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Abstract

We establish a variety of combinatorial bounds on
the tradeoffs inherent in reconstructing strings using
few rounds of a given number of substring queries per
round. These results lead us to propose a new ap-
proach to sequencing by hybridization (SBH), which
uses interaction to dramatically reduce the number of
oligonucleotides used for de novo sequencing of large
DNA fragments, while preserving the parallelism which
is the primary advantage of SBH.

1 Introduction

Sequencing by hybridization (SBH) [4, 11] is a new
and promising approach to DNA sequencing which of-
fers the potential of reduced cost and higher through-
put over traditional gel-based approaches. In this pa-
per, we propose a new approach to sequencing by hy-
bridization which permits the sequencing of arbitrar-
ily large fragments without the inherently exponential
chip area of SBH, while retaining the massive par-
allelism which is the primary advantage of the tech-
nique. We establish the potential of our technique
through both analytical results and simulation on real
DNA sequences. Our approach is based on our solu-
tion of an interesting combinatorial problem, that of
reconstructing strings from substrings in rounds.

The traditional sequencing by hybridization proce-
dure attaches a set of single-stranded fragments to a
substrate, forming a sequencing chip. A solution of ra-
diolabeled single-stranded target DNA fragments are
exposed to the chip. These fragments hybridize with
complementary fragments on the chip, and the hy-
bridized fragments can be identified using a nuclear
detector. Each hybridization (or the lack thereof) de-
termines whether the string represented by the frag-
ment is or is not a substring of the target. The target
DNA can now be sequenced based on the constraints
of which strings are and are not substrings of the tar-
get. Pevzner and Lipshutz [11] give an excellent survey
of the current state of the art in sequencing by hy-
bridization, both technologically and algorithmically.

The most widely used sequencing chip design, the
classical sequencing chip C'(m), contains all 4™ single-
stranded oligonucleotides of length m. For example, in
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Fragment Classical SBH Interactive SBH
Length Length Size Rounds  Size
80 7 16,384 7 560
180 8 65,536 8 1,440
260 9 262,144 8 2,080
560 10 1,048,576 8 4,480
1300 11 4,194,304 9 11,700
2450 12 16,777,216 9 22,050

Table 1: Characteristic length of unambiguously de-
ciphered DNA fragment as a function of the size for
classical and interactive SBH.

C(8) all 4% = 65,536 octamers are used. Pevzner’s al-
gorithm [12] for reconstruction using classical sequenc-
ing chips interprets the results of a sequencing experi-
ment as a subgraph of the de Bruijn graph, such that
any Eulerian path corresponds to a possible sequence.
Thus the reconstruction is not unique unless the sub-
graph consists entirely of a directed induced path.

The strength of this requirement means that enor-
mous sequencing chips are needed to reconstruct rela-
tively short strands of DNA. For example, the classical
chip C(8) suffices to reconstruct 200 nucleotide long
sequences in only 94 of 100 cases [10], even in error-
free experiments. Unfortunately, as shown in Table 1,
the length of unambiguously reconstructible sequence
grows slower than the size (ie. area) of the chip. Thus
exponential growth inherently limits the length of the
longest reconstructible sequence by traditional SBH.

Our approach uses interaction to reduce the re-
quired amount of work. Suppose that we are given an
unknown string S, over a known alphabet X, and are
permitted to ask questions of the form “is s a substring
of S?”, where s is a specific query string over ¥. We
are not told where s occurs in S, nor how many times
it occurs, just whether or not s a substring of S. We
need to be able to ask many useful questions simulta-
neously in order to minimize set-up costs and elapsed
time. Therefore, our goal is to determine the exact
contents of S using as few rounds of as few queries as
possible. The results of Table 1 demonstrate that we
succeed, using less than ten rounds to reduce the total
number of queries by a several orders of magnitudes
on reasonable sized fragments.



Other variants of SBH (such as nested-strand SBH
[13, 14] and positional SBH [2, 6]) have been proposed
to increase the resolving power of classical SBH. How-
ever, none of them offer the potential of interactive
SBH to sequence very long fragments.

Skiena and Sundaram [15] studied the complexity
of sequentially reconstructing unknown strings from
substring queries. Specifically, they show that (a —
1)n + ©(a+/n) queries are sufficient to reconstruct an
unknown string, where a is the alphabet size and n
the length of the string, matching the information-
theoretic lower bound for binary strings. Further,
they show that ~ an/4 queries are necessary, which
is within a factor of 4 of the upper bound for larger
alphabets. However, achieving a high degree of paral-
lelism is critical for this approach to lead to a practical
method of DNA sequencing.

In this paper:

e We show a wide range of tradeoffs between the
number of rounds of substring queries and the
number of queries per round sufficient to deter-
mine an unknown string of length n on an alpha-
bet of size a. Our results are summarized in the
table below:

Number of Rounds | Questions per Round

an 1
n !
g% n n
Ign n?/lgn
Iglgn o (1+o(1))(gn/ lglgn)

) aO(w/nlgn)

1 3a|_n/2J+1

Each of these tradeoffs require different ideas to
achieve.

e We prove an exponential lower bound on the ca-
pacity of any prefabricated sequencing chip ca-
pable of reconstructing n-strings, and give a new
chip design whose capacity approaches this lower

bound.

e We give a strategy which uses (with probability
1—-1/n¢) O(aelg n) rounds of n queries per round,
and present simulation results which demonstrate
the practicality of this approach. Indeed, our sim-
ulations suggest a much stronger result, that far
fewer number of rounds of n queries per round
suffice to reconstruct sequences of length n. This
suggests a very efficient technique to sequence
large DNA fragments, and also an application to
designing custom, prefabricated chips to identify
mutations for diagnostic purposes.

In the sense of being biological techniques proposed
by computer scientists, our work is philosophically
akin to the recent work of Adleman [1] and Lipton
[8] on biocomputing. We stress that for our proposed
techniques, the issue is not one of feasibility, but of
cost, since either the photolithography methods of [4]

or the primer walking technique of [7] can be used to
realize interactive SBH, albeit in an expensive man-
ner. We are confident that biologists can develop ex-
perimental protocols to reduce these costs, once they
understand the combinatorial advantages of our ap-
proach.

In Section 2, we analyze the one round case, cor-
responding to conventional sequencing chips, and es-
tablish tight upper and lower bounds for capacity. In
Section 3, we establish bounds on chip capacity suffi-
cient to achieve a sub-logarithmic number of rounds.
In Section 4, we present our most interesting tradeoffs,
showing that polylog rounds of subquadratic capacity
chips always suffice for reconstruction. Finally, in Sec-
tion 5 we prove better bounds in the average case. In
an appendix, we give the results of simulations to es-
tablish the practicality of our techniques.

2 Reconstruction in One Round

In this section, we consider the problem of recon-
structing strings using a fixed set of queries, as in con-
ventional SBH. A sequencing chip C is defined by a
given set of query strings ¢y, . . ., ¢, Over a given alpha-
bet 3. The capacity or size m of the chip is the number
of strings which define it. The spectrum Sp(C, S) of
chip C with respect to string S partitions the strings
of C into two sets, those which are substrings of S and
those which are not. A string S can be reconstructed
with a given chip C iff there does not exist a string
S’ € X* such that Sp(C,S) = Sp(C,S’). In other
words, the spectrum of S uniquely describes S.

In this section, we consider the question of mini-
mizing the size of any chip capable of reconstructing
all strings of length n. Clearly, a chip containing all
a™ strings of length n suffices for reconstruction, since
the spectrum of any string S will contain only one
positive substring, ie. S itself. However, significantly
smaller chips are in fact possible.

Consider a classical sequencing chip C(l), where l =
|n/2] +1, consisting of all a! I-strings. A string S has
period k if S; = S;y for all 1 < i < n — k. Observe
that strings of period k < I cannot be reconstructed
using C(!). For example, the strings abedabe, bedabed,
cdabeda, and dabedabd all contain exactly the same set
of 4-substrings; abcd, beda, cdab, and dabe. Thus C(1)
does not suffice for reconstructing n-strings, but we
shall show that a slightly larger chip does while no
smaller chip can.

Our arguments will be based on two n-strings .S and
T, both composed of the same set of l-strings. Let S[i]
denote the ith character of S. Let S; (T;) denote the
l-string beginning in the ith position of S (T'), ie. the
ith through (¢+1—1)th characters. Thus S; and S;41
share I — 1 characters in common. Given S, string T
is completely described by a permutation Pr of the
(n — 1+ 1) l-substrings of S.

Lemma 1 Let S and T be distinct n-strings such that
Sp(C(m), S) = Sp(C(m),T), where C(m) is the clas-
sical sequencing chip and m > n/2. If T, = S;j1
and Tpyp = S;, then S[z] = S[z+ (j — i+ 1+ p)] for
1<z <m—p. In other words, the first m +j—i+1
characters of S form a period (j — i+ 1 + p) string.



Figure 1: Forcing a low-period substring.

Proof: Figure 1 illustrates the situation. By defini-
tion, S;[z+j—i+1] = Sj41[z]for 1 <z < m—(j—i+1).
Similarly, Tp4p(z] = To[z +p] for 1 < z < m — p.
Therefore, S;[z] = Sj41[z+p|for 1 <z <m— p, and
the result follows since S;[y] = S[z +y—1]. |

We say a permutation P on {1,...,n} is
prefiz-separable if there exists k& < n such that
max(Py,..., P) = k.

Lemma 2 Let S and T be distinct n-strings such
that Sp(C(m),S) = Sp(C(m),T) and Pr is prefiz-
separable. Then there exist proper distinct n'-strings
S' and T such that S’ is a substring of S and T" is a
substring of T', where Sp(C(m), S') = Sp(C(m),T").

Proof: Since Pr is prefix-separable, the sets of the
first k& m-strings of S and T are identical, as are the
sets of the last (n—k —m) m-strings. If either S[1, m+
k—1]#T[l,m+k—1]or S[k+1,n] # Tlk+1,n], we
have our S’ and 7. If not, S = T and S and T were
not distinct n-strings. |

Lemma 3 Let S and T be distinct n-strings such that
Sp(C(m), S) = Sp(C(m),T), where C(m) is the clas-
sical sequencing chip, Pr is not prefiz-separable, and
m > n/2. Then for any i < n—m, there exists a j > ¢,
p, and & such that (j —i+1+p) < m, T, = Sj11
and Tpyp = S;. Thus, S[i,m + j + 1] is a period
(j —i+ 14 p) <m string.

Proof: Since Pr is not prefix-separable, for any i < n,
there exists at least one j > ¢ such that the starting
position of S;; is to the left of S; in T'. Let j be the
smallest such integer. Thus S;;4,...,S; in T must all
be to the right of the starting position of S; in 7. Thus
there can be at most m — 1 — (j — ¢) starting positions
to the left of S; in T, and p<m —j+i—1.

Therefore, by Lemma 1, S[{,m — j + 1] is a period
j—i+1+p)string. Since j—i+1+p<j—i+1+
m— j+i{— 1) = m, this string has period at most m.
|

By the GCD Lemma of Lyndon and Schutzenberger
[9]:

Lemma 4 Let S = abc be a string formed by concate-
nating strings a, b, and c. Let string ab have period
i, and string bc have period j, where |b| > max(i, ).
Then

e Ifi=7j, then S has periodi=j.
e Ifi=4d-j, for integer d, S has period i.
e Ifil j, S has period 1.

Lemma 5 The classical chip C(m) suffices to recon-
struct any n-string of period k > m if m > n/2.

Proof: We show that if Sp(C(m), S) = Sp(C(m),T),
and S # T, then both S and T" must have period at
most m. Consider the smallest sized counter-example.
Assume Pr is prefix-separable. By Lemma 3, for all
1 <i < n—m, the substring S; = S[i,m + j + 1] has
period < m for some j > i. Thus S; overlaps S;;1 in
at least m positions. By the GCD Lemma of [9], the
intersection of these strings must have period at most
m, which can be extended to comprise all of S. The
case of T follows by symmetry.

Now suppose Pr is not prefix-separable. By Lemma
2 this could not be the smallest counter-example, a
contraction and the result follows. i

Lemmas 5 leads directly to an efficient sequencing
chip design:

Theorem 6 One round of 3al™/21+1 gueries suffices
to reconstruct any n-string on an alphabet T, o = |X|.

Proof: Owur sequencing chip consists of all distinct
(|m/2] + 1)-strings, plus all n-strings of period at
most (|n/2| +1). By Lemma 5, the former are suf-
ficient to recomstruct any long period strings, and
none of the latter strings will prove substrings of
the unknown long-period string. If the unknown
string has a short period, exactly one of the latter
strings will prove a substring. This chip contains

aln/2l41 E}Z{“"’l ol < 3aln/2+1 strings. |

Period |n/2] + 1 strings prove the key to the lower
bound as well:

Theorem 7 Any sequencing chip capable of recon-
structing all strings of length n must have size at least

2aln/2+t /1,

Proof: Let I = |n/2]| +1. Consider a set of questions
adequate to reconstruct each of the o' the period-I
n-strings. We can partition these strings into equiva-
lence classes, where each of these n-strings are equiva-
lent under circular shifts. Thus the size of these equiv-
alence classes ranges from one to I, depending upon
the minimum period of the string. Observe that:



e Any question capable of distinguishing between
members of the same equivalence class must have
length greater than [, since all the strings in the
same class have the same I-spectrum.

e Any question of length greater than ! will be sub-
strings of members of at most one equivalence
class, since all I-substrings of this question must
be equivalent under circular shift (if not, the ques-
tion will be a substring of none of the period !
strings).

Thus none of the 1g|C| > 1 queries necessary to
distinguish between the C members of an equivalent
class can possibly be substrings of any string outside
the equivalence class. Since each equivalence class con-
tains at most I members, there are at least o'/l such
classes, and the result follows from making at least
one query per class. I

3 Reconstruction using Few Rounds

To show how interaction can be used to reduce the
total number of queries, we first review the results of
Skiena and Sundaram [15] on reconstructing strings
with one substring query per round. A subtlety of the
problem is whether the length of the unknown string
is presented in advance, or must be determined using
the results of queries. For ease of exposition, we will
assume that the length n is known, since it results
in simpler strategies whose complexities are identical
except for lower order terms.

Lemma 8 An unknown string S of known length n on
alphabet 3, |X| = a can be reconstructed in a(n + 1)
substring quertes.

Proof: Begin by making substring queries of single-
character substrings, so after at most a queries we
know a character of S. Let s be a known substring of S
and ¥ = {01,02,...,04}. In general, we can increase
the length of this known substring by one character
by querying on the strings so;, for 1 < ¢ < a. At
least one of these query strings must be a substring of
S, unless s is a suffix of S. When s can no longer be
extended, s is a suffix of S and we can continue the
process by prepending each character to the known
substring, until it is of length n and S is determined.
|

In [15], we show how to reduce the multiplicative
constant by one, ie. that (o — 1)n + 2lgn + O(a)
substring queries suffice if n is known, while if n is
unknown, (@ — 1)n + O(a+/n) queries suffice. With
our lower bounds of (lga)n and an/4, this strategy
is tight for binary strings and within a factor of 4 of
optimal over any alphabet.

The strategy of Lemma 8 can be parallelized in a
trivial way, by observing that each of the o extension
queries can be done in parallel, yielding:

Corollary 1 n + 1 rounds of a subsiring queries per
round suffice to reconstruct an unknown string of
length n on an alphabet of size .

In the rest of this section, we use a divide-and-
conquer approach to deliver a much higher degree of
parallelism.

Lemma 9 Any string S on an alphabet of size

can be reconstructed using at most r rounds of
1r o(r—1)/r . )
a™ '8 " substring queries per round.

Proof: Consider the following r round reconstruc-
tion strategy, which is parameterized by the constants

1,...,’6,‘:

e round 1: Query all o™/*1 strings of length n/k;.
Let S; denote the resulting set of substrings of S
of length n/k;.

e round 2 < ¢ < r: Let S;_; denote the set of
all of the (at most n) distinct (Hl;l2 k; - (n/k1))-

]
substrings of S. Query all of the n*: strings which
can be formed as a sequence of k; elements of

Si_1.

This strategy is correct whenever H;zz kj/k1 > 1,

as S; is determined at the end of round ¢, and S, = S.
We select k1 and k; (2 < j < 7) to satisfy the following
relations:

n/ki—1gn - k;
_ gr—1
ki =k
Solving for k; and k; yields:

ki = (n/lgn)" "0/

k; = (n/1gn)'/"
In the first round, a™/* = AR M queries
are made. In the second through rth rounds, n* =

1/ry(r—1)/7 . . .
a8 " queries are made, giving the result. |

Corollary 2 Any string of length n on an alphabet of

size o can be determined using 2 rounds of a®(V™187)
queries per round.

Corollary 3 Any string of length n on an alphabet
of size a can be determined using lglgn rounds of

a1 +0(1))(1gn/18187) oy epies per round.

Corollary 4 Any string of length n on an alphabet
of size a can be determined using lgn rounds of n®
queries per round.

4 Reconstruction
Rounds

The results in the previous sections demonstrate
that it is possible to reconstruct strings from sub-
strings in few rounds, but at a cost of an exponential
number of queries per round. Practical implementa-
tion of interactive SBH forbids such extravagance —

using Polylog



the largest currently realized sequencing chip contains
only 65,384 oligonucleotides. We seek to reconstruct
long sequences with chips of capacity on this order of
magnitude.

In this section, we consider strategies which use a
polylogarithmic number of rounds, but a low-order
polynomial number of queries per round. Our algo-
rithms are based on the following observations:

Lemma 10 A string S of length n contains < n—I+1
different substrings of length .

Proof: Any particular l-substring has a unique first
starting position in S, since no two distinct I-strings
can begin at the same position in S. The result follows
since there are only n—I1+1 possible starting positions
inS. 1

Lemma 11 Given the set of all distinct l-substrings
of S, |S| = n, one round of (n —1+1)? queries suffice
to find all distinct 2l-substrings of S.

Proof: Any 2l-substring of S can be formed by con-
catenating two [-substrings of S. By Lemma 10, there
are only a linear number of l-substrings. i

Lemma 11 immediately gives an algorithm for re-
constructing strings in [lgn] rounds of n? queries,
by starting with one character queries and repeatedly
doubling. This strategy may be seen as wasteful, how-
ever, since some of the n? concatenations may con-
tain l-strings which are not l-substrings of S. These
prospective queries can be eliminated without effect-
ing the accuracy of the algorithm.

Theorem 12 O(lgn) rounds of n%/lgn substring
queries per round suffice to reconstruct any string of
length n on an alphabet of size a < n.

Proof: We use the previously described doubling
strategy, where we ask queries concatenating two I-
substrings iff all ! distinct l-substrings of the length
2l queries are in fact substrings of S. Thus the al-
gorithm proceeds in lgn meta-rounds, where the ith
meta-round consists of m; queries surviving from at
most n — 28 — 1 candidates. If we are restricted to
rounds of n%/lgn queries, the total number of rounds
in this strategy is given by

Ign

R = [mi/(n*/1gn)]

We analyze the complexity of R by partitioning all
queries asked into two sets, those queries which prove
to be substrings of S (ie. return ‘true’ to the query)
and those queries which prove not to be substrings of
S. By Lemma 10, at most n queries per round can be
substrings of S, for a total of at most nlogn queries
in the first set.

A no-query asked in round i corresponds to the con-

catenation @y of two 2¢~!-substrings of S, where =

ends at position p(z) in S, y begins at position p(y)
in S, and p(z) # p(y). In no subsequent round, will a
query be asked concatenating a string ending in p(z)
with a string beginning in p(y), because such a query
will contain #y, which is known not to be a substring
of S. Thus at most n? queries will prove to be no-
queries, and

Ign
Zmi =n?+nlogn

i=1

Subject to this contraint, R is maximized at 2lgmn,
giving the result. |

Theorem 12 gets us to a tradeoff approaching prac-
ticality, but n2/logn queries per round still appears
too large to sequence long pieces of DNA. For n >
1000, we exceed the capacity of the largest sequencing
chip constructed to date. Below, we consider efficient
strategies using a linear number of queries per round.

Lemma 13 Consider a set U of m strings on alphabet
¥, |2| = «, where each string begins with the same
substring s. There exists a string s’ which is contained
in at least m/(2a+1) and at most 2ma/(2a+1) strings
of U.

Proof: By definition, s is a prefix of each string in U.
We will construct s’ one character at a time, extend-
ing it by the character ¢ € ¥ such that cs’ or s'cis a
substring of the largest number of strings in U. Since
there are only 2« possibilities, by the pigeonhole prin-
ciple the most popular character/position pair will re-
duce the cardinality of U by a factor of at most 1/2a.
We stop extending s’ when the number of remaining
strings lies between m/(2a + 1) and 2ma/(2a+ 1), as
it must eventually do. |

Lemma 14 Given the set of all distinct l-substrings
of S, |S| = m, O(log(1+a/a) n) rounds of n queries
suffice to find all distinct 21-substrings of S.

Proof: We construct the set of < n? concatenation
strings 2y, and distribute them into < n piles, where
pile p(2) consists of all concatenation strings sharing
same the [-substring .

For each pile, we use Lemma 13 to identify a string
q1 which which partitions the pile into two smaller
but roughly equal-sized piles, p1,(%) containing ¢, and
Pin(2) not containing gq;.

Applying Lemma 13 to each of these piles yields a
total of two more query strings (g2 for p1,(2) and g3 for
p1n(2)) which partitions p(z) into four roughly equal-
size piles. There are eight possible outcomes to the
set of queries g1, q2, and g3. If g; returns false, all of
the candidates in pile p1,(2) can be eliminated, as all
of these contain q; where S does not. This test is not
symmetrical, however. If q; returns true, we cannot
eliminate the candidates of p1, (%), because all we have
proven is that S must contain ¢; somewhere but this



does not preclude it from containing substrings in pile
pln(z)

If either of queries gy or g3 return false, all the can-
didates in at least one subpile can be eliminated, re-
ducing the size of the original pile by a constant frac-
tion. All three queries return true only if there exist
at least two distinct substrings in S beginning with =,
with one in p1y(2) and another in pi,(z).

Thus we have shown that after three queries per
pile, each pile is either reduced by a constant fraction
or split into roughly equal subpiles. Each subpile is
defined by a substring starting from a unique position
in S, so there can never be more than n active subpiles.
Thus in O(lgn) rounds of n queries per round, each
pile can be can be reduced to at most one string per
pile, each corresponding to a distinct 2l-substring of
S. Further, each of the 2l-substrings must represented
by a pile if the given set of l-substrings was indeed
complete. |

Performing the lgn meta-round doubling strategy
of Theorem 12 with the pruning implementation of
Lemma 14 gives:

Theorem 15 O(lgn - 10g(1 1 q)/q) ) Tounds of n sub-
string queries per round suffice to reconstruct a string

S of length n

5 Probabalistic Analysis

Throughout this paper we have been concerned
with worst-case results. In this chapter, we consider
the expected number of rounds to determine a ran-
dom n-string when we are allowed to make n queries
per round. We present a simple probabilistic analy-
sis that O(lg n) rounds suffice for random strings with
high probability.

The key issue in this kind of analysis is the prob-
ability that an arbitrary Il-string is a substring of a
random n-string. Because of clustering effects for low-
period strings, (for example, the string 0* is likely to
occur more than once in a binary string if it occurs
at all) the probability that a given string s occurs
in a random n-string is a function of s, not just the
length of s. Guibas and Odlyzko [5] and Wilf [16] use
generating function methods to count the number of
n-strings containing a substring s. However, simple
counting arguments show that the probability goes to
zero for I-strings where I > (1 + €)log, n and to one
for I < (1 — €)log, n.

Theorem 16 Let S be a random n-string on an al-
phabet of size a. With a probability of 1 —1/n¢, S can
be determined using O(o - €log, n) rounds of n queries
per round.

Proof: We will use a three-phase strategy to deter-
mine S. First, we use one round of n queries to imple-
ment the classical sequencing chip C(|log, n]), thus
determining all < n distinct (log, n)-substrings of S.
Second, we will use a-elog, n rounds to ‘grow’ each of
these strings to length I = (!1—}—6) log,, n using the tech-
nique of Lemma 8. Finally, we perform the doubling

strategy of Lemma 12 to complete the determination
of S, starting from the set of I-substrings.

The remaining issue is to analyze the number of
questions asked in the first round of the third phase.
Since O(n) of the concatenations correspond to actual
2l-substrings of S, all of these questions must be asked,
plus any of the O(n?) ‘false’ questions which happen
to have all I-substrings occur in S.

Suppose we just refrain from asking the ‘false’ ques-
tions 2y whose central I-substring s is not in S. There
are three different cases where s is in X but zy is not
— (1) the 1/2 characters after # form s with #, (2) the
1/2 characters before y form s with y, or (3) s occurs
elsewhere in S, not flanked by # or y. Cases (1) and

(2) each occur with probability a'/?, while case (3)

occurs with probability of. Thus the expected num-
ber of ‘false’ questions to survive to the first doubling

is 2n2/n(179) which is sublinear for e > 1. Thus an
expected O(n) questions need to be asked in the first
doubling round, which can simulated using a constant
number of rounds of n questions. Further, the ex-
pected number of false questions decreases in subse-
quent doubling rounds, so O(lgn) rounds of n ques-
tions suffices for this last stage. I

In fact, it is obvious that fewer rounds on average
should suffice, since the concatenation of two I-strings
should go unasked if any of its l-substrings is not in
S, instead of just the middle one. The lack of inde-
pendence makes the analysis of this difficult, however,
our simulation results in the appendix shows that the
improvement is considerable.

6 Conclusions
We conclude with a list of open problems:

e Give improve our upper bounds or prove interest-
ing lower bounds on capacity for the cases of few
rounds. We have presented tight lower bounds
for the cases of one round and one question per
round, but nothing interesting in between.

e Generalize these results to sequencing multiple
target strings, ie. where we are simultaneously
sequencing many strings. This approach is appli-
cable to Crkvenjakov and Drmanac’s target down
approach to sequencing by hybridization [3, 11],
which makes one query per round but achieves
parallelism through multiple targets.

e Generalize these results for the case of positive
and negative errors.

e Design more efficient sequencing chips (in the
average case), and reconstruction algorithms for
them.

e Does our interactive model have a practical lab-
oratory implementation? The issue is not one
of feasibility, but of cost, since either the pho-
tolithography methods of [4] or the primer walk-
ing technique of [7] can be used to realize it, albeit
in an expensive manner.
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Appendix: Simulation Results

We implemented two different algorithms for inter-
active SBH, and experimented with them on real and
simulated DNA. For consistency, we performed n sub-
string queries in each simulated round, where n is the
length of the string to be sequenced. To calibrate for
smaller size chips, observe that c-k rounds suffice using
a chip of size n/c if k rounds suffice for a chip of size
n. To calibrate for larger size chips, observe that the
number of rounds can only decrease with increasing
chip size.

The algorithms we implemented are:

e The Doubling Algorithm — This is a direct im-
plementation of the worst-case O(lg n) round al-
gorithm of Theorem 12. Given the set of all
l-substrings of the unknown n-string S, we ask
all 2/-length queries formed by concatenating two
substrings together, provided all the I-substrings
of the prospective query are l-substrings of S. If
there are M; queries in the ith meta-round which
survive this test, they are asked in [M;/n] rounds
of n. In our experiment, the first round starts
all questions of length one, and no walking steps
(as recommended in the probabilistic algorithm
of Theorem 16) were performed.

e The Adaptive Length Algorithm — This algorithm
is an version of the expected O(lgn) round algo-
rithm of Theorem 16 which has been enhanced in
two ways. First, as in the previous algorithm, a
query is pruned unless all the l-substrings of the
prospective query are l-substrings of S. Second,
and more importantly, instead of always extend-
ing the query length by one each round in the
critical region, we find the longest I’ such that at
most ¢-n length I’ queries are consistent with the
set of l-substrings of S. Each such meta-round is
simulated by at most ¢ rounds of n queries, except
for the special case where I’ = I+ 1, and a rounds
may be required. Note that I’ may grow very
rapidly. For example, although our first stage
asks only length one questions, the second stage
queries are typically 1g, » in length.

Certain details are necessary for an efficient im-
plementation of the adaptive length algorithm for
long strings. We find that ¢ = 2 minimizes the
number of rounds for both & = 2 and a = 4.
Also, we use a one-sided binary search to search
for I' from I, and a linear-space suffix-tree data
structure to quickly establish the necessity of a
prospective query.

We have evaluated these algorithms on both sim-
ulated and real data. In Figures 2 and 3, we show
the number of rounds required for both algorithms
to determine random binary and quadrary strings of
length 2¢, for 2 < i < 16. For each size and algo-
rithm, ten random strings were ‘sequenced’. It is clear
that the number of rounds required for the adaptive-
length algorithm is growing eztremely slowly, perhaps
O(lglgn). The number of rounds is essentially a small



Sequence Length | Rnds Queries
Human alpha globin 12,847 12 125,546
Human beta globin 18,060 11 167,722
Chicken collagen 21,180 9 153,836
HIV 9,718 11 83,954
Bacteriophage lambda 48,502 11 386,218
Mouse mitochondrion 16,295 10 120,030
Rat MHC gene 25,759 11 235,652
Rabies virus 11,928 11 99,167
Human rhinovirus type 14 7,212 9 52,634
Human Ribosomal DNA 42,999 16 573,014
Simian Virus 40 5,243 11 48,003
Drosophila white locus 14,245 10 113,202

Table 2: Performance of The Adaptive Algorithm on
GenBank Sequences.

constant for imaginable values of n, which bodes well
for the potential of interactive SBH.

The number of rounds used by the doubling al-
gorithm demonstrates a startling degree of non-
monotonicity, ie. longer strings can require substan-
tially fewer rounds to sequence. This cycling depends
upon the value of A = |lg, n| —lg, n, as can be il-
lustrated by the difference in periods for binary and
quadrary alphabets. Since almost all a!8=™ (lg_ n)-
strings are likely to occur as substrings of S, a large
fraction of the O(n?) possible concatenations will sur-
vive (for A = 0) to be asked as queries in the next
round. It is this behavior that the ‘walking’ steps of
Theorem 16 was designed to avoid.

In Table 2, we report on the number of rounds re-
quired to determine actual DNA sequences, as drawn
from GenBank. The number of rounds required for ac-
tual DNA sequences seems to be slightly larger than
for random data, presumably because of longer repeat
sequences in DNA. However, a dozen rounds suffice to
sequence all but one of the DNA sequences in our test,
still very modest considering the small sizes of the se-
quencing chips required. The total number of queries
given in Table 2 is less than the number of rounds
times the maximum number of questions allowed per
round because not all rounds are completely filled.

In fact, the total number of questions over the set of
rounds is sufficiently small to justify using these algo-
rithms for the design of customized sequencing chips,
which seek to identify mutations in specific genes for
diagnostic purposes. By making a chip which is the
union of all of the queries made over all rounds for
a specific sequence, we are guaranteed that any mu-
tation will be detected, since if all questions are an-
swered identically to the original sequence, the test
sequence must be identical to the original. Further,

we would expect to be able to identify the exact mu-
tation in many cases, from the sequence of differences
in the answers.
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Figure 2: The performance of both algorithms on bi-
nary alphabets.
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Figure 3: The performance of both algorithms on 4-
letter alphabets.



