The Fasta and Blast programs

Frédérique Galisson

July 18, 2000

The motivation that has led to the development of the blast and fasta
programs was to be able to compare one sequence against all the sequences
of a database in an reasonable time. The problem was already important
in the 80’s, when databases of sequences were much smaller than they are
now, but computers were slower than now as well. The Dynamic Program-
ming methods for global or local alignments allow one to obtain the optimal
alignment under a given scoring system, in a time that is proportional to the
product of the lengths of the two sequences being compared. Thus, when
they are applied to a whole database, the computation time grows linearly
with the size of the database. With current sequence databases, calculating
a full Dynamic Programming alignment for each sequence of the database is
too slow (except when implemented on specialized parallel hardware).

The programs from the Blast and Fasta families are heuristics that reduce
computation time by sacrificing some sensitivity: they reduce the size of the
problem by selecting the sequences of the database that are thought to share
significant similarity with the query sequence, and by locating the similarity
regions inside the sequences. These selective steps allow to confine the time
expensive sequence alignments methods only to a subset of the database
sequences, and to restrict the search for the best alignment to only sub-
regions of the sequences. In order to be fast, they estimate the similarity
between the sequences in an approximate manner, and thus introduce a risk
of missing and eliminating sequences whose similarity with the query is more
tricky to detect, or to end up with alignments that are sub-optimal. One
defines the sensitivity of a method as its ability to detect all the significant
similarities, and thus to generate as few false negative results as possible.
In an analogous way, one defines the selectivity of a method as its ability to
select only sequences considered as significantly similar, and thus to generate
as few false positives as possible. Sensitivity and selectivity both refer to
the notion of the significance of a result. The biological significance of a
similarity between two sequences is an arbitrary notion that depends on the



biological context in which the search is being performed, and thus it is very
difficult and probably impossible to estimate it directly from the score given
to the comparison. The programs will give us a measure of the statistical
significance of the results, with respect to a random model: a result will
be considered statistically significant if the probability of getting it just by
chance is very low. The scoring systems and algorithms that are being used
are developed with the aim that the searched similarity is a biologically
meaningful similarity, and thus that results that are the most statistically
significant are also those that are the most biologically relevant. In spite of
everything, it is important to keep in mind that a comparison may get a score
that is statistically significant without being of any biological relevance (for
example in the case of “low-complexity” sequences, in which the similarity
is due to compositional biases more than to conserved biological patterns in
the sequences. Even if a compositional bias may be interesting for itself, it
is not a “sequence” similarity per se); conversely, some poorly statistically
significant results may correspond to interesting biological features, the main
difficulty being, of course, to be able to detect them, and being able to
interpret results of low statistical significance.

1 The Fasta algorithm

The algorithm of Fasta ([1]) is made of four steps, the first two being identical
to those of the Fastp program, developed by the same authors in 1985 ([2]),
and grounded on the diagonals method developed in 1983 ([3]). These steps
are illustrated on figure 1.

1.1 Identification of similarity regions

The first step consists of localizing the ten best regions of similarity between
the query sequence and each sequence of the database. The process described
below is applied to each of the database sequences, when compared with the
query sequence: the authors call “k — tuple” a word, or sequence fragment,
of length k; all the k — tuples of the query sequence (obtained by successive
slidings of a window of length k along the sequence) are compared with all
those of the database sequence and the identities between k — tuples are
detected and stored. The method may be represented in a two-dimensional
matrix, with each identity between two k —tuples being represented as a dot.
Each diagonal segment corresponds to an ungapped alignment of the regions
of the two sequences, as a succession of k — tuple matches and mismatches
(the program does not actually build the matrix but uses a more efficient



\,
S
\,
AN
. NI
. N\,

N \
- NI -

AN

N

N

Identify all k-tuple matches

Apply joining procedure

— Initn score

Figure 1:

Fasta algorithm

A3

AN AN
h AN
\

N

AN

N

Re-score the 10 best scoring regions
using a scoring matrix

—~ Initlscore

A_o

Apply limited DP

- Optscore



computational structure known as “lookup table” in order to store all the
pairs of identical k — tuples). Inside diagonals are regions of successive
k — tuple matches and mismatches, that are scored, with the score being
simply a function of the respective numbers of matches and mismatches in
the region. The ten regions containing the higher densities in k& — tuple
matches are selected for the next step.

This step is very important with respect to the sensitivity of the method:
only the regions that are selected at this step will be considered for the next
one, and the selection of the database sequences that will be considered later
will be done by examining only these regions of the sequences. The value
chosen for the k parameter is important: the smaller k is, the greater the
sensitivity, for example, if £ = 1, one will take into account all the matches
between individual amino acids, else, one will consider only stretches of k
successive identities and then be more stringent. The greater k is, the faster
the whole program will be, because less regions will be considered in the next
steps. The choice of k& will then reflects a trade-off between sensitivity and
speed issues. Its also important to notice, that during this step the notion
of similarity between amino acids is not taken into account.

1.2 Re-scoring the ten best regions

In the second step, the regions selected at the first step are re-scored, using a
similarity matrix, and a sub-region whose similarity score is maximum (i.e. it
cannot be increased by shortening or by extending the region) is determined.
The score of the best of the ten regions is called the initl score.

Given that the computation of these similarity scores is done only on
the ten regions selected from the first step (using a density of k — tuples
identities criterium), it may happen that these ten regions are not the ten
most similar between the sequences (e.g. in cases where there are many
conservative substitutions and few identities between the sequences being
compared).

1.3 Selection of the “more similar” sequences

The old Fastp program used this ¢nitl score to rank the sequences of the
database. Fasta attempts when possible to join some of these ten regions. For
the joining process, only the regions having a score above a given threshold
are considered. A combination of compatible regions is scored by summing
the scores of the regions it contains and substracting a penalty for the region
of “junction” (this penalty is analogous to a gap penalty since the region of



“junction” is the same of an unaligned region containing gaps). Fasta uses
a Dynamic Programming optimization algorithm for computing the best
combination, which is kept and whose score is called the initn score ([4]).
All the sequences of the database are processed through steps one to
three and get an initn score. Then, sequences with an initn score greater
than a threshold are kept for the next step, the others are eliminated (with
current implementations only 10% of the sequences do not enter the fourth

step, [5]).

1.4 Alignments of the selected sequences

Each of the selected sequences is aligned with the query sequence, using
an algorithm that is a variation of the Smith-Waterman algorithm: a local
alignment is calculated by Dynamic Programming, but restricting the region
of the matrix that is being explored to only a band centered around the
diagonal region that had got the best initl score (this algorithm is named
"banded SW" and is also illustrated on figure 4C). The score of the calculated
alignment is called the opt score and that is the one that is used to rank the
alignments. Because the Dynamic Programming process is applied only to a
selected band (whose width is a parameter of the program) inside the whole
comparison matrix, this may lead to an alignment that is only sub-optimal.

Conclusion

In 1988 the Fasta algorithm increased by a factor of 10 to 100 the speed
of the similarity searches in sequence databases. This, nevertherless is at
the price of sacrificing some sensitivity when compared to a pure Dynamic
Programming algorithm that guarantees to find the best local alignment.

2 The Blast programs

The family of Blast programs was born in 1990 with the development of
Blast1, which is very fast and dedicated to the search for regions of local
similarities without gaps ([6]). In 1996-1997, two new versions of Blast ap-
peared, that are slightly different from one another. Both differ from Blast1
in that they allow for the insertion of gaps. Both have been called Blast2 by
their respective authors, and we shall distinguish them by using the initials of
the institutions their authors belong to: NCBI-Blast2 and WU-Blast2 (NCBI
is “National Center for Biotechnology Information” and WU is “Washington



University”, both located in the USA). Both Blast2 algorithms are derived
from Blast1.

2.1 Algorithm of Blast1l

There are three distinct steps, that are represented on figure 2.

2.1.1 Preprocessing of the query

As with Fasta, the goal of the first step is to quickly locate ungapped simi-
larity regions between the query sequence and sequences from the database.
Similarly, all the words of length w (so, w — tuples, called "words" by Blast
authors) of the query are compared with those of all the database sequences.
Nevertheless, conversely to what is done with fasta, the similarities at the
level of individual amino acids are taken into account at the first step.

An obvious manner of doing that would be to compare each word of the
query with each word of the database sequences, and calculate the similarity
score for all the pairs of words (by summing the scores of the paired amino
acids that are part of a paired word). Then, one has to decide upon a
threshold such that all the word pairs with a score greater than or equal
to the threshold are considered to be pairs of “similar” words, and one can
obtain all the words in the database that are “similar” to each word of the
query.

Blast uses a more efficient manner to do this, with the result being exactly
the same: all the words of length w formed with the alphabet of the sequences
are generated (for example, with amino acid sequences, if w = 2 there are 400
possible words, and 8000 if w = 3) and each word of the query is compared
with each word of this exhaustive set and a threshold T for the similarity
between words is set. Each position of the query sequence is associated with
a list of words that score more than 7" when compared with the word of the
query starting at this position. The similar words are also called “neighbors”.

2.1.2 Generation of hits

Let D be a sequence of the database, and ) be the query sequence. After
the first step, @ is now represented by lists of “neighbors”, one list at each
position of the query. Comparing @ with D yet consists in looking for
identities between the “neighbors” at each position of ) and the words of
D. So, each position of @ is compared with each word of D, and if one of
the neighbor words at that position of ) is identical to the word of D, a
hit is recorded (see figure 2B). A hit is made with one or several successive



A: For each position p of the query, find thelist or words of length
w scoring morethan T when paired with theword starting at p:

p

. p-word

List of words of length w,
scoring morethan T with
the p-word.

B: For each wordslist, identify all exact matcheswith DB sequences:

p-word wordslist DB sequences

B ——

C: For each word match («hit»), extend ungapped alignment
in both directions. Stop when S decreases by morethan X
from the highest valuereached by S.

e —— B -

| s

Figure 2: Blastl algorithm



(overlapping) pairs of similar words, and characterized by its position in each
of the two sequences. All the possible hits between the query sequence and
sequences from the database are calculated in that way.

2.1.3 Extension of the hits

Every hit that has been generated is now extended, without gaps, in order to
determine whether this hit may be part of a larger segment of similarity. So,
each hit is extended in both directions, and in order to make this extension
step fast enough, an extension is stopped as soon as the score of the extended
hit decreases more than X (the value chosen for X is a parameter of the
program) when compared with the best score that has been reached during
the extension process. One may notice that this manner of searching the
best scoring paired segment containing a hit is an approximative one and
does not guarantee that the resulting similarity segment pair is the best one.
This is because of the “no more than X” drop off requirement.

Every extended segment pair that scores the same or better than S (set
as a parameter of the program) is kept and called an HSP (High scoring
Segment Pair). In a comparison, the best scoring HSP is called the M SP
(Mazimal Segment Pair).

Conclusion

The Blast1 program is thus a heuristic method looking for the best segments
of local similarity without gaps between the query sequence and sequences
from the database. Compared to Fasta, one advantage of Blastl is that it
takes into account the similarities between amino acids in the first selection
step. On another hand, it does not allow for gaps in the similar segments it
is seeking, and this makes it less sensitive than Fasta in some cases.
Historically, the development of Blast programs has paralleled advances
made in our ability to evaluate the statistical significance of local alignments
scores. Indeed, one of the strengths of Blastl is that a theory describing
the distribution of M SP scores has been developed at the same time as the
Blastl algorithm. Under this theory, it is possible to associate the score of
any MSP with a p — value, which is the probability to get at least one
score equal or greater than that of the M SP by chance; i.e. the p — value
is the probability that there exists one or more MSP, obtained from the
comparison of two random sequences (having same length and composition
as the sequences of interest), whose score is equal or greater than the one of
the MSP obtained with the actual sequences (see section 3 for more details).



Blastl ranks the results, according to their p — values. With earlier
versions of Blastl, when there were several ungapped segments of similar-
ity between the query and one sequence of the database, they were treated
independently. Poisson statistics with Blast1.3, then Karlin-Altschul “Sum
statistics” with Blastl.4, were introduced for the joint evaluation of mul-
tiple ungapped local alignements between two sequences. “Sum statistics”
calculates a p — value for the combination of several HSP, corresponding
to the probability of getting several HSP whose sum of scores is equal or
greater than the one of interest, in a comparison of random sequences ([7]).
Because it makes sense in biology that two sequences may share several un-
gapped regions of similarity separated by unrelated sequence segments, the
ability to take into account (through statistics) the joint occurences of sev-
eral HSP between two sequences, increases the sensitivity of the method
towards “biological similarity”.

A few years after Fasta and Blast became to be widely used, it was shown
that even though there was no theory describing the distribution of the scores
of optimal local gapped alignments, empirically and under certain conditions,
this distribution seemed to be the same as the one of optimal local align-
ments without gaps (an eztreme value distribution, see section 3). William
Pearson, Fasta’s author, have shown empirically that the scores obtained
with the Fasta algorithm were also following the same kind of distribution.
Furthermore, the authors of Blastl have developed another program, called
Blast2, allowing to search for gapped local alignments. For some reasons,
two Blast2 programs have been developed that are slightly different.

2.2 NCBI-Blast2

This NCBI-Blast2 program has been developed at NCBI (« National Center
for Biotechnology Information »), and its algorithm has been published in
1997) ([8]). The first two steps, leading to the generation of primary hits are
the same as with Blastl.

The first important difference concerns the selection of the hits that are
going to be extended: the goal of the authors is to generate local gapped
alignments from the computed hits; this requires an additional step (and
time) for calculating the gapped alignments; on the other hand, hits that
could not be joined through ungapped extensions may be part of the same
gapped alignment, and it may not be necessary to extend all of them. In
order to save time, they select fewer hits for further ungapped extension,
using a requirement for a hit to be extended: they require that there be
another hit, on the same diagonal, within a distance smaller than A (a pa-



rameter of the program, which value may be changed by the user). This
process is illustrated on figure 3. Because this new requirement makes the
program be less sensitive (not all the hits will satisfy this new condition),
they suggest the use of a smaller value for the 7' parameter (threshold for
the similarity between words, used at the first step, when generating lists of
“neighbors”), in order to generate more hits at the second step. Of course,
these two parameters, A and T do not influence the sensitivity at the same
level.

Figure 3: The "two-hits" requirement: those hits that are going to trigger
an ungapped extension are labelled with a star

All the hits that fullfill these requirements are selected for an ungapped
extension (like is done at the third step of Blastl). Among the generated
HSP, those that have a score above a threshold will trigger a gapped exten-
sion: they are used as start points for performing dynamic programming local
alignments. The algorithm used for computing these local gapped alignments
is a modification of the Smith-Waterman algorithm: the Dynamic Program-
ming matrix is explored in both directions (see figure 4D) starting from the
middle point of the highest scoring 11 — tuple within the HSP, and the
search for the optimal path is restricted to cells of the matrix such that the
score of the alignment does not drop off more than X, when compared to
the maximal score reached since beginning the extension (the same idea as
in the case of the ungapped extension).

The alignments are ranked by increasing E — values. The E — value

10



Ungapped extension Gapped extension by full DP

N

Gapped extension by «banded DP» Gapped extension by «score-limited DP»

Figure 4: Gapped and ungapped extensions

11



of an alignment having score S is the number of times one expects to find
alignments having score equal to or greater than S in a comparison of random
sequences having the same length and composition as the query and the
database. It is related to the p — value described with Blastl, but perhaps
makes more intuitive sense than a probability value.

2.3 WU-Blast2

Another Blast2 has been developed by Warren Gish from Washington Uni-
versity. WU-blast2 was released in 1996, one year before NCBI-blast2; its
algorithm has never been published and the description that follows takes its
sources from the available documentation and from personal communications
from the author.

The WU-blast2 program proposes several parameters allowing the em-
ulation the different blast versions. Its default behaviour is such that the
three first steps are the same as with Blast1, and in the fourth step, the HSP
having a score greater than a threshold trigger a gapped extension. The al-
gorithm used for the gapped extension is an amalgam of a “banded” (what
Fasta does) and a “score-limited” (like NCBI-Blast2) Dynamic Programming
algorithm (see figures 4C and 4D). If one selects the “nogap” option, this last
step is not performed, and WU-blast2 becomes identical to Blastl. There
is also an option called “hitdist”, that when activated allows to perform the
same “two-hits” requirement as with NCBI-blast2 at the third step. Thus,
combinations of these two options allow to emulate four different blast algo-
rithms.

Another feature of WU-Blast2 is its ability to consider the case of several
local similarity regions between two sequences. If a given database sequence
yields multiple ungapped HSP, the gapped extension routine will be applied
to those of them whose scores exceed the chosen threshold, and may give rise
to reports of multiple gapped alignments. Instances of multiple local align-
ments are then evaluated jointly using Sum statistics ([7]), like is done by
the Blast1 program when there are several HSP scoring above the S thresh-
old. The Sum statistics allow to take into account the simultaneous presence
of several local regions of similarity between two sequences. Fasta reports
only one local alignment per sequence of the database, and when there are
several of them, NCBI-blast2 treats them independently. In the situation
where there are two local similarity regions, separated by a low similarity
region, with NCBI-Blast2 either they will lead to different independent re-
ports (with Fasta only the best one is reported), or they will be included
in the same alignment (when the gapped extension triggered from one of

12



them reaches the other one) but it may be at the price of forcing a mean-
ingless alignment between them. The way WU-Blast2 deals with mutiple
local alignments enables to take into account their simultaneous occurences,
without attempting to align regions of low similarity between them.

Conclusions about the algorithms

If we were using the Smith-Waterman algorithm for comparing one query
sequence against a database, we would end up with a collection of local align-
ments, each of them being the optimal one between the two sequences being
compared. With Fasta, or one of the Blast algorithms, since the optimiza-
tion procedures they use are heuristic ones, the optimality of the alignments
is not guaranteed. So, the score that is given for the comparison of two
sequences using these algorithms may not be the best possible one, and as a
consequence, the order in which the alignments are ranked, directly or not
based on their respective scores, may also not be the “good” one.

Nevertheless, when trying to estimate the significance of the results, we
will make the assumption that these methods succeed in finding the optimal
alignments and scores between the query and the database’s sequences. So,
we will consider that the result of a search against a sequence’s database
gives us the best local similarities relative to the query. Of course, the
notions of “best”, “optimal”, and even “local” depend on the scoring system
that is used to quantify the similarities between biological residues, and
to penalize the introduction of gaps. If this scoring system models some
notions of biological similarity, we may expect the alignments having the
best scores to be the more biologically meaningful. Any biological inference
(like homology) that is done directly and solely from the interpretation of an
alignment score relies on this hypothesis. Given that there are many ways
of considering biologically similarity, it is obvious that there is not one ideal
choice of scoring parameters that will model all the biological viewpoints, if
there is any that will correctly model one.

For these reasons, we will not try to evaluate the biological significance
or relevance of an alignment only from its score. This has to be done with
respect to the biological context of the search, and influenced by external
knowledge. But, what we may want to know is whether or not a given result
(an alignment and its score) is statistically significant. It means being able
to say when two sequence’s fragments have to be considered “similar”. That
is what will be developped in the next section.

13



3 Statistics

The question we want to answer here is: given an alignment having score S,
how strong is the similarity it represents? If “strong” means that we “could
not” have got it by chance in the context of the search, then the question
becomes: what is the probability of chance occurence of an alignment having
a score S or greater when looking for the best alignments in a database of
sequences? Answering this question requires to know the statistical distribu-
tion of the scores in a random model. Whereas very little is known about the
statistical distribution of global optimal alignments scores, the statistics of
local optimal alignments scores is now well understood. Particularly, in the
case of local ungapped optimal alignments, there exists a theory describing
their random distribution.

3.1 statistics of local ungapped alignments

In 1990, Samuel Karlin and Stephen Altschul developped a theory that al-
lows one to calculate analytically the random distribution of optimal local
ungapped alignment scores ([9], [10], [11], [12]). In order to calculate this
distribution, one needs to define a random model of sequences; the one used
here consists of sequences of residues taken independently with background
probabilities p;, p; (1 < ,7 < 20 for proteins), under identical distributions.
These background probabilities are supposed to be the relative frequencies
of the residues in the query and database sequences. The random variable
for which the theory holds is the score S of the optimal local segment of
similarity without gaps calculated from the comparison of two sequences. It
is also called the Mazimal Segment Pair (M SP) between the two sequences
being compared. The aim of the Blast1 algorithm is to find such M SP. One
may notice that applying this theory in the context of a database search is
an approximation where one considers each HSP as an M SP. The score of
an M SP depends on the scoring system that is used, consisting of a set of
similarity scores S; ; which, for the theory to hold, has to fulfill two require-
ments: there must be at least one S;; strictly positive, and the expected
score for a random pair of residues, }=; ; p;p;S;,; has to be negative. Another
requirement is that the lengths (m and n) of the two sequences involved in
the comparison are large.

Under this random model, the random variable S may be shown to follow
an ezrtreme-value distribution ([6], [10], [12]). This allows one to calculate
the p — value of an M SP having score S. It is the probability, under the
random model described above, to get an M SP with a score greater than or

14



equal to S. If the random model fits the reality of an actual database search,

the p — value will be the chance probability of an M SP of score at least .S,

in this context. This p — value may be expressed as a function of S:
p(score > 8) = 1 — exp(—Kmne %)

where m and n and the lengths of the sequences being compared (one con-

siders the database as one big sequence), K is a constant that depends on

the p; and S; j, and A is the unique positive-valued solution for = in

Y pipje”i® = 1.
i’j

So, for a given search, m and n are known, and K and A may be calculated
knowing the parameters of the random model. The F — value, the expected
number of alignments having score at least S may also be calculated as
Kmne 5.

So, in the case of the optimal local alignments without gaps, the Karlin-
Altschul theory gives analytical formulas allowing to estimate the statistical
significance of the scores.

3.2 Local alignments with gaps

The Smith-Waterman, Fasta and Blast2 algorithms calculate local align-
ments with gaps. In this case, there is no theory describing the expected
chance distribution of the scores ([13], [14]). Nevertheless, several empirical
simulations ([10] and [15]) indicate that under some requirements about the
scoring system, these scores seem to follow also an extreme-value distribu-
tion. The problem for calculating the p — value or E — value of a gapped
alignment score is that in the absence of theory, we lack analytical formulas
for calculating the parameters of the distribution (dependent on those of the
random model). In practice these parameters are estimated from empirical
simulations of the random distribution. Simulating a random distribution
may be done by using either artificial random sequences (generated under
the random model), or by using real but unrelated sequences:

e With both Blast2 programs, the statistical parameters are obtained
from pre-computed tables created using Monte Carlo simulations, as
described in [10]. Because these values depend on the scoring system
(scoring matrix and associated gap penalties), only sets of scoring pa-
rameters for which the pre-computation has been done are available
with Blast2 programs. One problem that may arise with this approach

15



is if the query or database sequences have compositions that differ
significantly from those of the random model sequences. Then, the
statistics will loose accuracy.

e Fasta computes specific statistical parameters for each search, taking
into account its specific parameters. The random distribution is sim-
ulated by real sequences from the database, that are considered to be
unrelated with the query sequence ([16]). The advantage of this ap-
proach is that the computation of the statistical parameters is tailored
to the specific query, database and scoring system chosen by the user.
The difficulty is to distinguish between sequences that are related to
the query from those that are not, or said differently, to distinguish
between random and nonrandom similarity.

Discussions about the interpretation of statistical estimates in the context
of a database search and their relationships with biological significance may
be found in [12] and [16].

Acknowledgments

I am grateful to Stephen Altschul, Warren Gish and William Pearson for
their critical reading of the text and their suggestions which improved it. I
also wish to thank Emmanuel Chang for his careful reading and editing of
the manuscript.

References

[1] W.R. Pearson and D.J. Lipman. Improved tools for biological sequence
comparison. Proc. Natl. Acad. Sci. USA, 85:2444-2448, 1988.

[2] D.J. Lipman and W.W.R. Pearson. Rapid and sensitive protein simi-
larity searches. Science, 227:1435-1441, 1985.

[3] W.J. Wilbur and D.J. Lipman. Rapid similarity searches of nucleic acid
and protein data banks. Proc. Natl. Acad. Sci, 80:726-730, 1983.

[4] William R. Pearson. Rapid and sensitive sequence comparison with
fastp and fasta. Methods in Enzymology, 183:63-98, 1990.

[5] William Pearson, personal communication.

16



6]

7]

8]

[14]

[15]

[16]

S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic
local alignment search tool. J. Mol. Biol., 215:403-410, 1990.

Samuel Karlin and Stephen Altschul. Applications and statistics for
multiple high-scoring segments in molecular sequences. Proc. Natl.
Acad. Sci. USA, 90:5873-5877, 1993.

S.F. Altschul, T.L. Madden, A.A. Schiffer, J. Zhang, Z. Zhang,
W. Miller, and D.J. Lipman. Gapped blast and psi-blast: a new genera-
tion of protein database search programs. Nucleic Acids Res., 25:3389—
3402, 1997.

S. Karlin and S.F. Altschul. Methods for assessing the statistical signif-
icance of molecular sequence features by using general scoring schemes.
Proc. Natl. Acad. Sci. USA, 87:2264-2268, 1990.

Stephen Altschul and Warren Gish. Local alignment statistics. Methods
i Enzymology, 266:461-480, 1996.

Stephen F. Altschul. Sequence comparison and alignment. In M.J.
Bishop and C.J. Rawlings, editors, DNA and Protein sequence analysis,
The practical Approach Series, D. Rickwood and B.D. Hames series
editors, chapter 7. IRL Press, 1997.

Stephen Altschul, Mark S. Boguski, Warren Gish, and John C. Woot-
ton. Issues in searching molecular sequence databases. Nature Genetics,
6:119-129, 1994.

Michael S. Waterman and Martin Vingron. Sequence comparison sig-
nificance and poisson approximation. Statistical Science, 9(3):367-381,
1994.

Michael S. Waterman and Martin Vingron. rapid and accurate statisti-
cal estimates of statistical significance for sequence data base searches.
Proc. Natl. Acad. Sci. USA, 91:4625-4628, 1994.

William R. Pearson. Empirical statistical estimates for sequence simi-
larity scores. J. Mol. Biol., 276:71-84, 1998.

William R. Pearson. Flexible sequence similarity searching with the
fastad program package. Methods in Molecular Biology, 1999.

17



