
BIOINFORMATICS Vol. 20 no. 16 2004, pages 2702–2710
doi:10.1093/bioinformatics/bth311

Exhaustive whole-genome tandem
repeats search

Arun Krishnan∗ and Francis Tang

Bioinformatics Institute, 30 Biopolis Street, No. 07-01, Matrix, Singapore 138671,
Singapore

Received on February 3, 2004; revised and accepted on April 22, 2004

Advance Access publication May 14, 2004

ABSTRACT
Motivation: Approximate tandem repeats (ATR) occur
frequently in the genomes of organisms, and are a source
of polymorphisms observed in individuals, and thus are of
interest to those studying genetic disorders. Though extens-
ive work has been done in order to identify ATRs, there are
inherent limitations with the current approaches in terms of
the number of pattern sizes that can be searched or the size
of the input length.
Results: This paper describes (1) a new algorithm which
exhaustively finds all variable-length ATRs in a genomic
sequence and (2) a precise description of, and an algorithm
to significantly reduce, redundancy in the output. Our ATR
definition is parameterized by a mismatch ratio p which allows
for more mismatches in longer tandem repeats (and fewer in
shorter). Furthermore, our algorithm is embarrassingly parallel
and thus can attain near-linear speed-up on Beowulf clusters.
We present results of our algorithm applied to sequences of
widely differing lengths (from genes to chromosomes).
Availability: Source and binaries are available on request.
Contact: arun@bii.a-star.edu.sg
Supplementary information: http://web.bii.a-star.edu.
sg/~francis/Research/Exhaustive/

INTRODUCTION
Informally, a tandem repeat is defined to be two adjacent
(approximate) copies of the same sequence of nucleotides.
The occurrence of several adjacent copies is referred to as a
variable-length ‘approximate’ tandem repeat (ATR). Tandem
repeats range from micro- and mini-satellites (few tens of base
pairs) to larger satellite repeats spanning megabases. They
occur frequently in the genomes of organisms. Their function
and origins are not truly understood, though it has been pro-
posed that they are the result of a mutational event resulting
from the exact duplication of a stretch of DNA, followed by
some random mutations over time (Benson, 1999).

∗To whom correspondence should be addressed.

What is known is that such repeats can be a source of
polymorphism observed in individuals. Thus there are act-
ive investigations into potential correlations between lengths
of tandem repeats and genetic diseases [e.g. attention
deficit hyperactivity disorders (Qian et al., 2003), multiple
sclerosis (Guerini et al., 2003), Alzheimer’s (Licastro et al.,
2003), Autism (Cohen et al., 2003) and androgen insensitivity
syndrome (Fogu et al., 2003)].

A lot of work has been done in order to identify tandem
repeats, both exact and approximate. From the literature on
tandem repeat searching programs, we find that the solutions
fall broadly into two categories: those that define tandem
repeats in a way that leads to a simple constructive charac-
terization allowing for an algorithm to find all tandem repeats
directly, and those that use a more abstract definition of tandem
repeat, e.g. a probabilistic definition, and which give a heur-
istic for narrowing down the set of potential tandem repeats.

The following approaches fall into the first category. Collins
et al. (2003) give a vectorizable algorithm to find tan-
dem repeats. Their algorithm finds exact tandem repeats
(i.e. the copies must be exactly the same) of short pattern
lengths (2–16).

Sagot and Myers (1998) present an exhaustive algorithm
which finds ATRs defined by a fixed edit distance εk from
a consensus sequence. The performance can be improved
by pre-filtering using a heuristic. The asymptotic perform-
ance is bounded by O(NN (εk, k)), where N (e, k) is the
combinatorial number of k-length strings within a ball of
radius e.

REPuter (Kurtz et al., 2001) addresses the more general
problem of finding repeats (not necessarily tandem). Their
algorithm can exhaustively find ATRs using either Hamming
distance or edit distance definitions. The Hamming distance
solution has O(N + zε) complexity, where N is the sequence
length, ε is the distance parameter and z is the ‘number of
seeds’, the estimate of which is bounded by O(N2/|�|s),
where s = �(1 + ε)−1�. Since |�| > 1, this asymptotic
bound tends to O(N2) as the mismatch ε tends to infinity.

The approaches of Sagot and Myers (1998), and REPuter
use a fixed distance ε, regardless of the pattern length: a small

2702 Bioinformatics vol. 20 issue 16 © Oxford University Press 2004; all rights reserved.

http://web.bii.a-star.edu

Exhaustive whole-genome tandem repeats search

ε would be too stringent for long pattern lengths, and a large ε

would be too lenient for short pattern lengths. Of course, it
is possible to run their algorithms repeatedly for different ε,
but this gives worse overall performance. Our basic algorithm
finds all tandem repeats of a specific pattern length k in O(kN)

time, independent of distance bound ε; thus, we can search
all possible k (i.e. for k = 2..�N/2�) in O(N3) time.

Kolpakov and Kucherov (2003), Landau et al. (2001),
Groult et al. (2002, 2004) also use Hamming distance-based
definitions of ATR. Groult et al. consider a strictly more gen-
eral problem, but their solution is asymptotically slower than
the one presented here. A more detailed comparison of the
two can be found in the Supplementary information.

Falling in the latter category, Benson (1999) proposes a
probabilistic definition of tandem repeat which uses a model
whereby it is assumed that an ATR was, at some point in
the past, an exact repeat that has undergone mutations (in the
form of nucleotide substitutions, insertions and deletions).
However, such a probabilistic definition of tandem repeat is
difficult to use directly: one must find candidates to check
against the definition. The set of all candidates is too large,
and so must be pruned to a set of likely candidates by way of a
heuristic. In loc. cit., Benson presents a heuristic which uses
k-tuples.

By definition, a heuristic is incomplete and a fine bal-
ance must be made between completeness and performance.
Wexler et al. (submitted for publication) present a differ-
ent heuristic which experimentally is shown to improve on
that of Benson, at the expense of overall run time.1 Simil-
arly, Stolovitzky et al. (2001) apply a pattern discovery tool
TEIRESIAS to find their candidates.

We find that existing literature puts little emphasis on the
problem of filtering of tandem repeats. The definitions of tan-
dem repeat used by Benson (1999), Kolpakov and Kucherov
(2003), Landau et al. (2001) can span a non-integral number of
copies, and so maximality already reduces/eliminates redund-
ancy. There is no explicit discussion of filtering in Collins et al.
(2003), Kurtz et al. (2001), Wexler et al. (submitted for pub-
lication), Stolovitzky et al. (2001), Groult et al. (2002, 2004).
In Sagot and Myers (1998), overlapping repeats (which they
call trains) are collected together and the fittest member is
selected from each collection.

This article describes the algorithmic aspects of our program
which exhaustively finds all variable-length tandem repeats
in a genomic sequence. Our approach falls in the former
category: we take a definition of tandem repeat that uses
the Hamming distance measure, and present an algorithm
that provably finds all tandem repeats, i.e. an exhaustive
algorithm. Our definition is parameterized by a mismatch
ratio p which allows for more mismatches in longer tandem
repeats (and fewer in shorter), thereby avoiding the problems

1 However, since it finds more tandem repeats, they show that their new
heuristic is faster per tandem repeat than that of Benson’s.

of a fixed mismatch count. Additionally, we present a filtering
algorithm that prunes the resultant exhaustive set to a smal-
ler one with fewer redundancies. Furthermore, our algorithms
are embarrassingly parallel and well suited for Beowulf-class
clusters. As a result, the algorithm can be applied to whole
genomes and for any pattern size.

METHODS
Definition 1. (Candidate) Given a string s, a tuple

(x, α(1), . . . , α(l)), consisting of an offset2 x and strings α(i),
is said to be a candidate, if, for i = 1 . . . (l − 1)

(1) |α(i)| = |α(i+1)| and

(2) α(i) is equal to the substring of length |α(1)| starting at
x + (i − 1) · |α(1)|.

We let C denote the set of all candidates:

C
def= {(x, α(1), . . . , α(l)) | x, α(i) satisfy the two conditions

above}.
For each non-negative integer k, we define Ck to be the subset
of C consisting of those candidates of pattern length k:

Ck
def= {(x, α(1), . . . , α(l)) ∈ C | k = |α(1)|}.

It follows that |α(1)| = |α(2)| = · · · = |α(l)|, from the defini-
tion of C. A tandem repeat is a candidate (x, α(1), . . . , α(l))
such that the strings α(i) are approximate copies of each other.
We define ‘approximate copy’ using Hamming distance,3

D(−, −), by:

Definition 2. (Approximate tandem repeat) For string s,
and parameter p, an approximate tandem repeat is a candid-
ate (x, α(1), . . . , α(l)) such that D(α(i), α(i+1)) ≤ �p.|α(i)|�
for all positive i < l.

When there is no ambiguity, we write ‘repeat’ to mean
approximate tandem repeat. We let R denote the set of all
tandem repeats. That is

R
def= {(x, α(1), . . . , α(l)) ∈ C | D(α(i), α(i+1)) ≤ �p · |α(i)|�

for 1 ≤ i < l}.
For each non-negative integer k, we define Rk to be the set of
tandem repeats of pattern length k:

Rk
def= R ∩ Ck .

Note that we simply insist that adjacent copies are pair-wise
approximate copies. One can consider stronger definitions of

2 For the purposes of this paper, we assume that the beginning of the string
has offset 1.
3 Recall for equal length strings u and v, the Hamming distance D(u, v) is
defined to be the number of mismatches, i.e. the number of unique indices i

such that ui �= vi .

2703

A.Krishnan and F.Tang

approximate copy, for example, we might insist

D(α(i), α(j)) ≤ �p · |α(i)|�
for all positive i, j ≤ l. This is a strictly stronger defini-
tion since any candidate satisfying this definition also satisfies
that of Definition 2, but not vice versa. However, the latter
definition is clearly computationally more expensive to check.
We settle for the weaker definition since for typical choices
of p, the difference in results is not significant.

Algorithm
Searching for general tandem repeats We know from the
definition of a tandem repeat that for any pattern size k,
(x, α(1), . . . , α(l)), is a tandem repeat, if and only if (x +
k·(i−1), α(i), α(i+1)) is a tandem repeat, for i = 1, . . . , (l−1).
We define a vector T as follows: entry T [j] is the number
of matches between subsequences u and v for the candidate
(j , u, v). That is,

T [j] = k − D(u, v) for candidate (j , u, v) (1)

For each offset j , starting from the beginning, the algorithm
eagerly finds maximal tandem repeats, i.e. tandem repeats that
cannot be extended to the left or right to give another tandem
repeat, by comparing successive candidates (j , α(1), α(2)),
(j + k, α(2), α(3)), . . . , (j + (l − 1)k, α(l−1), α(l)). For each
offset at which two candidates are compared, we update T [·].

For any candidate (j , u, v), in general, the calculation of
T [j] requires |u| comparisons. However, suppose we already
know T [j − 1]. By definition, since u is the substring of S,
starting at x, we know that ui = Sx+i−1. We have a similar
definition forv, namelyvi = Sx+k+i−1. Now consider candid-
ates (x, u, v) and (x +1, u′, v′). By referring to the definitions
of D(u, v) and D(u′, v′), and the facts that u′

i = Si+x = ui+1

and v′
i = Si+k+x = v′

i+1, we can derive

T [j] = T [j − 1] − δ0 + δk

where

δ0
def=

{
1 if u1 = v1

0 otherwise

δk
def=

{
1 if u′

k = v′
k

0 otherwise

Thus T [j] can be computed from T [j − 1] using only two
more comparisons. So, to take advantage of this observation,
we also maintain vector V to remember which entries of T [·]
have been computed:

V [j] =
{

1 if candidate (j , u, v) has been checked

0 otherwise

This allows us to use the optimization when we have already
computed T [j − 1], and allows us to avoid computing T [j]
more than once.

The algorithm is presented in its entirety in the supplement-
ary information, but, to demonstrate, we present it here with
an example. Let p = 0.25 and k = 4. Consider the following
sequence

ATAA AGAA ATAA GTAA GT

(Spaces have been inserted to separate the letters into blocks
of four for ease of reading.) We build vectors T and V as fol-
lows. We start with j = 1. Then, T [1] = 3, since D(ATAA,
AGAA) = 1. As T [1] ≥
(1 − p)k� = 3,4 we try to extend
this tandem repeat to the right. Hence, we skip ahead to
j = j +k = 5 and calculate T [5] = 3. Since this again meets
the criterion for being accepted as a tandem repeat, we extend
this to the right (j = j + 2k = 9) and calculate T [9] = 3.
However, we cannot extend this to the right anymore (hav-
ing reached the end of the sequence) and hence accept the
tandem repeat (1, ATAA, AGAA, ATAA, GTAA). We set
V [j] = 1 for all j visited by the algorithm. Hence, in the
previous cases V [1] = V [5] = V [9] = 1.

We next assign j = 2 and calculate T [2] = 3, V [2] = 1.
Note that since in this case, T [1] has already been calculated,
calculation of T [2] requires only two comparisons (the first
and the last). Since this satisfies the condition for (2, u, v) to be
a tandem repeat, we try and extend this to the right by setting
j = j + k = 6 and calculate T [6] = 2. Since this does not
satisfy the criterion for (6, u′, v′) to be a tandem repeat, we
accept the tandem repeat (2, TAAA, GAAA). V is updated in
the same way as before.

Continuing in the same manner, we calculate T [3] = 3 and,
extending to the right again, we calculate T [7] = 3; T [11] =
4. Since we cannot extend this any further, we again accept
(3, AAAG, AAAT, AAGT, AAGT). Similarly, we calculate
T [4] = 3 and extend it to T [8] and T [12] (note that we cannot
compute this as j > N − 2k + 1 for j = 12), and accept (4,
AAGA, AATA, AGTA) as a repeat. Again, it must be noted
here that these involve only two comparisons per offset since
T [j − 1] has already been calculated while calculating T [j].
We then skip T [5], T [6], T [7], T [8] and T [9] since these have
already been computed and calculate T [10] = 4. However,
since we cannot extend this to the right, we accept (10, TAAG,
TAAG) as a repeat, and skip T [11]. We stop the calculations
at this point, since j > N −2k +1 for j = 13. The computed
vectorsT andV and the procedure are summarized in Figure 1.

Using T , we accept the following repeats: (1, ATAA,
AGAA, ATAA, GTAA), (2, TAAA, GAAA), (3, AAAG,
AAAT, AAGT, AAGT), (4, AAGA, AATA, AGTA) and
(5, TAAG, TAAG). Note that the repeats are stored in start
ascending order; this is a required assumption for correctness
of the filtering algorithm to follow.

4 From Definition 2 and Equation (1), (j , u, v) is a repeat iff
T [j] ≥
(1 − p)k�.

2704

Exhaustive whole-genome tandem repeats search

Fig. 1. The growth of vector T for example. The ‘minus’ indic-
ates that the corresponding offset is part of a larger repeat. The
‘exclamation’ indicates that no tandem repeat could be found at the
corresponding offset. Figure 1a–c denote the state of the vector and
the repeats found after each offset (j = 1, 2 and 10 respectively).

Filtering
The algorithm presented so far finds all maximal tandem
repeats. Now consider the example sequence ACGACGAG,
which has three maximal repeats ACGACG, CGACGA and
GACGAG. Clearly it is unnecessary to list all three, since most
of the information is redundant. We now consider filtering of
repeats.

Definition 3. (Overlap) Given two candidates α =
(x, α(1), α(2), . . . , α(l)) and β = (y, β(1), β(2), . . . , β(m)),
define c as the cardinality of the set of offsets that are com-
mon to α and β. Then α and β are said to overlap if
c ≥ k · min{l, m} − k.

Frame

k

end

Frame

k

BEST

Fig. 2. Schematic representation of the filtering process.

Definition 4. (Score) For any given candidate α, let B

define the set of offsets at which the repeats α(1), α(2), . . . , α(l)

start, i.e. B = {x, x +k−1, x +2k−1, . . . , x + (l −1)k−1}.
Then, the score sx , for a given candidate α is defined as the
total number of matches, i.e. sx = ∑

j∈B T (j).

We can then define the notion of ‘better’, for overlapping
candidates α, β, as the lexicographical ordering formed by
first comparing their lengths (i.e. l vs. m) and then their scores
(i.e. sx versus sy). Redundancy among candidates can now be
defined as follows:

Definition 5. (Redundant) A candidate α is said to be
redundant with respect to a candidateβ if and only ifα, β over-
lap, and β is better than α with respect to the lexicographical
ordering of their lengths and scores.

Alternatively, and equivalently, candidates α and β are said
to be redundant if α is easily recoverable from β. It is clearly
a desirable property that any filtering algorithm should be
conservative in the sense any repeat filtered out can be eas-
ily recovered from the remaining repeats. More formally, we
define the safety property as follows:

Definition 6. (Safety) Given a set of repeats R′
k . A set

A ⊂ R′
k is said to fulfill the safety property, if given any

r ∈ R′
k we can find some r ′ ∈ A such that r is redundant with

respect to r ′.

A schematic representation of the filtering algorithm is
shown in Figure 2. As before, we present the filtering
(Fig. 3) with the example from the previous section. Given
the sequence

S = ATAA AGAA ATAA GTAA GT

we filter the repeats as follows (we only show those offsets
for which the algorithm finds accepted repeats).

Given an offset x, we introduce the notion of a frame as a set
of repeats that start within k of the reference x. The algorithm

2705

A.Krishnan and F.Tang

Fig. 3. The filtering process for the example sequence: the striken
repeats indicate those that have been discarded. Figure 3a–e denote
the state of the vector sj and the filtered repeats found after each
offset (j = 1, 2, 3, 4 and 10 respectively).

essentially finds the best repeat within each frame, that makes
every other repeat in that frame redundant. We start with off-
set j = 1 as our reference offset and initially accept the first
repeat we find, viz. (1, ATAA, AGAA, ATAA, GTAA) as
our best repeat in that frame (Fig. 3a). We store the value of
s1 = 9 and also remember the offset for this repeat (j = 1).
We then consider the next repeat (offset j = 2) and com-
pare this with the previous repeat using the lexicographical
ordering defined earlier. Since the number of repeats for off-
set j = 2 is two as compared to four for j = 1, we discard the
repeat (2, TAAA, GAAA) (Fig. 3b). We then continue with

offset j = 3 and obtain (3, AAAG, AAAT, AAGT, AAGT)
and s3 = 10. Since the offset in this case is also within k of
the offset for the reference repeat, we compare the two repeats
using the lexicographical ordering. We find that the number
of repeats is the same in both cases and hence compare the
scores for the two repeats. Since (3, AAAG, AAAT, AAGT,
AAGT) has a higher score (implying fewer mismatches) than
(1, ATAA, AGAA, ATAA, GTAA), we accept (3, AAAG,
AAAT, AAGT, AAGT) as the best repeat (Fig. 3c).

The algorithm then continues with j = 4 and using the
methodology outlined earlier, discards the repeat with that
offset (Fig. 3d). At this point, the algorithm has obtained the
best repeat within the current frame as (3, AAAG, AAAT,
AAGT, AAGT). The algorithm then seeks for the reference
offset for the next frame. We examine the repeat with off-
set j = 10. Since this is not within k of the reference, we
check to see if this repeat has an overlap with the best repeat
for the current frame. Since this is the case, we discard this
repeat (Fig. 3e). Hence, the only accepted repeat for the
example sequence is (3, AAAG, AAAT, AAGT, AAGT).
This repeat, by definition, causes all the other repeats in
the frame (since in this case there is only one frame) to be
redundant.

IMPLEMENTATION AND RESULTS
We have implemented the algorithm described above and
applied it to several test sequences. The user can specify the
range of pattern sizes by providing lower and upper bounds.

Sensitivity
Our search algorithm is known to be exhaustive, and our fil-
tering algorithm is also known to be conservative, hence we
can precisely describe which repeats have been omitted. For
comparison, we studied the results from Benson’s TRF. Our
results were obtained by running TRF v3.21 (linux binary as
obtained from the web). The input parameters are summarized
in Table 1.

Table 2 displays some repeats found by our algorithm but not
by TRF. Of these, the first and the last repeats are confirmed to
be tandem repeats, with respect to the probabilistic definition
as used by TRF, since the web interface identifies them as such
when each subsequence was pasted into the web version of
TRF. The alignment of the first repeat is shown in Figure 4.

Performance
When measuring the performance of the program for search-
ing with various pattern lengths, we found that the total run
time (i.e. wall-clock time) was near-proportional to the size
of the output, namely the number of tandem repeats found
(see plot in Fig. 5). What this means is that writing the output
is significantly more expensive than the other computational
operations performed during the run. So plotting the total run
time of the program at best reveals information about the

2706

Exhaustive whole-genome tandem repeats search

Table 1. Parameters used for Benson’s Tandem Repeats Finder, v3.21

Parameter Value

(match, mismatch, indels) (2, 7, 7)
Match prob. 80
Indel prob. 10
Min. align. score to report 50
Max. period size 500

The reader is referred to Benson (1999) for an explanation of these parameters.

Table 2. Some tandem repeats in H. sapiens chr. 1 which are not found by
TRF

Period Copies Contig Indices

37 3NT_019273.15 6338192–6338302
84 2NT_021877.15 5031665–5031832

176 2NT_021877.15 413526–413877
111 2NT_021937.15 1425446–1425667
118 2NT_021937.15 526994–527229

1410 4NT_032962.4 2607662–2613301

Reading Sequence Data...Done
Hs1_19429 NT_019273.15 Homo sapiens chromosome 1
genomic contig
Sequence length 6517873 base pairs
37:3:6338192
REPEAT 37:3:6338192
 TGGTGGCTGGACAGAGGCGCTCCCCACCTCCCAGATG
 34 matches # # #
 GGGCGGCTGGGCAGAGGCGCTCCCCACCTCCCAGATG
 34 matches # # #
 GGGTGGCTGGGCAGAAGCGCTCCTCACCTCCCAGATG
score == 68 / 74
====================

Fig. 4. Repeat in genomic contig NT_004391 of period 48, count 10.

input sequence itself (namely something about the inherent
redundancy) rather than any characteristic of the algorithm.
Therefore, the following timings were made on a variant of
program whose output is disabled (i.e. the timing no longer
counts the disk I/O operations).

The time required to search for tandem repeats, of pattern
lengths from 2 to 500, is displayed in Figure 6. The graph, and
a linear-regression analysis, suggest that for a given pattern
size range, run time is proportional to the length of the input
sequence.

Figure 6b shows the time required for various pattern size
ranges. The graph, and a linear-regression analysis, sug-
gest that the run time is proportional to the size of pattern
size range. Figure 7 shows the time spent searching for tan-
dem repeats of specific pattern lengths, omitting the time
required to read the input sequence into memory. The graph

Fig. 5. Plot of run time against output size for specific pattern
lengths. Input sequence: H.sapiens chromosome 1.

roughly shows that the performance improves as the pattern
size increases. In practice, we can find all tandem repeats
in Homo sapiens chromosome 1 (about 229 million nucleo-
tides, i.e. N = 229 × 106) for pattern sizes from 2 to 500
in <90 min (this timing is for the original program with out-
put). Scanning the same sequence for pattern sizes from 2 to
10 000 takes <29 h. These figures were obtained from code
compiled with Intel Compiler 7.1, and execution runs on an
Itanium 2, 900 MHz processor. The machine has 8 GB of
RAM installed, though the program requires ∼1 GB to pro-
cess this particular sequence. The graph coincides with our
theoretical prediction of linear asymptotic performance.

Figure 8 shows the performance of the filtering algorithm for
a particular pattern size (1866) for a small section of H.sapiens
chromosome 1. The figures show the unfiltered and filtered
outputs. The filtering algorithm was able to decrease the num-
ber of repeats reported from 13 733 belonging to 11 distinct
groups (or frames) to 11 repeats, corresponding to one from
each group (frame).

Parallelization
Other than initially reading the sequence data, our algorithm
is essentially embarrassingly parallel, since we can inde-
pendently search for tandem repeats for different pattern
lengths k. For example, we can parallelize the search across
two processing elements by searching with the following pat-
tern length ranges: 2–5001 and 5002–10001. We generalized
this and partitioned the pattern length range 2–10001 evenly
between 1, 5, 10, 25 and 50 processors. We achieve near-
linear speed-up, (see Fig. 9 for a plot of speed-up against the
theoretical maximum of linear-speed-up). The parallel com-
puter was a Beowulf-class cluster consisting of 64 compute
nodes with dual 1.4 GHz Pentium III processors (i.e. a total of
128 processors) and at least 2 GB of RAM. The input sequence
was stored on a shared partition on a NAS (disks with a ded-
icated NFS server). It is likely that disk bandwidth contention
is a significant factor explaining why, for 50 CPUs, we only

2707

A.Krishnan and F.Tang

Fig. 6. Performance with respect to input sequence length. System:
HP rx2600 (dual Itanium 2 900MHz), 8GB RAM, Intel C Compiler
7.1 for Itanium. (a) Run time against input sequence length. The log–
log plot has slope 1, and thus run time is linearly dependent on input
length. Times displayed are for pattern size 2 to 500 nt, in: A. fulgidus
DSM 4304; H.sapiens chromosome 21; H.sapiens chromosome 1.
(b) Run time against pattern range size. The log-log plot has slope
1, and thus run time is linearly dependent on pattern length range.
Input sequence: H.sapiens chromosome 1 (229M nt).

attain 97% of the theoretical maximum speed-up, since, for
H.sapiens chromosome 1, each of the 50 processes initially
has to read almost 230 MB from disk.

DISCUSSION AND SUMMARY
We have presented an exhaustive algorithm for finding all
maximal, approximate tandem repeats. Additionally, we have
also presented a filtering algorithm that reduces the exhaustive
set of maximal ATRs to a smaller set with fewer redundancies.

Our definition of ATR uses Hamming distance which cannot
take into account insertions and deletions, unlike the defini-
tion used by, e.g., Benson’s TRF. However, since we have

Fig. 7. Run time against pattern size. Timings omit time-spent initial
reading input sequence into memory.

Fig. 9. Performance with parallelization. Times obtained cluster
consisting of 32 HP Proliant DL360-G2 (dual Pentium III 1.4 GHz)
compute nodes, each with at least 2 GB of RAM.

shown that our algorithm can find ATRs missed by TRF,
we believe that our program should augment those currently
available to the bioinformatician.

We can show that for a given k, the complexity of our
algorithm has worst-case upper bound of O(kN), thus for
all possible k, the complexity is O(N3). However, the con-
structed input sequence used to obtain this bound is very
specific and, we believe, is unlikely to be observed in typical
organisms. In fact, empirical evidence suggests, for typical
inputs and a given pattern size, run time is almost linearly
proportional to input length (Fig. 6a). Furthermore, since the
cost of the disk writes is relatively expensive, the real-world
performance is ultimately more dependent on the number of
tandem repeats present in the input sequence.

Modifying the algorithm to use a measure which can
account for indels between copies, e.g. edit distance, will
likely adversely affect worst case performance, and
significantly increase the real-life run time. This is because
dynamic programming will likely be required to determine
whether two copies are similar, and this has O(k2) complexity,

2708

Exhaustive whole-genome tandem repeats search

(a) Unfiltered output (b) Filtered output

Fig. 8. Outputs from a section of H.sapiens chromosome 1 for a pattern size of 1866. The figures show the unfiltered and filtered outputs
for the algorithm. The filtering algorithm decreased the number of repeats from 13 733 (belonging to 11 distinct groups as can be seen from
Fig 8a) to 11 tandem repeats (corresponding to one for each group) as seen in Figure 8b.

whereas in the current algorithm, similarity can be determined
in at best O(1) and at worst O(k) time.

The filtering algorithm that we have described is more
conservative than aggressive.5 Nevertheless, as shown in
Figure 7, the filtering algorithm helps to pare down the
exhaustive set to more manageable proportions. However,
we do not filter repeats across pattern sizes. This implies,
e.g., that a repeat which occurs at a higher pattern size (e.g.
60), could occur again for a pattern size that is a factor of the
larger pattern size (e.g. 30).

Moreover, the algorithm that we have described is embar-
rassingly parallel. As a result, it is very easy to parallelize the
algorithm on a compute cluster or even on the grid. Another
advantage of our algorithm is that there are no inherent restric-
tions on the input file sizes or on the pattern sizes being
searched.

Not described in this article, our implementation allows the
threshold p and the number of repeats l to be parameterized
by pattern size k. This allows for the algorithm to account for
the fact that a small k, in general, gives repeats of large l, and
for large k even low similarity scores are significant.

ACKNOWLEDGEMENTS
The authors would like to thank Li Kuo-Bin, Stephen Wong
and Alywin Ng for fruitful discussions on the topic. Thanks
again to Li Kuo-Bin for suggesting the problem.

5 We suspect that there might not necessarily exist a completely non-
redundant and safe set.

REFERENCES
Benson,G. (1999) Tandem repeats finder: a program to analyze DNA

sequences. Nucleic Acids Res., 27, 573–580.
Cohen,I., Liu,X., Schutz,C., White,B., Jenkins,E., Brown,W.

and Holden,J. (2003) Association of autism severity with a
monoamine oxidase A functional polymorphism. Clin. Genet.,
64, 190–197.

Collins,J.R., Stephens,R.M., Gold,B., Long,B., Dean,M. and
Burt,S.K. (2003) An exhaustive DNA micro-satellite map of the
human genome using high performance computing. Genomics,
82, 10–19.

Fogu,G., Bertini,V., Dessole,S., Bandiera,P., Campus,P.M.,
Capobianco,G., Sanna,R., Soro,G. and Montella,A. (2003) Iden-
tification of a mutant allele of the androgen receptor gene in a
family with androgen insensitivity syndrome: detection of carriers
and prenatal diagnosis. Arch. Gyn. Obstet., 269, 25–29.

Groult,R., Léonard,M. and Mouchard,L. (2002) Evolutive tan-
dem repeats using Hamming distance. In Proceedings of 27th
Symposium on Mathematical Foundations of Computer Science,
Warsaw, Poland, August 2002, Springer, pp. 292–304.

Groult,R., Léonard,M. and Mouchard,L. (2004) Speeding up detec-
tion of evolutive tandem repeats. Theor. Comp. Sci., 310,
309–328.

Guerini,F.R., Ferrante,P., Losciale,L., Caputo,D., Lombardi,M.L.,
Pirozzi,G., Luongo,V., Sudomoina,M.A., Andreewski,T.V.,
Alekseenkov,A.D. et al. (2003) Myelin basic protein gene is asso-
ciated with ms in DR4- and DR5-positive Italians and Russians.
Neurology, 61, 520–526.

Kolpakov,R. and Kucherov,G. (2003) Finding approximate repeti-
tions under Hamming distance. Theor. Com. Sci., 303, 135–156.

Kurtz,S., Choudhuri,J.V., Ohlebusch,E., Schleiermacher,C., Stoye,J.
and Giegerich,R. (2001) REPuter: the manifold applications of

2709

A.Krishnan and F.Tang

repeat analysis on a genomic scale. Nucleic Acids Res., 29,
4633–4642.

Landau,G.M., Schmidt,J.P. and Sokol,D. (2001) An algorithm for
approximate tandem repeats. J. Comp. Biol., 8, 1–18.

Licastro,F., Grimaldi,L.M., Bonafe,M., Martina,C., Olivieri,F.,
Cavallone,L., Giovanietti,S., Masliah,E. and Franceschi,C. (2003)
Interleukin-6 gene alleles affect the risk of Alzheimer’s disease
and levels of the cytokine in blood and brain. Neurobiol. Aging,
24, 921–926.

Qian,Q., Wang,Y., Li,J., Yang,L., Wang,B. and Zhou,R. (2003)
Association studies of dopamine D4 receptor gene and

dopamine transporter gene polymorphisms in Han Chinese
patients with attention deficit hyperactivity disorder. J. Peking
Univ. Hea. Sci., 35, 412–418.

Sagot,M. and Myers,E.W. (1998) Identifying satellites in nucleic
acid sequences. In Second Annual International Conference on
Research in Computational Molecular Biology (RECOMB). ACM
Press, New York, pp. 234–242.

Stolovitzky,G., Gao,Y., Floratos,A. and Rigoutsos,I. (2001) Tan-
dem repeat detection using pattern discovery, with applications to
identification of yeast satellites. Technical Report RC 21508. IBM
T. J. Watson Research Center, Cambridge.

2710

