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BLAT—The BLAST-Like Alignment Tool

W. James Kent

Department of Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz,

Santa Cruz, California 95064, USA

Analyzing vertebrate genomes requires rapid mRNA/DNA and cross-species protein alignments. A new tool,
BLAT, is more accurate and 500 times faster than popular existing tools for mRNA/DNA alighments and 50
times faster for protein alignments at sensitivity settings typically used when comparing vertebrate sequences.
BLAT' s speed stems from an index of all nonoverlapping K-mers in the genome. This index fits inside the RAM
of inexpensive computers, and need only be computed once for each genome assembly. BLAT has several major
stages. It uses the index to find regions in the genome likely to be homologous to the query sequence. It
performs an alignment between homologous regions. It stitches together these aligned regions (often exons) into
larger alignments (typically genes). Finally, BLAT revisits small internal exons possibly missed at the first stage
and adjusts large gap boundaries that have canonical splice sites where feasible. This paper describes how BLAT
was optimized. Effects on speed and sensitivity are explored for various K-mer sizes, mismatch schemes, and
number of required index matches. BLAT is compared with other alignment programs on various test sets and
then used in several genome-wide applications. http://genome.ucsc.edu hosts a web-based BLAT server for the

human genome.

Some might wonder why in the year 2002 the world needs
another sequence alignment tool. The local alignment prob-
lem between two short sequences was solved by the Smith-
Waterman algorithm in 1980 (Smith and Waterman 1981).
The FASTA (Pearson and Lipman 1988) and the BLAST family
of alignment programs including NCBI BLAST (Altschul et al.
1990, 1997), MegaBLAST (Zhang et al. 2000), and WU-BLAST
(Altschul et al. 1990; Gish and States 1993; States and Gish
1994) provide flexible and fast alignments involving large se-
quence databases, and are available free on many web sites.
Sim4 (Florea et al. 1998) does a fine job of cDNA alignment.
The saM program (Karplus et al. 1998) and PSI-BLAST
(Altschul et al. 1997) slowly but surely find remote homologs.
Gotoh’s many algorithms robustly deal with gaps (Gotoh
1990, 2000). ssaHA (Ning et al. 2001) maps sequence reads to
the genome with blazing efficiency.

In the process of assembling and annotating the human
genome, [ was faced with two very large-scale alignment prob-
lems: aligning three million ESTs and aligning 13 million
mouse whole-genome random reads against the human ge-
nome. These alignments needed to be done in less than two
weeks’ time on a moderate-sized (90 CPU) Linux cluster in
order to have time to process an updated genome every
month or two. To achieve this I developed a very-high-speed
mRNA/DNA and translated protein alignment algorithm.

The new algorithm is called BLAT, which is short for
“BLAST-like alignment tool.” BLAT is similar in many ways to
BLAST. The program rapidly scans for relatively short matches
(hits), and extends these into high-scoring pairs (HSPs). How-
ever, BLAT differs from BLAST in some significant ways.
Where BLAST builds an index of the query sequence and then
scans linearly through the database, BLAT builds an index of
the database and then scans linearly through the query se-
quence. Where BLAST triggers an extension when one or two
hits occur in proximity to each other, BLAT can trigger exten-
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sions on any number of perfect or near-perfect hits. Where
BLAST returns each area of homology between two sequences
as separate alignments, BLAT stitches them together into a
larger alignment. BLAT has special code to handle introns in
RNA/DNA alignments. Therefore, whereas BLAST delivers a
list of exons sorted by exon size, with alignments extending
slightly beyond the edge of each exon, BLAT effectively “un-
splices” mRNA onto the genome—giving a single alignment
that uses each base of the mRNA only once, and which cor-
rectly positions splice sites.

BLAT is available in several forms. Since building an in-
dex of the whole genome is a relatively slow procedure, a
BLAT server is available which builds the index and keeps it in
memory. A BLAT client can then query the index through the
server. The client/server version is especially suitable for in-
teractive applications, and is available via a web interface at
http://genome.ucsc.edu. A stand-alone BLAT is also available,
which is more suitable for batch runs on one or more CPUs.
Both the client/server and the stand-alone can do compari-
sons at the nucleotide, protein, or translated nucleotide level.

RESULTS

BLAT is currently used in three major applications in conjunc-
tion with http://genome.ucsc.edu. BLAT is used to produce
the human EST and mRNA alignments. The human EST align-
ments compared 1.75 X 10° bases in 3.73 X 10° ESTs against
2.88 x 10? bases of human DNA and took 220 CPU hours on
a Linux farm of 800 MhZ Pentium IIIs. BLAT was used in
translated mode to align a 2.5X coverage unassembled
whole-genome shotgun of the mouse versus the masked hu-
man genome. This involved 7.51 X 10? bases in 1.33 X 107
reads and took 16,300 CPU hours. The client/server version of
BLAT is used to power untranslated and translated interactive
searches on http://genome.ucsc.edu. Researchers all over the
world use BLAT to perform thousands of interactive sequence
searches per day. The nucleotide server has sustained over
500,000 search requests per day from program-driven queries.
We do ask those researchers who are doing more than a few
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thousand program-driven queries to obtain a copy of BLAT to
use on their own servers. The nucleotide server is not as effi-
cient as the stand-alone program, since to save memory it
does not keep the genome in memory, only the index. The
index uses approximately 1 gigabyte on unmasked DNA in
untranslated mode, and approximately 2.5 gigabytes on
masked DNA in translated mode. The translated mode server
by default is less sensitive than the default stand-alone set-
tings. It requires three perfect amino acid 4-mers to trigger an
alignment. The untranslated server usually responds to a
1000-base cDNA query in less than a second. The translated
server usually responds to a 400-amino acid protein query in
<5 sec.

Evaluating mRNA/DNA Alignments

As a test of BLAT, I remapped 713 mRNAs corresponding to
genes that the Sanger Centre has annotated on chromosome
22 (Dunham et al. 1999) back to chromosome 22 with BLAT
and with sim4 (Florea 1998). When BLAT produced multiple
alignments for an mRNA, only the highest scoring alignment
was kept. In 99.99% of the annotated bases, the BLAT align-
ment agreed with the Sanger annotations. There were 107
bases in 10 genes where there was disagreement. In five of the
10 genes, the disagreement was only in the placement of non-
standard splice sites. In two cases, BLAT did not find small
(<32-base) initial exons. In one case, an exon of six bases was
present and aligning fully, but in a different place than an-
notated (where it also aligned fully, but with better flanking
splice sites). In one case, BLAT positioned an intron to con-
form with the consensus sequence on the wrong strand. That
is, the gap corresponding to the intron was positioned to have
CT/AC rather than GT/AG ends. The final case was a 38-base
sequence that BLAT was unable to place because the middle
contained some degenerate sequence. The BLAT alignments
were done at the default settings and took 26 sec.

The sim4 alignments of the same data took 17,468 sec
(almost 5 h). They agreed with the Sanger annotations in
99.66% of the bases. There were disagreements between the
Sim4 alignments and the Sanger annotations from various
causes in 52 of the genes. Most of these disagreements were
small.

Evaluating Mouse/Human Translated Alignments
Though the translated modes of BLAT are relatively new, they
are quick and effective. The translated mode of BLAT was in-
spired by the Exofish research at Genoscope (Roest Crollius et
al. 2000). Exofish showed that a TBLASTX run using an iden-
tity matrix (where matches were weighted +15 and mis-
matches —12 for all amino acids) and a word size of 5 was
quite effective in aligning coding regions conserved between
Homo sapiens and Tetraodon nigroviridis. For human and
mouse it has been shown that gapless alignments are in many
ways preferable to gapped alignments for detecting coding
regions (Wiehe et al. 2001). Table 1 shows the timings of BLAT
and WU-TBLASTX run on a modest-sized data set at gapless
Exofish-like settings. BLAT runs much faster, making it fea-
sible to compare vertebrate genomes quickly enough to keep
up with the vast output of today’s sequencing centers.
Pankaj Agarwal provided a WU-TBLASTX alignment of 13
million mouse genomic reads versus human chromosome 22
run under a gapless setting that should theoretically be some-
what more sensitive than the matrix used for the Exofish set-

Table 1. Timing of BLAT vs. WU-TBLASTX on a Data Set of
1000 Mouse Reads and a RepeatMasked Human
Chromosome 22

Method K N Matrix Time
WU-TBLASTX 5 1 +15/—-12 2736 s
WU-TBLASTX 5 1 BLOSUMG62 2714 s
BLAT 5 1 +2/—1 61s
BLAT 4 2 +2/—1 37s

The first WU-TBLASTX run was performed using the settings used
in Exofish. The second WU-TBLASTX run was performed using the
settings B = 9000 V = 9000 hspmax = 4 topcomboN =1 W =5 E
=0.01 Z = 3000000000 nogaps filter = xnu + seg. The K column
indicates the size of the perfectly matching hit that serves as a
seed for an alignment. The N column indicates how many hits in
a gapless 100-amino acid window were required to trigger a de-
tailed alignment. The Matrix column describes the match/
mismatch scores or the substitution score matrix used.

tings because of the use of the BLOSUM62 matrix (P. Agarwal,
pers. comm.). Table 2 shows a comparison between this align-
ment and a translated BLAT alignment done at the indicated
setting. The results were quite comparable in sensitivity.

Other Usage Information

BLAT can also be used in translated mode to align proteins or
mRNA from one species against genomic DNA of another spe-
cies. In translated mRNA/translated DNA mode, BLAT has to
align only one strand of the query sequence, speeding it up by
a factor of two. In this mode it also becomes more tolerant of
intron-induced gaps. BLAT can do protein-protein align-
ments as well, but it is not likely to be the tool of choice for
these. The protein databases are still small enough that
BLASTP can handle them easily, and BLASTP is more sensitive
than BLAT.

BLAT can handle very long database sequences effi-
ciently. It is more efficient at short query sequences than long
query sequences. It is not recommended for query sequences
longer than 200,000 bases. It is not necessary to mask the
DNA for untranslated BLAT searches. Translated searches gen-

Table 2. Sensitivity of Wu-TBLASTX and BLAT Applied to
13 Million Mouse Shotgun Reads and Human
Chromosome 22

% RefSeq % RefSeq
Method % Chr 22 bases Enrichment exons
WU-TBLASTX 2.67% 81.7% 31x 84.5%
BLAT 2.89% 80.8% 28x 86.7%

The “% Chr22" column shows the percentage of chromosome 22
covered by the alignments (genomic density). The next column is
the percentage of bases inside of human RefSeq coding sequences
covered by the alignments (RefSeq coding density). “Enrichment”
is the ratio of the RefSeq coding density compared to genomic
density. Higher levels of enrichment indicate more specificity at
the base level. The last column shows the percentage of RefSeq
coding exons where any part of the exon is covered by an align-
ment. WU-TBLASTX was run with the parameters described in the
second row of Table 1. BLAT was run with using a pair-of-4-mers
seed and a score cut off of 30. At these settings, BLAT touches
slightly more exons, but WU-TBLASTX covers slightly more bases
in exons.
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erally produce much quicker, cleaner results if the sequence is
masked for repeats and low complexity sequence.

METHODS
Algorithm

All fast alignment programs that I am aware of break the
alignment problem into two parts. Initially in a “search
stage,” the program detects regions of the two sequences
which are likely to be homologous. The program then in an
“alignment stage” examines these regions in more detail and
produces alignments for the regions which are indeed ho-
mologous according to some criteria. The goal of the search
stage is to detect the vast majority of homologous regions
while reducing the amount of sequence that is passed to the
alignment stage.

Searching With Single Perfect Matches

A simple and reasonably effective search stage is to look for
subsequences of a certain size, k, which are shared by the
query sequence and the database. In many practical imple-
mentations of this search, every K-mer in the query is com-
pared against all nonoverlapping K-mers in the database. Let’s
examine the number of homologous regions that are missed,
and the number of nonhomologous regions that are passed to
the alignment stage using these criteria. First, we’ll need some
definitions:

K: The K-mer size. Typically this is 8-16 for nucleotide
comparisons and 3-7 for amino acid comparisons.

M: The match ratio between homologous areas. This
would be typically about 98% for cDNA/genomic alignments
within the same species, about 89% for protein alignments
between human and mouse.

H: The size of a homologous area. For a human exon
this is typically 50-200 bases.

G: The size of the database—3 billion bases for the hu-
man genome.

Q: The size of the query sequence.

A: The alphabet size; 20 for amino acids, 4 for nucleo-
tides.

Assuming that each letter is independent of the previous
letter, the probability that a specific K-mer in a homologous
region of the database matches perfectly the corresponding

It is convenient to introduce a term that counts the number of
nonoverlapping K-mers in the homologous region:

T = floor (H/K) (2)

The probability that at least one nonoverlapping K-mer in the
homologous region matches perfectly with the corresponding
K-mer in the query is:

P=1-(1-p)'=1-1-M9" A3)

The number of nonoverlapping K-mers that are expected to
match by chance, assuming that all letters are equally likely to
occur is:

F=(Q-K+1)*(G/K)* (1/A)K (4)

Tables 3 and 4 show P and F values for various levels of se-
quence identity and K-mer sizes. For EST alignments we might
want the search phase to find at least 99% of sequences that
have 5% or less sequencing noise. Looking at Table 3, to
achieve this level of sensitivity using this simple search
method, we would need to choose a K of 14 or less. A K of 14
results in 399 regions passed on to the alignment phase by
chance alone. Any smaller K would pass significantly more.
Mouse and human sequences average 89% identity at the
amino acid level (Makalowski and Boguski 1998). Looking at
Table 4, to compare a translated mouse read and find at least
99% of the sequences at this level of identity we would need
aKof 5 or less, which would result in 62,625 sequences passed
on to the alignment stage. Depending on the cost of the align-
ment stage, these simple search criteria may or may not be
suitable. Comparing mouse and human coding sequences at
the nucleotide level, where there is on average 86% base iden-
tity (Makalowski and Boguski 1998), requires us to reduce our
K to 7 to find at least 99% of the sequences. This results in
13,078,962 regions passed to the alignment stage, which
would probably not be practical.

Searching With Single Almost Perfect Matches

What if instead of requiring perfect matches with a K-mer to
trigger an alignment, we allow almost perfect matches, that is,
hits where one letter may mismatch? The probability that a
nonoverlapping K-mer in a homologous region of the data-
base matches almost perfectly the corresponding K-mer in the

K-mer in the query is simply: query is:
py=M" 1 pr=K*M“I*(1-M)+M" ®)
Table 3. Sensitivity and Specificity of Single Perfect Nucleotide K-mer Matches as a Search Criterion
7 8 9 10 11 12 13 14
A. 81% 0.974 0.915 0.833 0.726 0.607 0.486 0.373 0.314
83% 0.988 0.953 0.897 0.815 0.711 0.595 0.478 0.415
85% 0.996 0.978 0.945 0.888 0.808 0.707 0.594 0.532
87% 0.999 0.992 0.975 0.942 0.888 0.811 0.714 0.659
89% 1.000 0.998 0.991 0.976 0.946 0.897 0.824 0.782
91% 1.000 1.000 0.998 0.993 0.981 0.956 0.912 0.886
93% 1.000 1.000 1.000 0.999 0.995 0.987 0.968 0.957
95% 1.000 1.000 1.000 1.000 0.999 0.998 0.994 0.991
97% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
B. K 7 8 9 10 11 12 13 14
F 1.3e+07 2.9e+06 635783 143051 32512 7451 1719 399

(A) Columns are for K sizes of 7-14. Rows represent various percentage identities between the homologous sequences. The table entries show
the fraction of homologies detected as calculated from equation 3 assuming a homologous region of 100 bases. The larger the value of K, the

fewer homologies are detected.
(B) K represents the size of the perfect match. F shows how many perfect matches of this size expected to occur by chance according to
equation 4 in a genome of 3 billion bases using a query of 500 bases.
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Table 4. Sensitivity and Specificity of Single Perfect Amino
Acid K-mer Matches as a Search Criterion

human homologies at the nucleotide level using this tech-
nique. A K size of 12 detects over 99% of the mouse homolo-
gies, and requires checking 275,671 alignments. At the amino
acid level, a K size of 8 has the desired sensitivity and requires

K 3 4 5 6 7 , :
checking only 374 alignments.
A. 71% 0.992 0.904 0.697 0.496 0.317
73% 0996 0931 0.752 0.560  0.374 Searching With Multiple Perfect Matches
75% 0998  0.952 0.803 0.625 0436 Another alternative search method is to require multiple per-
77% 0999 0.969 0.850 0.689  0.503 fect matches that are constrained to be near each other. Con-
792/0 0.999 0.981 0.890 0.752 0.574 sider a situation where the K size is 10 and there are two
3130;" :ggg 8323 83?3 82;(2) 8?;‘2 hits—one starting at position 10 in the query and 1010 in the
850/2 1000  0.997 0970 0.906 0787 database, and another starting at position 30 in the query and
87% 1.000 0.999 0.984 0.942 0.850 1030 in the database. These two hits could easily be part of a
89% 1.000 1.000 0.993 0.968 0.903 region of homology gxtendmg from positions 10-39 in the
91% 1.000 1.000 0.997 0.985 0.945 query.and 1010-1039 in the databage. If we subtracttl the quer};
93% 1.000 1.000 0.999 0.995 0.975 coordinate from t'he database coorghnz}te, we get a “diagonal
coordinate. Consider the search criteria that there must be N
B. K 3 4 5 6 7 perfect matches, each no further than W letters from each
F 420407 1.6e+06 62625 2609 112 other in the target coordinate, and have the same diagonal

(A) Columns are for K sizes of 3-7. Rows represent various per-
centage identities between the homologous sequences. The table
entries show the fraction of homologies detected as calculated
from equation 3 assuming a homologous region of 33 amino
acids. (B) K represents the size of the perfect match. F shows how
many perfect matches of this size are expected to occur by chance
according to equation 4 in a translated genome of 3 billion bases
using a query of 167 amino acids (corresponding to 500 bases).

As with a single perfect hit, the probability that any nonover-
lapping K-mer in the homologous region matches almost per-
fectly with the corresponding K-mer in the query is:

P=1-(1-py" (6)

Whereas the number of K-mers which match almost perfectly
by chance are:

F=(Q-K+1)*(G/K)* (K* (1/A) ! * (1 - (1/A)) + (1/A)S)  (7)

Tables 5 and 6 show P and F for various levels of sequence
identity and K-mer sizes. For the purposes of EST alignments,
a K of 22 or less would pass through over 99% of the truly
homologous regions while on average passing less than one
chance match through to the aligner. With a reasonably fast
alignment stage, it would be feasible to look for mouse/

coordinate (Fig. 1). For N = 1, the probability that a nonover-
lapping K-mer in a homologous region of the database
matches perfectly the corresponding K-mer in the query is
simply as before:

pi=M* ®)

The probability that there are exactly n matches within the
homologous region is

P,=p"*(1-p) ™ *Tl/(n! * (T -n))) 9)

And the probability that there are N or more matches is the
sum:

P=Py+Pyy+...+Pp (10)

The number of sets of N perfect matches that occur by chance
is a little complex to calculate. For N =1 it is easy:

F,=(Q-K+1)*(G/K) * (1/A)X (11

The probability of a second match occuring within W letters
after the first is

S=1-(1- (/AWK (12)

because the second match can occur with any of the W/K
nonoverlapping K-mers in the database within W letters after
the first match. We can extend this reasoning to consider the

Table 5. Sensitivity and Specificity of Single Near-Perfect (One Mismatch Allowed) Nucleotide K-mer Matches as a
Search Criterion
12 13 14 15 16 17 18 19 20 21 22
A. 81% 0.945 0.880 0.831 0.721 0.657 0.526 0.465 0.408 0.356 0.255 0.218
83% 0.975 0.936 0.904 0.820 0.770 0.649  0.591 0.535 0.480  0.361 0.318
85% 0.991 0.971 0.954 0.900 0.865 0.767 0.719  0.669  0.619 0.490  0.445
87% 0.997 0.990 0.983 0.954 0.935 0.867 0.833 0.796 0.757 0.634 0.591
89% 1.000 0.997 0.995 0.984 0.976 0939 0920 0897 0.872 0.775 0.741
91% 1.000 1.000 0.999 0.996 0.994 0.979  0.971 0962 0950 0.890  0.869
93% 1.000 1.000 1.000 0.999 0.999 0.996 0.994 0.991 0.988 0.963 0.954
95% 1.000 1.000 1.000 1.000 1.000 1.000 0999 0999 0999 0994 0.992
97% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
B. K 12 13 14 15 16 17 18 19 20 21 22
F 275671 68775 17163 4284 1070 267 67 17 4.2 1.0 0.3

(A) Columns are for K sizes of 12-22. Rows represent various percentage identities between the homologous sequences. The table entries show
the fraction of homologies detected as calculated by equation 6 assuming a homologous region of 100 bases. (B) K represents the size of the
near-perfect match. F shows how many perfect matches of this size expected to occur by chance according to equation 7 in a genome of 3
billion bases using a query of 500 bases.
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Table 6. Sensitivity and Specificity of Single Near-Perfect (One Mismatch Allowed)

Amino Acid K-mer Matches as a Search Criterion

Selecting Initial Match Criteria

Both single imperfect matches and
multiple perfect matches have a sig-

4 5 6 7 8 9 nificant advantage over single per-
fect matches. They drastically re-
A. 71% 1.000 0.992 0.946 0.823 0.725 0.515 duce the number of alignments
73% 1.000 0.995 0.965 0.867 0.785 0.586 which must be checked to achieve a
75% 1.000 0.998 0.978 0.905 0.840 0.657 given level of sensitivity, as shown
77% 1.000 0.999 0.987 0.935 0.886 0.727  in Tables 9 and 10. The multiple-
79%  1.000 0.999 0.993 0.959 0.924 0.791  perfect match criteria can be modi-
81%  1.000 1.000 0.997 0.976 0.952 0849  fied to allow small insertions and
83% 1.000 1.000 0.999 0.987 0.973 0.897 : i
85%  1.000 1.000 0.999 0.994 0986 0936 gféztlg;lSaﬁgx;ﬁgtﬁa}tfﬂgkt’gogz
87% 1.000 1.000 1.000 0.997 0.994 0.964 clumped if they are near each other
89% 1.000 1.000 1.000 0.999 0.998 0.982 rather than idgntical on the diago-
91% 1.000 1.000 1.000 1.000 0.999 0.993 . . 8
93%  1.000 1.000 1.000 1.000 1.000 0998  nal coordinate, This improves real-
world sensitivity at the expense of
B. K 4 5 6 7 8 9 increasing the number of align-
F 1.26408  6.0E+06 300078 14985 749 37 ments that must be done. Allowing

(A) Columns are for K sizes of 4-9. Rows represent various percentage identities between the
homologous sequences. The table entries show the fraction of homologies detected. (B) K repre-
sents the size of the near-perfect match. F shows how many perfect matches of this size expected
to occur by chance in a translated genome of 3 billion bases using a query of 167 amino acids.

chance that the N'® match is within W letters after the
(N — 1)™ match, which gives the more general relationship

Fy=5*Fy, 13)
which can be solved as
Fy=F, * ™! (14

where Fy represents the number of chance matches of N K-
mers each separated by no more than W from the previous
match.

Tables 7 and 8 show the sensitivity and specificity for N
values of 2 and 3 and various values of other parameters
which approximate cDNA or mouse/human alignments.

i

Query Coordinate

Target Coordinate

Figure 1 A pair of hits and two other hits. The hits a, b, ¢, and d are
all K letters long. Hits d and b have the same diagonal coordinate and
are within W letters of each other. Therefore they would match the
“two perfect K-mer” search criteria.
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a single insertion or deletion in-
creases the alignments by a factor
of three, whereas allowing two
increases the alignments by a fac-
tor of five. In general, two perfect
matches with the appropriate K size
give specificity for a given level of
sensitivity similar to that given by
three or more perfect matches. The near-perfect match crite-
rion overall is similar to the two perfect match criteria. The
near-perfect criterion cannot accommodate insertions or de-
letions, but it has superior performance on finding small re-
gions of homology (Table 11). For finding coding exons in
mouse/human alignments, whichever strategy is used, greater
specificity is seen at the amino acid rather than the nucleotide
level.

Since single-base insertions or deletions are relatively
common artifacts of the sequencing process, nucleotide BLAT
uses the two perfect 11-mer match criteria by default. Table 12
shows actual alignment times for nucleotide BLAT on a col-
lection of ESTs at various settings. For protein matches, the
default criterion is a single perfect 5 for the stand-alone pro-
gram. This is because the extension phase of protein BLAT is
extremely quick in the stand-alone program, so the false posi-
tives generated by this approach have relatively little cost. The
client/server protein BLAT uses three perfect 4-mers by default
because in the client/server version, a portion of the genome
must be loaded from disk for each false positive, a relatively
time-consuming operation. As a result, the client/server pro-
tein BLAT is somewhat less sensitive than the stand-alone ver-
sion.

Clumping Hits and Identifying Homologous Regions

To implement the match criteria, BLAT builds up an index of
nonoverlapping K-mers and their positions in the database.
BLAT excludes K-mers that occur too often from the index, as
well as K-mers containing ambiguity codes and optionally
K-mers that are in lowercase rather than uppercase. BLAT then
looks up each overlapping K-mer of the query sequence in the
index. In this way, BLAT builds a list of “hits” where the query
and the target match. Each hit contains a database position
and a query position. The following algorithm is used to ef-
ficiently clump together multiple hits. The hit list is split into
buckets of 64k each, based on the database position. Each
bucket is sorted on the diagonal (database minus query posi-
tions). Hits that are within the gap limit are bundled together
into proto-clumps. Hits within proto-clumps are then sorted
along the database coordinate and put into real clumps if they
are within the window limit on the database coordinate. To
avoid missed clumps near the 64k bucket boundary, un-
clumped hits and clumps that are within the window limit are
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Table 7. Sensitivity and Specificity of Multiple (2 and 3) Perfect Nucleotide K-mer Matches as a Search Criterion
2,8 2,9 2,10 2,11 2,12 3,8 3,9 3,10 3,11 3,12
A. 81% 0.681 0.508 0.348 0.220 0.129 0.389 0.221 0.112 0.051 0.021
83% 0.790 0.638 0.475 0.326 0.208 0.529 0.339 0.193 0.099 0.045
85% 0.879 0.762 0.615 0.460 0.318 0.676 0.487 0.313 0.180 0.093
87% 0.942 0.866 0.752 0.611 0.461 0.809 0.649 0.470 0.305 0.177
89% 0.978 0.940 0.868 0.761 0.625 0.910 0.801 0.648 0.476 0.314
91% 0.994 0.980 0.947 0.884 0.787 0.969 0.914 0.815 0.673 0.505
93% 0.999 0.996 0.986 0.962 0.912 0.993 0.976 0.933 0.851 0.722
95% 1.000 1.000 0.998 0.993 0.979 0.999 0.997 0.987 0.961 0.902
97% 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.999 0.997 0.987
B. N,K 2,8 2,9 2,10 2,11 2,12 3,8 3,9 3,10 3,11 3,12
F 524 27 1.4 0.1 0.0 0.1 0.0 0.0 0.0 0.0

(A) Columns are for N sizes of 2 and 3 and K sizes of 8-12. Rows represent various percentage identities between the homologous sequences.
The table entries show the fraction of homologies detected as calculated by equation 10. (B) N and K represent the number and size of the
near-perfect matches, respectively. F shows how many perfect clustered matches expected to occur by chance according to equation 14 in a

translated genome of 3 billion bases using a query of 167 amino acids.

tossed into the next bucket for additional clumping opportu-
nities. The sorting algorithm mSort, which is related to
gSort, is used. The bucketing tends to keep N relatively small.

Clumps with less than the minimum number of hits are
discarded, and the rest are used to define regions of the data-
base which are homologous to the query sequence. Clumps
which are within 300 bases or 100 amino acids in the database
are merged together. Five hundred additional bases are added
on each side to form the final homologous region.

Searching for Near Perfect Matches

BLAT has an option to allow one mismatch in a hit. This is
implemented by scanning the index repeatedly for each K-
mer in the query. Every possible K-mer that matches in all but
one position, as well as the K-mer that matches at every po-
sition, is looked up. In all, K*(A — 1) + 1 lookups are required.
For an amino-acid search with K =38, this amounts to 153
lookups. Because a straight index of 8-mers would require 208
index positions or about 100 billion bytes, it is necessary to
switch to a hashing scheme rather than an indexing scheme,
further cutting efficiency. As a consequence, for a given level

of sensitivity, the near-perfect match criterion runs 15X more
slowly than the multiple-perfect match criterion in BLAT
(Table 13). The near-perfect match criterion seems best suited
for programs that hash the query sequence rather than the
database. A query sequence is sufficiently small that each pos-
sible nearly matching K-mer could be hashed, and therefore
the index would not have to be scanned repeatedly.

Alignment Stage

The alignment stage performs a detailed alignment between
the query sequence and the homologous regions. For histori-
cal reasons, the alignment stage for nucleotide and protein
alignments is quite different. Both have limitations, and are
good candidates for future BLAT upgrades. On the other hand,
both are quite useful in their present form for sequences
which are not too divergent.

Nucleotide Alignments

The nucleotide alignment stage is based on a cDNA alignment
program first used in the Intronerator (http://www.cse.

Table 8. Sensitivity and Specificity of Multiple (2 and 3) Perfect Amino Acid K-mer Matches as a Search Criterion
23 2,4 2,5 2,6 2,7 3,3 3,4 3,5 3,6 3,7

A. 71% 0.945 0.643 0.297 0.126 0.044 0.945 0.643 0.297 0.126 0.044
73% 0.965 0.712 0.363 0.167 0.063 0.965 0.712 0.363 0.167 0.063
75% 0.978 0.776 0.436 0.218 0.089 0.978 0.776 0.436 0.218 0.089
77% 0.987 0.833 0.514 0.280 0.123 0.987 0.833 0.514 0.280 0.123
79% 0.993 0.882 0.596 0.353 0.169 0.993 0.882 0.596 0.353 0.169
81% 0.997 0.922 0.678 0.435 0.226 0.997 0.922 0.678 0.435 0.226
83% 0.999 0.952 0.757 0.526 0.298 0.999 0.952 0.757 0.526 0.298
85% 0.999 0.973 0.829 0.622 0.385 0.999 0.973 0.829 0.622 0.385
87% 1.000 0.987 0.889 0.719 0.485 1.000 0.987 0.889 0.719 0.485
89% 1.000 0.995 0.936 0.809 0.596 1.000 0.995 0.936 0.809 0.596
91% 1.000 0.998 0.969 0.886 0.712 1.000 0.998 0.969 0.886 0.712
93% 1.000 1.000 0.988 0.944 0.823 1.000 1.000 0.988 0.944 0.823

B. N,K 23 2,4 2,5 2,6 2,7 33 3,4 3,5 3,6 3,7
F 171875 245 0.4 0.0 0.0 708 0.0 0.0 0.0 0.0

(A) Columns are for N sizes of 2 and 3 and K sizes of 3—7. Rows represent various percentage identities between the homologous sequences.
The table entries show the fraction of homologies detected. (B) N and K represents the number and size of the perfect matches, respectively.
F shows how many perfect clustered matches expected to occur by chance in a translated genome of 3 billion bases using a query of 167 amino
acids.
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Table 9. EST Alignment Choices

K F
1 Perfect 14 399
Near-Perfect 22 0.3
2 Perfect 11 0.1
3 Perfect 9 0.0

Maximum K sizes and number of chance matches passed to the
alignment stage when searching for 100 bases of 95% homology
with at least a 99% chance of detecting the homology. These
values reflect our targets for EST alignments.

ucsc.edu/~Kkent/intronerator) (Kent and Zahler 2000). The al-
gorithm starts by generating a hit list between the query and
the homologous region of the database. Because the homolo-
gous region is much smaller than the database as a whole, the
algorithm looks for relatively small, perfect hits. If a K-mer in
the query matches multiple K-mers in the region of homol-
ogy, the K-mer is extended by one repeatedly until the match
is unique or the K-mer exceeds a certain size. The hits are then
extended as far as possible allowing no mismatches, and over-
lapping hits are merged. The extended hits that follow each
other in both query and database coordinates are then linked
together into an alignment. If there are gaps in the alignment
on both the query and database side, the algorithm recurses to
fill in these gaps. Because the gaps are smaller than the origi-
nal query and database sequences, a smaller k can be used in
generating the hit list. This continues until either the recur-
sion finds no additional hits, or the gap is five bases or less. At
this point, extensions through Ns, extensions that allow one
or two mismatches if followed by multiple matches, and fi-
nally extensions that allow one or two insertions or deletions
(indels) followed by multiple matches are pursued. For mRNA
alignments, it is often the case that there are several equiva-
lent-scoring placements for a large gap in the query sequence.
Generally such gaps correspond to an intron. Such gaps are
slid around to find their best match to the GT/AG consensus
sequence for intron ends.

The nucleotide alignment strategy works well for mRNA
alignments and the type of alignments needed for genomic
assembly. In these cases, the sequence identity is typically
95% or better. The strategy starts to break down when base

Table 10. Mouse/Human Alignment Choices

K F F Translated
1 Perfect-DNA 7 13,078,962
1 Perfect-AA 5 62,625 187,875
Near-perfect-DNA 12 275,671
Near-perfect-AA 8 749 2,247
2 Perfect DNA 6 237,983
2 Perfect AA 4 245 734
3 Perfect DNA 5 109,707
3 Perfect AA 3 708 2,123

Assuming 86% base identity and 89% amino acid identity, this
table shows the maximum K sizes and number of chance matches
passed to the alignment stage when searching for regions of 100
bases (or 33 amino acids) with at least a 99% chance of detecting
the homology. These values reflect our targets for human/mouse
alignments. For translated DNA sequences, the F value is multi-
plied by six to reflect three reading frames on both strands of the
query. Even with this multiplication, the specificity for a given
sensitivity is several orders of magnitude greater in the amino acid
rather than the nucleotide domain.
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identity is below 90%, and is therefore not suitable for most
cross-species alignments.

Protein Alignments

The protein alignment strategy is simpler. The hits from the
search stage are kept and extended into maximally scoring
ungapped alignments (HSPs) using a score function where a
match is worth 2 and a mismatch costs 1. A graph is built with
HSPs as nodes. If HSP A starts before HSP B in both query and
database coordinates, an edge is placed from A to B. The edge
is weighted by the score of B minus a gap penalty based on the
distance between A and B. In the case where A and B overlap,
a “crossover” point is selected which maximizes the sum of
the scores of A up to the crossover and B starting at the cross-
over, and the difference between the full scores and the scores
just up to the crossover is subtracted from the edge score. A
dynamic program then extracts the maximal-scoring align-
ment by traversing this graph. The HSPs in the maximal-
scoring alignment are removed, and if any HSPs are left the
dynamic program is run again.

The major limitation of this protein alignment strategy is
that if there is an indel, part of the alignment will be lost
unless the search stage manages to find both sides of the in-
del. For the translated mouse versus translated human ge-
nome job, which was the major motivation for protein BLAT,
this limitation is not as serious as it would be when searching
for more distant homologs. Indeed in the translated mouse/
translated human case, this limit on indels is actually useful
in some ways as it reduces the amount of pseudogenes which
are found by BLAT more than it reduces the amount of genes
found. Even so, in the future we hope to replace this simplistic
extension phase with a banded (only small gaps allowed)
Smith-Waterman algorithm (Chao et al. 1992).

Stitching and Filling In

It is often the case that the alignment of a gene is scattered
across multiple homologous regions found in the search
phase. These alignments are stitched together using a minor
variation of the algorithm used to stitch together protein
HSPs. For DNA alignments at this stage, the gap penalty is
equal to a constant plus the log of the size of the gap. For
mRNA/genomic alignments, if after stitching there are gaps
left between aligning blocks in both the database and query
sequence, the nucleotide alignment algorithm is called on the
gap to attempt to fill it in. This gives BLAT a chance to find
small internal exons that are further away than 500 bases
from other exons, and which are too small to be found by the
search stage.

Since the sort time is O(N logN), that is, proportional to
N times log N, where N is the number of hits to be sorted, and
the dynamic program time is O(N?) where N is the number of
HSPs, an additional step is necessary to make BLAT efficient
on longer query sequences. Untranslated nucleotide queries
longer than 5000 bases and translated queries longer than
1500 bases are broken into subqueries that have approxi-
mately 250 bases of overlap. Each subquery is aligned as
above, and the resulting alignments are stitched together.
Currently this subdividing and stitching is only available for
the stand-alone BLAT, not the client/server version.

DISCUSSION

As shown above, BLAT is a very effective tool for doing
nucleotide alignments between mRNA and genomic DNA
taken from the same species. It is more accurate and orders of
magnitude faster than Sim4. sim4 in turn is more accurate
and orders of magnitude faster than other published tools
such as est_genome (Mott 1997; Florea et al. 1998). Although
the alignment strategy BLAT uses for nucleotide alignments
becomes less effective below 90% sequence identity, it effi-
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Table 11.

Assuming 86% Nucleotide Identity and 89% Amino Acid Identity

Homology Size (In Nucleotides) vs. Sensitivity for Four Search Criteria as Applied to Mouse/Human Comparisons

20 30 40 50 60 70 80 90 100 110 120 130
A 0.625 0.805 0.881 0.927 0.962 0.977 0.986 0.993 0.995 0.997 0.999 0.999
B 0.000 0.394 0.687 0.851 0.932 0.932 0.970 0.987 0.995 0.998 0.999 0.999
C 0.483 0.733 0.862 0.929 0.963 0.965 0.981 0.990 0.995 0.997 0.999 0.999
D 0.000 0.783 0.783 0.953 0.953 0.953 0.990 0.990 0.998 0.998 1.000 1.000

The median size of a human exon is 120 bases (International Human Genome Sequencing Consortium 2001). A, perfect 5 base amino acid
match; B, two perfect 4-base amino acid matches within 100 amino acids and on diagonal; C, near-perfect 12 nucleotide match; D,

near-perfect 8 amino acid match.

Table 12. Alignment Times in Seconds of 10,000 ESTs
(Average Size 380 Bases) Against Human Genomic Sequence
Using Various K Sizes and N Sizes

K N 2x10° 2x107 2x10®
10 2 3.9 35.6 680.1

10 3 3.2 21.4 348.7
11 2 2.4 8.1 92.4
11 3 23 6.5 61.8
12 2 3.9 7.0 39.9
12 3 3.7 6.4 33.8

The 2 x 10° genomic sequence is ctg12414, which is 2,034,363
bases long and was taken from the December 2000 UCSC human
genome assembly (http://genome.ucsc.edu). The 2 X 107 ge-
nomic sequence is ctg15424 and is 20,341,418 bases long. The 2
X 10® column is chromosome 4 and is 200,175,155 bases long.
The two major components of the run-time are the time it takes to
bin and sort the K-mer hits (clumping is almost instantaneous
after sorting), and the time it takes to extend the clumps into
alignments. The bin/sort time depends on the number of hits,
which is proportional to 4. The bin/sort time is somewhere
between O(n) and O(n log n). The extend time is linear with
respect to the number of clumps.

ciently “unsplices” mRNA, and accommodates the level of
sequence divergence introduced by sequencing error. BLAT is
able to unsplice all the human mRNA in GenBank, including
the ESTs, in less than a day on a 100-CPU computer cluster.
Since the human, mouse, and other large genome projects are
updating sequences at a rapid rate, and GenBank continues to
grow at a rapid rate, rapid alignment is needed to keep ge-
nome annotations in synchrony with improving genome as-
semblies.

BLAT working in translated mode is capable of rapidly
aligning data across vertebrate species without significant
compromise. While TBLASTX can be configured to be more
sensitive than BLAT, at settings commonly used for mammal-
mammal comparisons, BLAT runs approximately 50 times
faster. Even using BLAT, an alignment of public mouse whole-
genome shotgun data took 12 days on our 100-CPU cluster. It
would be difficult to keep the mouse-human homology in-
formation up to date with a slower tool.

High-speed alignment programs have two major
stages—a search stage that uses a heuristic to identify regions
likely to be homologous, and an alignment stage that does
detailed alignments of the previously defined homologous
regions. To get adequate speed when operating at the scale of
whole genomes, the search stage is crucial. An index of some
sort is key to an efficient search stage. BLAT indexes the da-
tabase rather than the query sequence. This more than any-

Table 13. The Relative Sensitivity and Specificity of BLAT at Various Settings With and Without a Best-Match Filter

All nonhuman mRNA alignments

K N Near perfect CPU days % genome % RefSeq Enrichment
5 1 no 8.69 0.90% 69% 77x

4 2 no 6.06 0.83% 68% 81x

8 1 yes 95.25 0.86% 69% 80x
Only the best alignment for each mRNA

K N Near perfect CPU days % Genome % RefSeq Enrichment
5 1 no 8.69 0.70% 67% 95x

4 2 no 6.06 0.66% 65% 99x

8 | yes 95.25 0.68% 66% 97x

The human genome (August 2001 freeze UCSC assembly http://genome.ucsc.edu) was aligned against a collection of 86,000 nonhuman
mRNA sequences totaling 123,000,000 bases taken from Genbank. The CPU days were measured on 800 MhZ Pentiums. The percentage
genome column shows what percent of bases in the human genome are part of gapless alignments with the mRNAs. The percentage RefSeq
shows the percentage of coding bases in human RefSeg-defined genes (from the database at http://genome.ucsc.edu) which are part of a
gapless alignment. Enrichment is the ratio of the RefSeq coding density inside of the alignments compared to coding density in the genome
as a whole. Higher levels of enrichment indicate greater specificity. Also shown are the same statistics when only the single best place that a

nonhuman mRNA aligns was considered.
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thing is responsible for the relatively high speed of BLAT com-
pared to Sim4 or TBLASTX. Rather than having to linearly
scan through a database of gigabases of sequence looking for
index matches, BLAT only has to scan through a relatively
short query sequence. The program SsaHA indexes the data-
base in a manner very similar to that of BLAT, and is an ex-
tremely effective tool for aligning genomic regions from the
same organism against each other. Currently SSAHA does not
implement unsplicing logic, and always uses a single perfect
match as a seed.

The challenge to indexing the database is twofold: the
size of the index and the time it takes to generate the index.
Fortunately, computers with several gigabytes of RAM have
become affordable and commonplace in the last few years, so
the size of the index is not the problem it once was. By mak-
ing the index relatively efficient (only four bytes per index
entry vs. eight in the published version of ssana), and only
indexing nonoverlapping words, BLAT is able to index the
human genome at the nucleotide level in 0.9 gigabytes and to
index a RepeatMasker masked, translated human genome in
2.5 gigabytes. The index does take some time to generate: 30
min for a translated index of the human genome. Fortunately
the index is not generated often. In batch mode, BLAT gen-
erates the index once at the start of processing a batch of
typically hundreds of thousands of query sequences. In inter-
active client/server mode, the genome only has to be gener-
ated once for each genome assembly. The typical user simply
pastes in a sequence to a web form, and quickly receives an
alignment in response.

How an index is used is also important to the speed of an
alignment algorithm. Triggering an alignment for each match
to the index is not always the optimal strategy. For a sensitive
search, it is desirable to index relatively small K-mers. How-
ever, small K-mers will return many false positives, potentially
creating a bottleneck in the alignment stage if the alignment
stage is computationally expensive. Requiring multiple
nearby matches or using longer K-mers but tolerating a mis-
match as search criteria both have much greater specificity for
a given level of sensitivity than the criterion of a single perfect
match. BLAT implements a very quick algorithm for finding
multiple nearby perfect matches, which allows the search
stage to be specific enough that the genome itself can be kept
on disk and only the index kept in RAM in memory in the
client/server mode.

The BLAT software in source and executable form is avail-
able without charge for nonprofit, academic, and personal
uses. Nonexclusive commercial licenses are available from the
author. The software can be downloaded from the source and
executable links at http://www.soe.ucsc.edu/~kent.
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