPCR is less interesting than determining 
that the same protein is, for example, a beta adrenergic 
receptor. PSST is more sensitive for these 
pharmaceutically important proteins, and tools such as 
PSST have a role in helping make these classifications.  

Sequence analysis software is not always able to make 
correct assignments: human intervention is required in 
order to assure a high level of reliability. When the 
annotator or biologist is recognised as being a vital part of 
the whole system, it can be seen that bioinformatics tools 
perform two roles: filtering and presentation.  

Sequence analysis algorithms provide mechanisms by 
which manageable subsets of a database can be extracted 
and presented to a human being in an appropriate form. 
Alignments not only produce a similarity score, they also 
offer a rich metaphor for representing the relationships 
between a set of DNA or protein sequences. A tool such 
as PSST is able to perform the filtering step very quickly, 
but, because it forgoes alignments, it is not able to present 
its results as anything more than a number denoting 
similarity.  

Generating alignments on the fly, as part of a user-
interface, is one potential solution to this problem; using 
PSST as a pre-filtering step before searching with a 
slower, more complex tool, such as FPSCAN [27] is 
another. This latter application is particularly appealing 
because, as Figure 6. shows, it is possible to increase the 
number of true positives found by PSST by decreasing the 
score threshold, but opening the valve in this way also 
increases the number of false positives. A post-processing 
step, performed using a discriminator designed for the 
family of interest, has the potential to offer speed, 
sensitivity and selectivity.   

Attempts to improve the process of gene-
identification, characterisation and annotation have 
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Figure 7. Relative performance for PSST and BLAST (a,b) Time
vs. number of processors for PSST and BLAST respectively,
clustering 1093 GPCRs (total 438,065 residues). (c,d) Speed
and memory usage vs. clustered database size. Since the
timings are for clustering experiments (N2 comparisons) the
square root of the timings usage are plotted. 



typically focused on the gene-sequences rather than the 
annotations themselves. One consequence of this is that 
different relationships (scaffolding vs. decoration, for 
example) are often elided into the ill-defined catch-all 
term, ‘function’ [28].  

This is unfortunate because different types of analysis 
tools are good at spotting different types of functional 
relationship: developing an insight into why tools behave 
the way they do can hopefully help to improve the quality 
of the annotations at our disposal. It is, after all, the 
annotation that forms the interface between the biologist 
and the algorithm, and the biologist that adds meaning to 
the whole undertaking.  
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