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Abstract

We propose a new method for amorphous bio-compatible cdngpus-
ing deoxyribozyme logic gates [1] in which oligonucleotdet as enzymes
on other oligonucleotides, yielding oligonucleotide puiots. Moreover, these
reactions can be controlled by inputs that are also oligleaticles. We in-
terpret these reactions as logic gates, and the concemsabf chemical
species as signals. Since these reactionshamogeneoys.e., they use
oligonucleotides as both inputs and outputs, we can comihese to con-
struct complex logic circuits. Thus, our system for chermaamputation
offers functionality similar to conventional electronizauits with the po-
tential for deployment inside of living cells. Previoudlyis technology was
demonstrated in closed-system batch reactions, whicteléhits computa-
tional ability to simple feed-forward circuits. In this wqrwe go beyond
closed systems, and show how to use thermodynamically agseriars to
build biomolecular circuits with feedback. The behavioraof open chem-
ical system is determined both by its chemical reaction ogtvand by the
influx and efflux of chemical species. This motivates a changkesign pro-
cess from that used with closed systems. Rather than fagsesiely on the
stoichiometry of the chemical reactions, we must carefelgmine their ki-
netics. Systems of differential equations and the theodyonamical systems



become the appropriate tools for designing and analyzioly systems. Us-
ing these tools, we presentiemerter. Next, by introducing feedback into the
reaction network, we construct devices with a sense of.sfé#eshow how a
combination of analytical approximation techniques ancharical methods
allows us to tune the dynamics of these systems. We demtmatfip-flop
which exhibits behavior similar to the RS flip-flop of electrocomputation.
It has two states in which the concentration of one oligoaeiitie is high
and the other is low or vice versa. We describe how to confrlstate of
the flip-flop by varying the concentration of the substratdsreover, there
are large regions of parameter space in which this behavmabust, and we
show how to tune the influx rates as a function of the chemezdtion rates
in a way that ensures bistability.

1 Introduction

We use deoxyribozymes (nucleic acid enzymes) as gatesrsfaran input and
substrate signals (molecular concentrations) into prosignals and thereby per-
form simple computation. Since the inputs are of the same agthe outputs,
viz. oligonucleotides, gates may, in principle, be conegédh complex circuits,
with the output of one gate acting as the input of another.sTke may design
chemical systems that perform complex computations fronpks boolean primi-
tives in much the same way electronic computers are buiit &omple logic gates.
These devices could operate without macroscopic inteomim a biological en-
vironment, and the goal of this technology is autonomiougvo computation for
diagnostic and therapeutic purposes. We have reported géile a single layer
of logic, and no inter-gate communication [1]. Devices thatction as a half-
adder [2] and a tic-tac-toe automaton [3] have been builttastid in the labora-
tory.

These gates have been deployed in a closed reactor, whadtiefly limits
this technology to one-shot boolean computations. To @veecthis limitation,
we explore using this chemistry in an open reactor, in whatieg could be re-used
many times and connected in recurrent, rather than feedhfadr, circuits. This
adds a level of complexity to the engineering task, but weskigva process that
may be used to engineer these devices. We apply methods arfnilyal systems to
construct reaction networks in open reactors that impléemeatimentary elements
of digital chemical computation. This allows us to inveat& complex reaction
networks that make use of inter-gate communication andofaed



2 The Chemical Kinetics of Deoxyribozyme L ogic Gates

The four components of our deoxyribozyme system are ingattes, substrates,
and products. Under certain input conditions a gate is amweaehzyme [1]. The
effect of input molecules on the catalytic activity of thaeydefines the logic oper-
ation that the gate performs. A gate requires the presertferaabsence of certain
inputs to be active. When active, the enzymatic gate is aptuabesterase: it
catalyzes an oligonucleotide cleavage reaction. A sulestrelecule is cleaved
into two product molecules. The product molecules reptetsenoutput signal of
the gate. Computations are carried out in solution, whetesggsommunicate by
diffusion of oligonucleotides. Logic signals, true or &alare expressed by high or
low concentrations of specific oligonucleotides. Oligdeotides transmit infor-
mation by participating in the reactions of multiple gat€ke simplest example is
an oligonucleotide that is a product of one gate and an irpanother; serving as
a substrate would suffice as well.

The mechanism of a deoxyribozyme gate is as follows. Inpuecutes bind
to the designated locations on the gate molecules. Therfgrafian input to a gate
affects the conformation of the gate, which in turn affeetialytic activity. Under
appropriate circumstances, the gate is an active enzymehioh case it binds to
a substrate molecule, cleaves it into two molecules of prpdand separates into
two molecules of product and one active gate complex. Adates continue to
operate as long as there is substrate remaining to be cleaved

In order to design larger circuits, we must first understdneddynamic behav-
ior of individual logic gates. We set up the experiment atofes. We prepare a
solution with a concentration & = 250nM of a specifiz Es gate (which becomes
active in the presence of input), a certain concentrdtiofithe matching input, and
a concentratiors= 2500nM of the substrate cleaved by the gate. At 900s interval
we record the instrumentally measured fluorescence. Weatdpe experiment
varyingl, starting withl = Sand repeatedly halving it. The measured fluorescence
level of a molecular species is proportional to its cona@itn. The specific fluo-
rescences of the product and the substrate have been gstabdieparately and are
in a ratio of 8:1. Therefore the increase of total fluoreseeagroportional to the
amount of product, which allows us to convert measured feamece into product
concentration, shown in Figure 1.

For small values of the input concentratibnproduct concentratio rises
linearly with time, with slope proportional th For larger values off, the growth
soon reaches a plateau defined by the initial substrate otvaten S when all
of the substrate has been converted to product, the ressttips. Note also the
saturating behavior: whereas the slope ef P increases witH for small I, it
remains roughly constant for> G.
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Figure 1. Measured kinetics of a deoxyribozyme gate forediifit input concen-
trationsl (nM).

We will model the kinetics of the deoxyribozyme gates asofei. First we
note that the cleavage and separation of substrate madeisulee slowest of the
reactions—it is the rate-limiting process. We will assurnat tbonding between
gate and input molecules is instantaneous and completes, Tfeinumber of active
gates at a given time is a simple calculation dependingsalelthe number of
gates and inputs.

Cleavage of substrate requires both substrate and an getigecomplex. Ex-
periments have shown that the rate of production is propaatito the concentra-
tion of both reactants. Hence, a model for the rate at whiolywt is produced is:
‘(’j—f = BSGy, whereP is the product concentratiof, is the reaction rate constant,
Sis the substrate concentration, a@gd is the concentration cdictive gates. In
the experiments shown in Figurell(and thusGa) was held constant. Therefore,
the solution is an exponential decay of the subst&té his model agrees well
with observed measurements in Figure 1, and analysis of dasuoned data gives a
rough estimate of the reaction rate cons@at 5-10~' nM~1s~1. This value will
be used to model the chemical gates in the circuit desigrsepted herein.

3 TheReactor

Chemical reactors may be divided into closed systems, wigaeants are added
to a solution and the reaction is allowed to proceed towatdlibgum, and open
systems, where reactants are continuously supplied aeg&sgolution is removed.
We explore the benefits and design considerations assbeviteusing our chem-
istry in an open reactor. Previous theoretical work has ritest circuits created
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from hypothetical enzymatic transistors in open reactdts YWe expand on this
work by presenting circuit designs based on the chemic&nt@ogy described
above. Reactions in a closed environment are subject togbensl Law of Ther-
modynamics, which posits that the free energy in a close@sywill continuously
decrease and implies that the system will move toward arileduim. This does
not rule out interesting behavior, such as oscillations lenway to an equilib-
rium [5], but it implies a finite number of cycles through teesscillations. Thus it
would be impossible to implement a recurrent digital ciréaiwhich gates could
switch on and off an arbitrary number of times.

Instead, we use a thermodynamically open system; matsrigbritinuously
supplied and removed, as in a living cell. The circuit may éesed and pro-
duce many outputs over its lifetime, so that it is recurratier than feed-forward.
While a long-term goal of this technology is deploymentdesof (thermodynam-
ically open) living cells, the first step toward that end istitey and verification in
a laboratory setting. A model open environment is the cotis-flow stirred tank
reactor. It delivers reactants into a reaction chambergestio maintain a uniform
distribution of chemical species. An outflow removes solutirom the reactor to
maintain constant volume. The inputs can be varied in teffrtfeed concentrations
in the input solution and the flow rate into the reactor. B ¢concentration and
the volumetricinflux of a solution can be varied while still maintaining tb@me
total molecularinflux rate. Thus we can manipulate total efflux while mainitag)
desired concentrations of chemical species inside theéareac

The decay rate of the reactd() (s equal to the efflux rate) divided by the
volume /). As the decay rate is increased, material spends less tisigei the
reactor. Because the reactor state changes faster, thét cpeeds up. How-
ever, this increases the amount of chemical species neededintain the same
concentrations. In the specific design below, the reactbhave a total efflux of
5.10 8 m3s1 and a volume of 510~* m3. This results in a decay rate of 1bs~1.
While the resulting circuits will operateery slowly, these values were chosen as
design points corresponding to equipment that can be fauadraditional chem-
istry laboratory.

4 A Simplelnverter

We begin by examining a simple computational device: th&alignverter. It is
built from a single type oNoT gateG operating in an open reactor. The reactor is
supplied with a constant influx of gate and substrate modscuh addition, inpuk

is supplied to provide an external drive. The output of thierter is expressed by
the concentration of produBtcleaved from substraté The behavior of the system



can be modeled with the following system of four coupledetdihtial equations:
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wherel™, G™, and S™ are the constant rates afolar influx of the respective
chemical speciesy is the volume of the reactoE is the rate of volume efflux,
andf is the reaction rate constant. The max terms in (3) and (4)ecibom our
assumption that the binding of input to gate molecule is bogtantaneous and
complete.

Clearly, this system can function as an inverter. If thee raw inputs in the
reactor, all of the gates are active and produce producs-gtthe high signal. As
input is added gates become inhibited, and the product otratien falls. As the
input concentration reaches the gate concentration, tsdsecome inhibited and

the product concentration falls to zero—this is the low algn

To explore the equilibrium behavior of the inverter we firssame that the
input concentration never exceeds the gate concentratiergan then eliminate
the max functions from equations (1)-(4). We can now set thévatives to zero
and solve folP. This produces the following relation between input coricgion
and output (product) concentration:

Introducing rescaling parametexs= % y= %m andd = BEV allows further sim-
plification. Thus we arrive at the following equation for ttatic transfer curve:

aly-1)
o+ (y—1)

This shows how the output concentratiBrdepends on the input concentration
Further constraints must be introduced to create an invetita well-defined

signal levels. First, the concentration correspondinghimh logic value is defined

asH. We require thaP = H whenl = 0 andP = 0 whenl = H. These conditions

yield the constrainty = H anda = H + 3. Thus, to alter the static transfer curve,

we may vary the parametefsand o, while maintaining the relationshipa =

H + &. Figure 2 shows the transfer functions obtained by sethitg a range of
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Figure 2: The static transfer curve for an inverter conséadidrom aNOT gate in
an open system with several different vaIuesEfD%, % and 200. Ad increases
the transfer curve approaches a straight line from highumodnd low input to
low product and high input concentrations.

values. ASd is increased, the curve flattens out and becomes close to.liIAsd
is decreased the curve becomes more bowed out (i.e., a laryatie).

This transfer curve is far from the sigmoid shape desiredgitad computing.
Any noise that moves the input concentration away from gitali value will prop-
agate through to the output, possibly resulting in compurtat errors. However,
we may construct inverters with differing static charasters by concatenating
several gates in a cascade. Details of this constructiogieea in [6].

While the static behavior addresses equilibrium charaties, this analysis
neglects the dynamic behavior of the system. Ultimately,static transfer char-
acteristic depends on only one ratio, but the dynamic behasiless restricted
and depends on several variables. However, this solutiacesis narrowed by the
physical restrictions of our technology. We define a logiigh value to be a con-
centration of 250 nM and calculate the rest of the paraméerthe system. Fig-
ure 3 shows the results of numerical integration of the terexorking under such
conditions. The reactor was started with zero concentrati@ll chemical species.
The propagation delay of the inverteris7.9-10° s, with atpyy ~ 12.5-10° s, and
tplp~3.2- 10%s.

5 A Chemical Flip-Flop

Moving to an open system allows us to construct recurrentnated and logical
circuits—circuits with a lasting internal state or memawfich can change and be
accessed over time. The simplest such system in digitat isgiflip-flop. This is
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Figure 3: Left: external drive (molecular influx), as inpatthe circuit. Middle:
concentration of input inside the reactor. Right: product concentrat®nthe
output of the inverter. The input concentration is movedrfriow, to high, and
back to low at 6 10* s intervals.

simply a bistable system, which exhibits three behaviopedding on its inputs,
commonly callechold, set andreset In the hold behavior, there are two stable
states, which represent high and low outputs of the systenhfo&es the system
into its high stable state regardless of its previous stateijarly, reset forces it to
its low stable state. Thus a flip-flop represents a singleflt@mory, which can
be stored (hold) or overwritten (set or reset).

A system that functions as a flip-flop can be constructed wittetvork of
two NOT gates connected in a cycle of inhibition. A g#&e¢ cleaves substrats;
to produce producP;, which inhibits the catalytic activity of gat&,; gate G,
cleavesS, to produceP,, which inhibitsG; to complete the cycle. Output from the
flip-flop is in terms of the concentration of the cleaved picid®, with high or low
concentration corresponding to a logical one or zero. Tipefiftip is controlled
by varying the influx of substrates 1 and 2 to the reactor, evpétes 1 and 2 are

continuously supplied.

We define constantS]' andG?}' to be the rates of molecular influx of gate so-
lutions. The external control is modeled by the functi®f¢T ) andS}(T ), which
describe the variablmolecularinflux of substrates at tim&. The rate of efflux
of the system is given big. We definePy(T), P»(T), Si(T), S(T), G1(T), and
G(T) to be the concentrations within the reactor at timef product 1, product
2, substrate 1, substrate 2, gate 1, and gate 2, respeciiladysystem’s dynamics



are modeled by the following system of six coupled diffelargquations:
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where; andf3; are the reaction rate constants &his the volume of the reactor.
We now examine the model to determine the conditions undéchaih will

function as a flip-flop. Since we control it using substratecemtrations, we must
determine how its output depends on these. To simplify tlayais, we take the
gate concentrations to be constant (depending only on the eff the system).
Hence we view the substrate concentrations as parametéhe afystem rather
than dynamic variables. Now the behavior of the flip-flop caubderstood using
the following two-dimensional system:

dd—ril =rimax0,91 — pa(t)) — kpu(t) ®)
dd—?z =romax(0,g2 — pa(t)) —kpa(t) ©

wherep; and p, are the product concentrationrg,andr, are lumped parameters
representing substrate concentration and the reactiercomstant for the two re-
actions,g; andg, are the gate concentrations, dnid the decay constant. In order
to function as a flip-flop, the system must have two stablestaset state with
a high value ofp,, and aresetstate with a low value op,. Additionally there
should exist control mechanisms to switch between statdahjs case by varying
the substrate concentrations. High concentration of batistsates is used to hold
the flip-flop state, while the absence of one is used to setset the flip-flop. We
now examine how the system will behave for various valuehefarameters;
andrs.

We begin our analysis by examining thellclinesof the system, i.e., the curves

along which the time derivatives of the variables are canstaetting equations (5)
and (6) to zero yields:

_ rimax0,91 — p2)
pp=——"7—""7"-

o 07 k
dp _ romax0,g2 — p1)
a0 T Pe= K



The derivative on the nullclines will have components inreglg direction, along
either thep; or p, axis. This observation can be further qualified by inspectin
equations (5)-(6). Notice that as we increase the valup,ahe value ofdd—"i1
decreases, and as we decrease the valyg tiie value ofdd—‘;l increases. This
same relationship holds betwepp and ‘{j—ﬁz. Thus a point above thp; nullcline
will have a derivative in the negatiy@ direction and a point below thg, nulicline
will have a derivative in the positivp; direction. We can use these facts to partition
the phase space into regions where the signs of the dedsaie known [7].

b

Figure 4: The geometric structure of the flip-flop equatioBsrk lines indicate
the nullclines, whergy, or py is unchanging. The arrows indicate the sign of the
derivatives at various regions in the phase spadée hold state: a bistable system
with balanced substrate concentrations. Points B and arstable points of the
system. Point A is an unstable saddle ndal&he reset state: a mono-stable system
caused by a low concentration of substrate 2. The nullciimessect once at point
F, which all locations will be attracted to.

Figure 4 shows two possible configurations of the nullclinémng with the
signs of the derivatives in different regions of the phasacsp In the case shown
in Figure /A the two nullclines intersect (to create fixed points) at s, B, and
C. The stability of these points can be investigated by eramgithe slopes of the
surrounding regions. The intersection at point A has foja@ht regions. Two of
the regions adjacent to A have derivatives pointing towardua two of the regions
have derivatives away from A. This reveals that A isaaldle point perturbations
in one direction will return back to A, while perturbatiomsd@nother direction will
fall away from A. B and C, on the other hand, are stable. Tharsgpx shown
in Figure 4 divides the phase space into two basins of attraction. Ajéttories
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starting above the separatrix will be attracted to B; aJettories starting below it
will be attracted to C. This configuration represents a htatesof the flip-flop as
the system will evolve to either B or C. B is the low state of fififg-flop, in which
the system has a low concentrationpafand a high concentration @f. Similarly,
C is the high state, with a high concentrationpfand a low concentration qf;.
Thus we have two stable states and a valid flip-flop.

If the nullclines do not intersect in the positive quadrdrert there will be a
single intersection on either th® or the p, axis. Such a situation is shown in
Figure 4. The point F is a stable node with a Igug value and a higlp; value.
An examination of the three regions of the phase space ettt all points will
be attracted to point F. Thus this state will reset the flip-fld-or bistability to
occur the two nullclines must intersect in the orientatiboven in Figure 4. This
requires that point B be above point D and that point C be toritife of point
E, and translates into the following conditiorgp < rig; andkg; < rogp. If we
wish to maintain symmetry, we can sgt= g, andr; = ro = r and the conditions
becomek < r. When this condition is met the flip-flop will be in a hold state
The flip-flop is set or reset when the two nullclines do notriseet in the positive
quadrant. Then there will exist one stable fixed point atrthrgersection (point
F in Figure 4). This will be the case if either; or ry takes the value of zero.
Suppose that the flip-flop is in the hold state with a high catreg¢ion of p, at
point C in Figure 4. As the parametan is reduced, the slope of tl’gﬁ nullcline
will decrease and the stable point C will slide down fheaxis toward point E. As
C passes E the fixed point is annihilated, and the systemuniilpjto the only fixed
point: point F in Figure B. After the system has gone to point F the parameter
can be returned to its original value and the flip-flop will @min its low state.
This lack of reversibility as the parameter is varied isaditlysteresisn dynamical
systems [7].

This stability analysis reveals the constraints we needatisfg for the system
to function as a flip-flop. First, in order to maintain outpytrsnetry we require
thatgs = go. This ensures that both the output of the flip-flgg)(and the negated
output (p1) have the same value for a logical high. Next, in order to madina
symmetric separatrix along the lira = p, we require that; =r, =r. Thus,
during the hold state of the flip-flop, the phase-space islggdizided between
values which are attracted to the high state and values varelattracted to the
low state. Finally, the constraint for bistabilityks< r. This means that the rate at
which concentrations decay in the reactor (by means of eutfloust be less than
the rate at which the enzymatic gates can create producthém words, the gates
must be capable of creating product faster than productinglemoved.

We then convert these constraints on the dimensionlessInwosigecifications
for a physical system. Figure 5 shows a numerical integratiothe system over
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a period of 96-10*s. At 24.10%s intervals the system is moved between set,
hold, reset, and hold operations by controlling the influxssobstrates. The top
two traces on the left show substrate molecular influx raidse top two traces
on the right show the corresponding concentrations of satiest The bottom two
traces show concentrations of products 2 and 1. These espris® output and the
negated output of the system, respectively.
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Figure 5: Exercising control over the flip-flop system.

6 Conclusions

Deoxyribozyme logic gates may be used to construct a bicrnt@ecomputer. By

moving to open reactors, we increase the computationatiebibf the underly-

ing logic gates by making it possible to build recurrent aits and devices with
feedback. Techniques from dynamical systems offer quiaktaand quantitative

insights about the behavior of these chemical networksndJgiese techniques,
we have designed two fundamental components of a biomalecoimputer: a
single-bit inverter and a flip-flop that provides a singledsimemory. Compared
to electronic computers, this technology is slow (about 1zjbiit the possibility

it offers of amorphous computation inside living cells isrermely exciting.
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