// The Estes A8-3 and C6-7 motors have diameter of 17.7 mm, // length 69.5 mm. The Estes Alpha launch pad has rod diameter 3.4 mm. motor_diam = 17.7 + 1.2; // add some tolerance motor_len = 69.5 + 0.5; segment_overlap = 15; loose_fit_diam_diff = 1.1; // cylinder with outer diameter d1 // will fit loosely into the hole with inner diameter // d1 + loose_fit_diam_diff tight_fit_diam_diff = 0.4; // cylinder with outer diameter d1 // will fit tightly into the hole with inner diameter // d1 + tight_fit_diam_diff thin_wall = 1.0; // depends on the print width thick_wall = 2*thin_wall + loose_fit_diam_diff/2; // motor_diam + 2*thick_wall is the outer diameter of the rocket motor_wall = thick_wall; // above the motor clip_height = 3.5; clip_width = 1.2; clip_clearance = 1.0; clip_inner_space = motor_diam/2 - 1.5; rod_diam = 3.4 + 1; rubber_beam_height = 3; rubber_beam_width = 1.5; fin_thickness = 1.5; eps = 0.01; infty = 250; // rod holder module rod_holder() { // rod hole holder hull() { translate([motor_diam/2 + thick_wall + thin_wall + rod_diam/2, 0, 0]) cylinder(r = rod_diam/2 + thin_wall, h = thick_wall); translate([motor_diam/2 + thick_wall - thin_wall - rod_diam/2, 0, 0]) cylinder(r = rod_diam/2 + thin_wall, h = 3*thick_wall); } } module rod_hole() { // rod hole translate([motor_diam/2 + thick_wall + thin_wall + eps + rod_diam/2, 0, 0]) cylinder(r = rod_diam/2, h = infty); } //----------------- MOTOR MODULE ----------------------------- module fin() { assign(h1 = 2*motor_len/3, // near end height h2 = 20, // far end height h_off = motor_len, // height offset of the far height w = 30, // distance of the far height fin_w = fin_thickness) translate([0, -fin_w/2, -h1]) hull() { cube([eps, fin_w, h1]); // near end translate([w, 0, h_off]) // far end cube([eps, fin_w, h2]); }; }; // alternative fin layout module fin2() { assign(h1 = motor_len/2, // near end height w2 = 23, // bottom/far end width h_off = 60, // height offset of the far height w = 30, // distance of the far height fin_w = fin_thickness) translate([0, -fin_w/2, -h1]) hull() { cube([eps, fin_w, h1]); // near end translate([w-w2, 0, h_off]) // far end cube([w2, fin_w, eps]); }; }; rod_hole_height = 20; rod_hole_side = 1.5*(rod_diam + thin_wall); module motor_module_solid() { // cone from loose_fit to tight fit, 1/3 of segment overlap cylinder(r1 = motor_diam/2 + thin_wall, r2 = motor_diam/2 + thick_wall - thin_wall - tight_fit_diam_diff/2, h = segment_overlap/3 + eps); // tight fit cylinder, 2/3 of segment overlap translate([0, 0, segment_overlap/3]) cylinder(r = motor_diam/2 + thick_wall - thin_wall - tight_fit_diam_diff/2, h = 2*segment_overlap/3 + eps); // conical joint between the two cylinders translate([0, 0, segment_overlap - thick_wall + thin_wall]) cylinder(r1 = motor_diam/2 + thick_wall - thin_wall - tight_fit_diam_diff/2, r2 = motor_diam/2 + thick_wall, h = thick_wall - thin_wall + eps); // the thick cylinder above it translate([0, 0, segment_overlap]) cylinder(r = motor_diam/2 + thick_wall, h = motor_len + motor_wall - segment_overlap); // fins for (a = [60, 180, 300]) { rotate([0, 0, a]) translate([motor_diam/2 + thick_wall-thin_wall, 0, motor_wall + motor_len]) // fin(); fin2(); }; // motor clip for (angle = [120, -120]) rotate([0, 0, angle]) intersection() { translate([clip_inner_space, -infty/2, motor_len + motor_wall + clip_clearance]) cube([clip_width, infty, clip_height]); rotate([0, 0, -60]) translate([-infty/2, 0, 0]) cube(infty); rotate([0, 0, -120]) translate([-infty/2, 0, 0]) cube(infty); }; translate([0, 0, motor_len + motor_wall]) scale([1, 1, -1]) rod_holder(); }; module motor_module() { difference() { motor_module_solid(); // top ring to hold the motor inside translate([0, 0, -eps]) cylinder(r = motor_diam/2 - motor_wall, h = motor_wall + 2*eps); // motor hole translate([0, 0, motor_wall - eps]) cylinder(r = motor_diam/2, h = motor_len + 2*eps); // three rails inside the motor hole translate([0, 0, segment_overlap + thick_wall]) difference() { union() { cylinder(r = motor_diam/2 + thin_wall, h = motor_len - segment_overlap - 2*thick_wall + eps); translate([0, 0, motor_len - segment_overlap - 2*thick_wall]) cylinder(r1 = motor_diam/2 + thin_wall, r2 = motor_diam/2, h = thick_wall + eps); }; for (a = [0, 120, 240]) rotate([0, 0, a]) translate([motor_diam/2 + 2.5, 0, -eps]) cylinder(r = 3, h = infty); }; rod_hole(); }; }; // -------------------- CENTRAL TUBE --------------------- central_tube_h = 97; central_clip_r = 12; central_clip_w = 4; central_clip_wall = 1.5; central_clip_clearance = 2.5; module central_tube_solid() { cylinder(r = motor_diam/2 + thick_wall, h = central_tube_h); rod_holder(); }; module central_tube() { difference() { central_tube_solid(); translate([0, 0, -eps]) cylinder(r = motor_diam/2 + thick_wall - thin_wall, h = infty); rod_hole(); }; }; //------------------------- FRONT CONE ----------------------- cone_h = 45; cone_resolution = 40; cone_solid_h = 10; function bez_i4(t, ctls) = (pow(1-t, 3) * ctls[0]) + (3 * t * pow(1-t, 2) * ctls[1]) + (3 * pow(t, 2) * (1-t) * ctls[2]) + (pow(t, 3) * ctls[3]); module bezier_cone(cps, res) { for (t = [0:1:res]) translate([0, 0, (bez_i4(t/res, cps))[0]]) cylinder(r1 = (bez_i4(t/res, cps))[1], r2 = (bez_i4((t + 1)/res, cps))[1], h = (bez_i4((t + 1)/res, cps))[0] - (bez_i4(t/res, cps))[0] + eps); }; module front_cone_body() { translate([0, 0, segment_overlap]) bezier_cone([ [ 0, motor_diam/2 + thick_wall ], // start [ cone_h/4, motor_diam/2 + thick_wall ], // cp 1 [ cone_h - motor_diam/2 - thick_wall, motor_diam/2 + thick_wall ], // cp 2 [ cone_h, 0 ], ], 40); translate([0, 0, segment_overlap-thick_wall+thin_wall]) cylinder(r1 = motor_diam/2+thin_wall, r2 = motor_diam/2 + thick_wall, h = thick_wall - thin_wall + eps); cylinder(r = motor_diam/2+thin_wall, h = segment_overlap + eps); }; module front_cone() { difference() { front_cone_body(); intersection() { translate([0, 0, segment_overlap]) bezier_cone([ [ 0.7*thin_wall, motor_diam/2 + thick_wall - thin_wall ], // start [ cone_h/4-0.7*thin_wall, motor_diam/2 + thick_wall - thin_wall], // cp 1 [ cone_h - motor_diam/2 - thick_wall + thin_wall - 1.4*thin_wall, motor_diam/2 + thick_wall - thin_wall ], // cp 2 [ cone_h - 1.4*thin_wall, 0 ], ], 40); cylinder(r = motor_diam/2 + thick_wall + eps, h = cone_h + segment_overlap - cone_solid_h); }; translate([0, 0, segment_overlap-thick_wall+1.7*thin_wall]) cylinder(r1 = motor_diam/2, r2 = motor_diam/2 + thick_wall-thin_wall, h = thick_wall-thin_wall + eps); translate([0, 0, -eps]) cylinder(r = motor_diam/2, h = segment_overlap + 2*eps); }; }; debug = 0; if (debug == 1) { // debug difference($fn = 16) { front_cone(); central_tube(); motor_module(); translate([0, 0, -infty/2]) cube(infty); }; } else { // production $fn = 128; translate([motor_diam + thick_wall, 0, 0]) motor_module(); rotate([0, 0, 120]) translate([motor_diam + thick_wall, 0, 0]) central_tube(); rotate([0, 0, 240]) translate([motor_diam + thick_wall, 0, 0]) front_cone(); }