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Abstract

We propose a new method for amorphous bio-compatible computing us-
ing deoxyribozyme logic gates [1] in which oligonucleotides act as enzymes
on other oligonucleotides, yielding oligonucleotide products. Moreover, these
reactions can be controlled by inputs that are also oligonucleotides. We in-
terpret these reactions as logic gates, and the concentrations of chemical
species as signals. Since these reactions arehomogeneous, i.e., they use
oligonucleotides as both inputs and outputs, we can composethem to con-
struct complex logic circuits. Thus, our system for chemical computation
offers functionality similar to conventional electronic circuits with the po-
tential for deployment inside of living cells. Previously,this technology was
demonstrated in closed-system batch reactions, which limited its computa-
tional ability to simple feed-forward circuits. In this work, we go beyond
closed systems, and show how to use thermodynamically open reactors to
build biomolecular circuits with feedback. The behavior ofan open chem-
ical system is determined both by its chemical reaction network and by the
influx and efflux of chemical species. This motivates a changein design pro-
cess from that used with closed systems. Rather than focusing solely on the
stoichiometry of the chemical reactions, we must carefullyexamine their ki-
netics. Systems of differential equations and the theory ofdynamical systems
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become the appropriate tools for designing and analyzing such systems. Us-
ing these tools, we present aninverter. Next, by introducing feedback into the
reaction network, we construct devices with a sense of state. We show how a
combination of analytical approximation techniques and numerical methods
allows us to tune the dynamics of these systems. We demonstrate a flip-flop
which exhibits behavior similar to the RS flip-flop of electronic computation.
It has two states in which the concentration of one oligonucleotide is high
and the other is low or vice versa. We describe how to control the state of
the flip-flop by varying the concentration of the substrates.Moreover, there
are large regions of parameter space in which this behavior is robust, and we
show how to tune the influx rates as a function of the chemical reaction rates
in a way that ensures bistability.

1 Introduction

We use deoxyribozymes (nucleic acid enzymes) as gates to transform input and
substrate signals (molecular concentrations) into product signals and thereby per-
form simple computation. Since the inputs are of the same type as the outputs,
viz. oligonucleotides, gates may, in principle, be connected in complex circuits,
with the output of one gate acting as the input of another. Thus, we may design
chemical systems that perform complex computations from simple boolean primi-
tives in much the same way electronic computers are built from simple logic gates.
These devices could operate without macroscopic intervention in a biological en-
vironment, and the goal of this technology is autonomousin vivo computation for
diagnostic and therapeutic purposes. We have reported gates with a single layer
of logic, and no inter-gate communication [1]. Devices thatfunction as a half-
adder [2] and a tic-tac-toe automaton [3] have been built andtested in the labora-
tory.

These gates have been deployed in a closed reactor, which effectively limits
this technology to one-shot boolean computations. To overcome this limitation,
we explore using this chemistry in an open reactor, in which gates could be re-used
many times and connected in recurrent, rather than feed-forward, circuits. This
adds a level of complexity to the engineering task, but we develop a process that
may be used to engineer these devices. We apply methods of dynamical systems to
construct reaction networks in open reactors that implement rudimentary elements
of digital chemical computation. This allows us to investigate complex reaction
networks that make use of inter-gate communication and feedback.
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2 The Chemical Kinetics of Deoxyribozyme Logic Gates

The four components of our deoxyribozyme system are inputs,gates, substrates,
and products. Under certain input conditions a gate is an active enzyme [1]. The
effect of input molecules on the catalytic activity of the gate defines the logic oper-
ation that the gate performs. A gate requires the presence and/or absence of certain
inputs to be active. When active, the enzymatic gate is a phosphodiesterase: it
catalyzes an oligonucleotide cleavage reaction. A substrate molecule is cleaved
into two product molecules. The product molecules represent the output signal of
the gate. Computations are carried out in solution, where gates communicate by
diffusion of oligonucleotides. Logic signals, true or false, are expressed by high or
low concentrations of specific oligonucleotides. Oligonucleotides transmit infor-
mation by participating in the reactions of multiple gates.The simplest example is
an oligonucleotide that is a product of one gate and an input to another; serving as
a substrate would suffice as well.

The mechanism of a deoxyribozyme gate is as follows. Input molecules bind
to the designated locations on the gate molecules. The binding of an input to a gate
affects the conformation of the gate, which in turn affects catalytic activity. Under
appropriate circumstances, the gate is an active enzyme, inwhich case it binds to
a substrate molecule, cleaves it into two molecules of product, and separates into
two molecules of product and one active gate complex. Activegates continue to
operate as long as there is substrate remaining to be cleaved.

In order to design larger circuits, we must first understand the dynamic behav-
ior of individual logic gates. We set up the experiment as follows. We prepare a
solution with a concentration ofG= 250nM of a specificYES gate (which becomes
active in the presence of input), a certain concentrationI of the matching input, and
a concentrationS= 2500nM of the substrate cleaved by the gate. At 900s intervals
we record the instrumentally measured fluorescence. We repeat the experiment
varyingI , starting withI = Sand repeatedly halving it. The measured fluorescence
level of a molecular species is proportional to its concentration. The specific fluo-
rescences of the product and the substrate have been established separately and are
in a ratio of 8:1. Therefore the increase of total fluorescence is proportional to the
amount of product, which allows us to convert measured fluorescence into product
concentration, shown in Figure 1.

For small values of the input concentrationI , product concentrationP rises
linearly with time, with slope proportional toI . For larger values ofI , the growth
soon reaches a plateau defined by the initial substrate concentration S: when all
of the substrate has been converted to product, the reactionstops. Note also the
saturating behavior: whereas the slope oft 7→ P increases withI for small I , it
remains roughly constant forI > G.
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Figure 1: Measured kinetics of a deoxyribozyme gate for different input concen-
trationsI (nM).

We will model the kinetics of the deoxyribozyme gates as follows. First we
note that the cleavage and separation of substrate molecules is the slowest of the
reactions—it is the rate-limiting process. We will assume that bonding between
gate and input molecules is instantaneous and complete. Thus, the number of active
gates at a given time is a simple calculation depending solely on the number of
gates and inputs.

Cleavage of substrate requires both substrate and an activegate complex. Ex-
periments have shown that the rate of production is proportional to the concentra-
tion of both reactants. Hence, a model for the rate at which product is produced is:
dP
dt = βSGA, whereP is the product concentration,β is the reaction rate constant,
S is the substrate concentration, andGA is the concentration ofactive gates. In
the experiments shown in Figure 1,I (and thusGA) was held constant. Therefore,
the solution is an exponential decay of the substrateS. This model agrees well
with observed measurements in Figure 1, and analysis of the measured data gives a
rough estimate of the reaction rate constantβ = 5·10−7 nM−1s−1. This value will
be used to model the chemical gates in the circuit designs presented herein.

3 The Reactor

Chemical reactors may be divided into closed systems, wherereactants are added
to a solution and the reaction is allowed to proceed toward equilibrium, and open
systems, where reactants are continuously supplied and excess solution is removed.
We explore the benefits and design considerations associated with using our chem-
istry in an open reactor. Previous theoretical work has described circuits created
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from hypothetical enzymatic transistors in open reactors [4]. We expand on this
work by presenting circuit designs based on the chemical technology described
above. Reactions in a closed environment are subject to the Second Law of Ther-
modynamics, which posits that the free energy in a closed system will continuously
decrease and implies that the system will move toward an equilibrium. This does
not rule out interesting behavior, such as oscillations on the way to an equilib-
rium [5], but it implies a finite number of cycles through these oscillations. Thus it
would be impossible to implement a recurrent digital circuit in which gates could
switch on and off an arbitrary number of times.

Instead, we use a thermodynamically open system; material is continuously
supplied and removed, as in a living cell. The circuit may be reused and pro-
duce many outputs over its lifetime, so that it is recurrent rather than feed-forward.
While a long-term goal of this technology is deployment inside of (thermodynam-
ically open) living cells, the first step toward that end is testing and verification in
a laboratory setting. A model open environment is the continuous-flow stirred tank
reactor. It delivers reactants into a reaction chamber, stirred to maintain a uniform
distribution of chemical species. An outflow removes solution from the reactor to
maintain constant volume. The inputs can be varied in terms of their concentrations
in the input solution and the flow rate into the reactor. Both the concentration and
the volumetricinflux of a solution can be varied while still maintaining thesame
total molecularinflux rate. Thus we can manipulate total efflux while maintaining
desired concentrations of chemical species inside the reactor.

The decay rate of the reactor (k) is equal to the efflux rate (E) divided by the
volume (V). As the decay rate is increased, material spends less time inside the
reactor. Because the reactor state changes faster, the circuit speeds up. How-
ever, this increases the amount of chemical species needed to maintain the same
concentrations. In the specific design below, the reactor will have a total efflux of
5·10−8 m3s−1 and a volume of 5·10−4 m3. This results in a decay rate of 10−4 s−1.
While the resulting circuits will operateveryslowly, these values were chosen as
design points corresponding to equipment that can be found in a traditional chem-
istry laboratory.

4 A Simple Inverter

We begin by examining a simple computational device: the digital inverter. It is
built from a single type ofNOT gateG operating in an open reactor. The reactor is
supplied with a constant influx of gate and substrate molecules. In addition, inputI
is supplied to provide an external drive. The output of this inverter is expressed by
the concentration of productPcleaved from substrateS. The behavior of the system
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can be modeled with the following system of four coupled differential equations:

dG
dT

=
Gm

−EG(T)

V
(1)

dI
dT

=
Im

−EI(T)

V
(2)

dP
dT

= βS(T)max(0,G(T)− I(T))−
EP(T)

V
(3)

dS
dt

=
Sm

V
−βS(T)max(0,G(T)− I(T))−

ES(T)

V
(4)

where Im, Gm, andSm are the constant rates ofmolar influx of the respective
chemical species,V is the volume of the reactor,E is the rate of volume efflux,
andβ is the reaction rate constant. The max terms in (3) and (4) come from our
assumption that the binding of input to gate molecule is bothinstantaneous and
complete.

Clearly, this system can function as an inverter. If there are no inputs in the
reactor, all of the gates are active and produce product—this is the high signal. As
input is added gates become inhibited, and the product concentration falls. As the
input concentration reaches the gate concentration, all gates become inhibited and
the product concentration falls to zero—this is the low signal.

To explore the equilibrium behavior of the inverter we first assume that the
input concentration never exceeds the gate concentration;we can then eliminate
the max functions from equations (1)-(4). We can now set the derivatives to zero
and solve forP. This produces the following relation between input concentration
and output (product) concentration:

P =
βSmV(Gm

E − I)

E2 + βVE(Gm

E − I)
=

Sm

E (Gm

E − I)
E

βV + Gm

E − I

Introducing rescaling parametersα = Sm

E , γ = Gm

E , andδ = E
βV allows further sim-

plification. Thus we arrive at the following equation for thestatic transfer curve:

P =
α(γ− I)

δ+(γ− I)

This shows how the output concentrationP depends on the input concentrationI .
Further constraints must be introduced to create an inverter with well-defined

signal levels. First, the concentration corresponding to ahigh logic value is defined
asH. We require thatP = H whenI = 0 andP = 0 whenI = H. These conditions
yield the constraintsγ = H andα = H + δ. Thus, to alter the static transfer curve,
we may vary the parametersδ and α, while maintaining the relationship:α =
H + δ. Figure 2 shows the transfer functions obtained by settingδ to a range of
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Figure 2: The static transfer curve for an inverter constructed from aNOT gate in
an open system with several different values forδ: 1

8, 1
2, and 200. Asδ increases

the transfer curve approaches a straight line from high product and low input to
low product and high input concentrations.

values. Asδ is increased, the curve flattens out and becomes close to linear. Asδ
is decreased the curve becomes more bowed out (i.e., a large derivative).

This transfer curve is far from the sigmoid shape desired in digital computing.
Any noise that moves the input concentration away from its digital value will prop-
agate through to the output, possibly resulting in computational errors. However,
we may construct inverters with differing static characteristics by concatenating
several gates in a cascade. Details of this construction aregiven in [6].

While the static behavior addresses equilibrium characteristics, this analysis
neglects the dynamic behavior of the system. Ultimately, the static transfer char-
acteristic depends on only one ratio, but the dynamic behavior is less restricted
and depends on several variables. However, this solution space is narrowed by the
physical restrictions of our technology. We define a logicalhigh value to be a con-
centration of 250 nM and calculate the rest of the parametersfor the system. Fig-
ure 3 shows the results of numerical integration of the inverter working under such
conditions. The reactor was started with zero concentration of all chemical species.
The propagation delay of the inverter is≈ 7.9·103 s, with atPHL ≈ 12.5·103 s, and
tPLH ≈ 3.2·103 s.

5 A Chemical Flip-Flop

Moving to an open system allows us to construct recurrent chemical and logical
circuits—circuits with a lasting internal state or memory,which can change and be
accessed over time. The simplest such system in digital logic is aflip-flop. This is
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Figure 3: Left: external drive (molecular influx), as input to the circuit. Middle:
concentration of inputI inside the reactor. Right: product concentrationP, the
output of the inverter. The input concentration is moved from low, to high, and
back to low at 6·104 s intervals.

simply a bistable system, which exhibits three behaviors depending on its inputs,
commonly calledhold, set, andreset. In the hold behavior, there are two stable
states, which represent high and low outputs of the system. Set forces the system
into its high stable state regardless of its previous state;similarly, reset forces it to
its low stable state. Thus a flip-flop represents a single bit of memory, which can
be stored (hold) or overwritten (set or reset).

A system that functions as a flip-flop can be constructed with anetwork of
two NOT gates connected in a cycle of inhibition. A gateG1 cleaves substrateS1

to produce productP1, which inhibits the catalytic activity of gateG2; gateG2

cleavesS2 to produceP2, which inhibitsG1 to complete the cycle. Output from the
flip-flop is in terms of the concentration of the cleaved product P2, with high or low
concentration corresponding to a logical one or zero. The flip-flop is controlled
by varying the influx of substrates 1 and 2 to the reactor, while gates 1 and 2 are
continuously supplied.

We define constantsGm
1 andGm

2 to be the rates of molecular influx of gate so-
lutions. The external control is modeled by the functionsSm

1 (T) andSm
2 (T), which

describe the variablemolecular influx of substrates at timeT. The rate of efflux
of the system is given byE. We defineP1(T), P2(T), S1(T), S2(T), G1(T), and
G2(T) to be the concentrations within the reactor at timeT of product 1, product
2, substrate 1, substrate 2, gate 1, and gate 2, respectively. The system’s dynamics
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are modeled by the following system of six coupled differential equations:

dG1

dT
=

Gm
1 −EG1(T)

V
dG2

dT
=

Gm
2 −EG2(T)

V
dP1

dT
= β1S1(T)max(0,G1(T)−P2(T))−

EP1(T)

V
dP2

dT
= β2S2(T)max(0,G2(T)−P1(T))−

EP2(T)

V
dS1

dT
=

Sm
1 (T)

V
−β1S1(T)max(0,G1(T)−P2(T))−

ES1(T)

V
dS2

dT
=

Sm
2 (T)

V
−β2S2(T)max(0,G2(T)−P1(T))−

ES2(T)

V

whereβ1 andβ2 are the reaction rate constants andV is the volume of the reactor.
We now examine the model to determine the conditions under which it will

function as a flip-flop. Since we control it using substrate concentrations, we must
determine how its output depends on these. To simplify the analysis, we take the
gate concentrations to be constant (depending only on the efflux of the system).
Hence we view the substrate concentrations as parameters ofthe system rather
than dynamic variables. Now the behavior of the flip-flop can be understood using
the following two-dimensional system:

dp1

dt
= r1max(0,g1− p2(t))−kp1(t) (5)

dp2

dt
= r2max(0,g2− p1(t))−kp2(t) (6)

wherep1 andp2 are the product concentrations,r1 andr2 are lumped parameters
representing substrate concentration and the reaction rate constant for the two re-
actions,g1 andg2 are the gate concentrations, andk is the decay constant. In order
to function as a flip-flop, the system must have two stable states: asetstate with
a high value ofp2, and aresetstate with a low value ofp2. Additionally there
should exist control mechanisms to switch between states, in this case by varying
the substrate concentrations. High concentration of both substrates is used to hold
the flip-flop state, while the absence of one is used to set or reset the flip-flop. We
now examine how the system will behave for various values of the parametersr1

andr2.
We begin our analysis by examining thenullclinesof the system, i.e., the curves

along which the time derivatives of the variables are constant. Setting equations (5)
and (6) to zero yields:

dp1

dt
= 0 ⇒ p1 =

r1max(0,g1− p2)

k
dp2

dt
= 0 ⇒ p2 =

r2max(0,g2− p1)

k
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The derivative on the nullclines will have components in a single direction, along
either thep1 or p2 axis. This observation can be further qualified by inspecting
equations (5)-(6). Notice that as we increase the value ofp1 the value of dp1

dt

decreases, and as we decrease the value ofp1 the value ofdp1
dt increases. This

same relationship holds betweenp2 and dp2
dt . Thus a point above thep1 nullcline

will have a derivative in the negativep1 direction and a point below thep1 nullcline
will have a derivative in the positivep1 direction. We can use these facts to partition
the phase space into regions where the signs of the derivatives are known [7].
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d p2
dt = 0

F

d p1
dt = 0

d p2
dt = 0

Figure 4: The geometric structure of the flip-flop equations.Dark lines indicate
the nullclines, wherep1 or p2 is unchanging. The arrows indicate the sign of the
derivatives at various regions in the phase space.a The hold state: a bistable system
with balanced substrate concentrations. Points B and C are the stable points of the
system. Point A is an unstable saddle node.b The reset state: a mono-stable system
caused by a low concentration of substrate 2. The nullclinesintersect once at point
F, which all locations will be attracted to.

Figure 4 shows two possible configurations of the nullclinesalong with the
signs of the derivatives in different regions of the phase space. In the case shown
in Figure 4a the two nullclines intersect (to create fixed points) at points A, B, and
C. The stability of these points can be investigated by examining the slopes of the
surrounding regions. The intersection at point A has four adjacent regions. Two of
the regions adjacent to A have derivatives pointing toward A, but two of the regions
have derivatives away from A. This reveals that A is asaddle point: perturbations
in one direction will return back to A, while perturbations in another direction will
fall away from A. B and C, on the other hand, are stable. The separatrix shown
in Figure 4a divides the phase space into two basins of attraction. All trajectories
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starting above the separatrix will be attracted to B; all trajectories starting below it
will be attracted to C. This configuration represents a hold state of the flip-flop as
the system will evolve to either B or C. B is the low state of theflip-flop, in which
the system has a low concentration ofp2 and a high concentration ofp1. Similarly,
C is the high state, with a high concentration ofp2 and a low concentration ofp1.
Thus we have two stable states and a valid flip-flop.

If the nullclines do not intersect in the positive quadrant then there will be a
single intersection on either thep1 or the p2 axis. Such a situation is shown in
Figure 4b. The point F is a stable node with a lowp2 value and a highp1 value.
An examination of the three regions of the phase space reveals that all points will
be attracted to point F. Thus this state will reset the flip-flop. For bistability to
occur the two nullclines must intersect in the orientation shown in Figure 4a. This
requires that point B be above point D and that point C be to theright of point
E, and translates into the following conditions:kg2 < r1g1 andkg1 < r2g2. If we
wish to maintain symmetry, we can setg1 = g2 andr1 = r2 = r and the conditions
becomek < r. When this condition is met the flip-flop will be in a hold state.
The flip-flop is set or reset when the two nullclines do not intersect in the positive
quadrant. Then there will exist one stable fixed point at their intersection (point
F in Figure 4b). This will be the case if eitherr1 or r2 takes the value of zero.
Suppose that the flip-flop is in the hold state with a high concentration of p2 at
point C in Figure 4a. As the parameterr2 is reduced, the slope of thedp2

dt nullcline
will decrease and the stable point C will slide down thep2 axis toward point E. As
C passes E the fixed point is annihilated, and the system will jump to the only fixed
point: point F in Figure 4b. After the system has gone to point F the parameterr2

can be returned to its original value and the flip-flop will remain in its low state.
This lack of reversibility as the parameter is varied is calledhysteresisin dynamical
systems [7].

This stability analysis reveals the constraints we need to satisfy for the system
to function as a flip-flop. First, in order to maintain output symmetry we require
thatg1 = g2. This ensures that both the output of the flip-flop (p2) and the negated
output (p1) have the same value for a logical high. Next, in order to maintain a
symmetric separatrix along the linep1 = p2 we require thatr1 = r2 = r. Thus,
during the hold state of the flip-flop, the phase-space is equally divided between
values which are attracted to the high state and values whichare attracted to the
low state. Finally, the constraint for bistability isk < r. This means that the rate at
which concentrations decay in the reactor (by means of outflow) must be less than
the rate at which the enzymatic gates can create product. In other words, the gates
must be capable of creating product faster than product is being removed.

We then convert these constraints on the dimensionless model to specifications
for a physical system. Figure 5 shows a numerical integration of the system over
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a period of 9.6 · 104 s. At 2.4 · 104 s intervals the system is moved between set,
hold, reset, and hold operations by controlling the influx ofsubstrates. The top
two traces on the left show substrate molecular influx rates.The top two traces
on the right show the corresponding concentrations of substrates. The bottom two
traces show concentrations of products 2 and 1. These represent the output and the
negated output of the system, respectively.
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Figure 5: Exercising control over the flip-flop system.

6 Conclusions

Deoxyribozyme logic gates may be used to construct a biomolecular computer. By
moving to open reactors, we increase the computational abilities of the underly-
ing logic gates by making it possible to build recurrent circuits and devices with
feedback. Techniques from dynamical systems offer qualitative and quantitative
insights about the behavior of these chemical networks. Using these techniques,
we have designed two fundamental components of a biomolecular computer: a
single-bit inverter and a flip-flop that provides a single bitof memory. Compared
to electronic computers, this technology is slow (about 1 mHz) but the possibility
it offers of amorphous computation inside living cells is extremely exciting.
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