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Abstract. Meta-theorems for polynomial (linear) kernels have been the
subject of intensive research in parameterized complexity. Heretofore, there
were meta-theorems for linear kernels on graphs of bounded genus, H-minor-free
graphs, and H-topological-minor-free graphs. To the best of our knowledge,
there are no known meta-theorems for kernels for any of the larger sparse
graph classes: graphs of bounded expansion, locally bounded expansion, and
nowhere dense graphs. In this paper we prove meta-theorems for these three
graph classes. More specifically, we show that graph problems that have finite
integer index (FII) have linear kernels on graphs of bounded expansion when
parameterized by the size of a modulator to constant-treedepth graphs. For
graphs of locally bounded expansion, our result yields a quadratic kernel and for
nowhere dense graphs, a polynomial kernel. While our parameter seem rather
strong, we show that a linear kernel result on graphs of bounded expansion
with a weaker parameter will necessarily fail to include some of the problems
included in our framework. Moreover, we only require problems to have FII
on graphs of constant treedepth. This allows us to prove linear kernels for
problems such as Longest Path/Cycle, Exact s, t-Path, Treewidth, and
Pathwidth which do not have FII in general graphs.

1 Introduction
Data preprocessing has always been a part of algorithm design. The last decade
has seen steady progress in the area of kernelization, an area which deals with the
design of polynomial-time preprocessing algorithms. These algorithms compress
an input instance of a parameterized problem into an equivalent output instance
whose size is bounded by some (small) function of the parameter. Parameterized
complexity theory guarantees the existence of such kernels for problems that
are fixed-parameter tractable. Of special interest are cases for which the size of
the output instance is bounded by a polynomial (or even linear) function of the
parameter, the so-called polynomial (or linear) kernels.

Of great utility are algorithmic meta-theorems, results that focus on prob-
lem classes instead of single problems. In the area of graph algorithms, such
meta-theorems usually have the following form: all problems that have a specific
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property admit an algorithm of a specific type on a specific graph class. In this
paper we focus on meta-theorems for linear or polynomial kernels on sparse graph
classes. After early results such as [1,15], the first such meta-theorem due to Bod-
laender et al. [5] states that problems that have finite integer index (FII) and are
quasi-compact admit linear kernels on graphs of bounded genus. Fomin et al. [14]
extended the result to H-minor-free graphs, a strictly larger class of graphs, for
problems which have FII, are bidimensional and satisfy the separation property.
This result was, in turn, generalized in [16] to H-topological-minor-free graphs,
which strictly contain H-minor-free graphs. Here, the problems are required to
have FII and to be treewidth-bounding.

The keystone to all these meta-theorems is finite integer index. Roughly speak-
ing, a graph problem has finite integer index if there exists a finite set S of graphs
such that every instance of the problem can be “represented” by a member of S.
This property is the basis of the protrusion replacement rule whereby protru-
sions (pieces of the input graph satisfying certain requirements) are replaced by
members of the set S. The protrusion replacement rule is a crucial ingredient to
obtaining small kernels. Note that FII is not directly related to the expressibility of
the problem in a certain logic. For example, Hamiltonian Path has FII on gen-
eral graphs whereas Longest Path does not, though both are EMSO-expressible
(see [5] for sufficiency conditions for MSO-expressible problems to have FII).

Although these meta-theorems (viewed in chronological order) steadily covered
larger graph classes, the set of problems captured in their framework diminished
as the second precondition became stricter. For H-topological-minor-free graphs
this precondition is to be treewidth bounding. A (parameterized) graph problem
is treewidth-bounding if yes-instances have a vertex set of size linear in the pa-
rameter deletion of which results in a graph of bounded treewidth. Such a vertex
set is called a modulator to bounded treewidth. While treewidth-boundedness is a
strong prerequisite, it is important to note that the combined properties of bidi-
mensionality and separability (used to prove the result on H-minor-free graphs)
imply treewidth-boundedness [14]. In fact, quasi-compactness may be viewed
as a relaxation of the property of being treewidth-bounded. What this shows is
that all meta-theorems on linear kernels for graph classes up until H-topological-
minor-free graphs implicitly used a property akin to treewidth-boundedness.

Another way of viewing the meta-theorem in [16] is as follows: when param-
eterized by a treewidth modulator, problems that have FII have linear kernels
in H-topological-minor-free graphs. A natural problem therefore is to identify
the least restrictive parameter that can be used to prove a meta-theorem for
linear kernels for the next well-known class in the sparse-graph hierarchy, namely,
graphs of bounded expansion. This class was defined by Nešetřil and Ossona de
Mendez [20] and subsumes the class of H-topological-minor-free graphs. However,
a modulator to bounded treewidth does not seem to be a useful parameter for
this class. Any graph class G can be transformed into a class G̃ of bounded
expansion by replacing every graph G ∈ G with G̃, obtained in turn by replacing
each edge of G by a path on |V (G)| vertices. This transformation changes nei-
ther the treewidth nor the feedback vertex numbers of the graphs. Hence, if a
treewidth-bounding graph problem (that additionally has FII) has a linear kernel
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on graphs of bounded expansion then, in particular, Feedback Vertex Set
and Treewidth t-Vertex Deletion3 have linear (vertex) kernels in general
graphs. The best-known vertex kernel for Feedback Vertex Set in general
graphs is quadratic [22], for Treewidth t-Vertex Deletion in general graphs
is of size kg(t), where g is some function [13]. This strongly suggests that one
would have to choose an even more restrictive parameter to prove a meta-theorem
for linear kernels on graphs of bounded expansion. In particular, the parameter
must not be invariant under edge subdivision. If we assume that the parameter
does not increase for subgraphs, it must necessarily attain high values on paths.
Treedepth [20] is precisely a parameter that enforces this property, since graphs
of bounded treedepth are essentially degenerate graphs with no long paths. Note
that bounded treedepth implies bounded treewidth.

Our contribution. We show that, assuming FII, a parameterization by the size
of a modulator to bounded treedepth allows for linear kernels in linear time on
graphs of bounded expansion. The same parameter yields quadratic kernels in
graphs of locally bounded expansion and polynomial kernels in nowhere dense
graphs, both strictly larger classes. In particular, nowhere dense graphs are the
largest class that may still be called sparse [20]. In these results we do not require
a treedepth modulator to be supplied as part of the input, as we show that it
can be approximated to within a constant factor.

Furthermore, we only need FII to hold on graphs of bounded treedepth, thus
including problems which do not have FII in general. Some problems that are
included because of this relaxation are Longest Path/Cycle, Pathwidth
and Treewidth, none of which have polynomial kernels with respect to their
standard parameters, even on sparse graphs, since they admit simple AND/OR-
Compositions [4]. Problems covered by our framework include Hamiltonian
Path/Cycle, several variants of Dominating Set, (Connected) Vertex
Cover, Chordal Vertex Deletion, Feedback Vertex Set, Induced
Matching, and Odd Cycle Transversal. In particular, we cover all problems
included in earlier frameworks [5,14,16]. We wish to emphasize, however, that
this paper does not subsume these results because of our usage of a structural
parameter.

To show that a parameterization by a treedepth modulator has merit outside
of the sparse hierarchy, we extend the polynomial kernel result for Longest
Path in [6] parameterized by the vertex cover number to the weaker treedepth-
modulator parameter.

Finally, notice that a kernelization result for Treewidth, Pathwidth or
Longest Cycle on graphs of bounded expansion with a parameter closed under
edge subdivision would automatically imply the same result for general graphs.
This forms the crux of our belief that any relaxation of the treedepth parameter
to prove a meta-theorem for linear kernels on graphs of bounded expansion will
exclude problems akin to these three.

3 For problem definitions, see the appendix.
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2 Preliminaries
We use standard graph-theoretic notation (see [10] and Appendix for any unde-
fined terminology). All our graphs are finite and simple. Given a graph G, we use
V (G) and E(G) to denote its vertex and edge sets. For convenience we assume
that V (G) is a totally ordered set, and use uv instead of {u, v} to denote an edge
of G. Since we primarily consider sparse graphs, we let |G| denote the number of
vertices in the graph G. The distance dG(v, w) between two vertices v, w ∈ V (G)
is the length (number of edges) of a shortest v, w-path in G and ∞ if v and w
lie in different connected components. By ω(G) we denote the size of the largest
complete subgraph of G.

For S ⊆ V (G), we let NG(S) denote the set of vertices in V (G) \ S that have
at least one neighbor in S, and for a subgraph H of G we define NG(H) :=
NG(V (H)). If X is a subset of vertices disjoint from S, then NG

X (S) is the set
NG(S) ∩X (and similarly for NG

X (H)). Given a graph G and a set W ⊆ V (G),
we define ∂G(W ) as the set of vertices in W that have a neighbor in V \W . Note
that NG(W ) = ∂G(V (G) \W ). A graph G is d-degenerate if every subgraph G′
of G contains a vertex v ∈ V (G′) with degG(v) 6 d. The degeneracy of G is the
smallest d such that G is d-degenerate. In the rest of the paper we drop the index
G from all the notation if it is clear which graph is being referred to.

A graph problem Π is a set of pairs (G, ξ), where G is a graph and ξ ∈ N0,
such that for all graphs G1, G2 and all ξ ∈ N0, if G1 ∼= G2 then (G1, ξ) ∈ Π iff
(G2, ξ) ∈ Π. For a graph class G, we define ΠG as the set of pairs (G, ξ) ∈ Π
such that G ∈ G.

Graph classes. We denote the treewidth of a graph G by tw(G) and its
pathwidth by pw(G). As treedepth is not as much known measure, we provide
the definition here. In this context, a rooted forest is a disjoint union of rooted
trees. For a vertex x in a tree T of a rooted forest, the height (or depth) of x
in the forest is the number of vertices in the path from the root of T to x. The
height of a rooted forest is the maximum height of a vertex of the forest. The
closure clos(F) of a rooted forest F is the graph with vertex set

⋃
T∈F V (T ) and

edge set {xy | x is an ancestor of y in F}. A treedepth decomposition of a graph
G is a rooted forest F such that G ⊆ clos(F).

Definition 1 (Treedepth). The treedepth td(G) of a graph G is the minimum
height of any treedepth decomposition of G.

Both treewidth and treedepth can be computed efficiently:

Proposition 1 ([2,20]). Given a graph G with n nodes and a constant w, it is
possible to decide whether G has treewidth (treedepth) at most w, and if so, to
compute an optimal treewidth (treedepth) decomposition of G in time O(n).

We list some well-known facts about graphs of bounded treedepth. Proofs
are omitted and can be found in [20]. If a graph has no path with more than d
vertices, then its treedepth is at most d. For any graph G with td(G) 6 d, it holds
that (1) G has no paths with 2d vertices and, in particular, any DFS-tree of G
has depth at most 2d − 1; (2) G is d-degenerate and hence has at most d · |V (G)|
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edges; (3) tw(G) 6 pw(G) 6 d − 1. A useful way of thinking about graphs of
bounded treedepth is that they are (sparse) graphs with no long paths.

Definition 2 (Shallow minor [20]). For d ∈ N0, a graph H is a shallow
minor at depth d of G if there exist disjoint subsets V1, . . . , Vp of V (G) such that

1. each graph G[Vi] has radius at most d, meaning that there exists vi ∈ Vi (a
center) such that every vertex in Vi is within distance at most d in G[Vi];

2. there is a bijection ψ : V (H) → {V1, . . . , Vp} such that for u, v ∈ V (H),
uv ∈ E(H) iff there is an edge in G with an endpoint each in ψ(u) and ψ(v).

Note that if u, v ∈ V (H), ψ(u) = Vi, and ψ(v) = Vj then dG(vi, vj) 6 (2d+ 1) ·
dH(u, v). The class of shallow minors of G at depth d is denoted by GO d. This
notation is extended to graph classes G as well: G O d =

⋃
G∈G GO d.

The class of graphs of bounded expansion is defined using the notion of
greatest reduced average density (grad) (see [17, 21] for details). Let G be a graph
class. Then the greatest reduced average density of G with rank d is defined as
∇d(G) = supH∈G O d(|E(H)|/|V (H)|). This notation is extended to graphs via
the convention ∇d(G) := ∇d({G}). In particular, note that GO 0 denotes the
set of subgraphs of G and hence 2∇0(G) is the maximum average degree of all
subgraphs of G—i.e. its degeneracy.

Definition 3 (Bounded expansion [17]). A graph class G has bounded ex-
pansion if there exists a function f : N→ R (called the expansion function) such
that for all d ∈ N, ∇d(G) 6 f(d).

If G is a graph class of bounded expansion with expansion function f , we say
that G has expansion bounded by f . An important relation we make use of later
is: ∇d(G) = ∇0(GO d), i.e. the grad of G with rank d is precisely one half the
maximum average degree of subgraphs of its depth d shallow minors.

3 The Protrusion Machinery
We restate the main definitions of the protrusion machinery developed in [5, 14].
An r-protrusion in a graph is a subgraph that is separated from the rest of the
graph by a small boundary and, in addition, has small treewidth:

Definition 4 (r-protrusion [5]). Given a graph G, a set W ⊆ V (G) is a r-
protrusion of G if |∂G(W )| 6 r and tw(G[W ]) 6 r − 1. 4 We call ∂G(W ) the
boundary and |W | the size of the protrusion W . For an r-protrusion W , we
call the set W ′ = W \ ∂G(W ) the restricted protrusion of W . Given a restricted
r-protrusion W ′, we denote its extended protrusion by W ′+ = W ′∪N(W ′) = W .

A t-boundaried graph is a graph G with a set bd(G) of t distinguished vertices
labeled 1 through t, called the boundary5 or the terminals of G. Given a graph
class G, we let Gt denote the class of t-boundaried graphs from G. If W ⊆ V (G)
4 We want the bags in a tree-decomposition of G[W ] to be of size at most r.
5 Usually denoted by ∂(G), but this collides with our usage of ∂.



6

is an r-protrusion in G, then we let GW be the r-boundaried graph G[W ] with
boundary ∂G(W ), where the vertices of ∂G(W ) are assigned labels 1 through r
according to their order in B. t-boundaried graphs can be easily composed
together. For t-boundaried graphs G1,G2, we let G1 ⊕ G2 denote the graph
obtained by taking the disjoint union of G1 and G2 and identifying each vertex
in bd(G1) with the vertex in bd(G2) with the same label, making the graph simple
if necessary. In the opposite direction, for H ⊆ G with a boundary B of size t we
define G	B H := G− (V (H) \B) to be a t-boundaried graph with boundary B.
The vertices of bd(G 	B H) are assigned labels 1 through t according to their
order in the graph G. To assist comprehensibility, we sometimes annotate the ⊕
operator with the boundary as well.

Definition 5 (Replacement). Let G be a graph with a t-protrusion W and
let H be a t-boundaried graph. Then replacing W by H corresponds to the
operation (G	B GW )⊕B H.

The following definition concerns the centerpiece of our framework. We use
the FII property in our framework only for replacing protrusions.

Definition 6 (Finite integer index; FII). Let ΠG be a graph problem re-
stricted to a class G and let G1, G2 be two t-boundaried graphs in Gt. We say
that G1 ≡ΠG ,t G2 if there exists an integer constant ∆ΠG ,t(G1, G2) (that depends
on ΠG, t, and the ordered pair (G1, G2)) such that for all t-boundaried graphs
G ∈ Gt and for all ξ ∈ N:

1. G1 ⊕G ∈ G iff G2 ⊕G ∈ G;
2. (G1 ⊕G, ξ) ∈ ΠG iff (G2 ⊕G, ξ +∆ΠG ,t(G1, G2)) ∈ ΠG.

Note that ∆ΠG ,t(G1, G2) = −∆ΠG ,t(G2, G1). In the case that (G1 ⊕G, ξ) 6∈ ΠG
or G1 ⊕G 6∈ G for all G ∈ Gt, we set ∆ΠG ,t(G1, G2) = 0. We say that ΠG has
finite integer index in the class G′ ⊆ G if, for every integer t, there are at most
g(t) equivalence classes of ≡ΠG ,t that contain at least one member of G′, where
g is a function that depends on t, ΠG and G′.

Our definition above is more general than the one in [8] in that we define a
problem ΠG to have FII in a subclass G′ ⊆ G rather than in the whole class G.
Our prototypical problem, Longest Path, does not have FII on graph classes of
bounded expansion but—as shown later—does so when we restrict the treedepth
to be at most some fixed constant. Thus, this relaxed notion of FII allows us to
include a larger set of problems in our framework. One must, however, be careful
while replacing protrusions since whatever they are replaced with must also have
treedepth at most d. The following lemma shows that this can indeed be ensured.
We state Lemma 1 and Reduction Rule 1 in a general setting because we hope
that they might be also applicable elsewhere.

Consider a function ϕ : G → N that maps members of a graph class to integers.
In our case, we use ϕ ≡ td, mapping each member of G to its treedepth number.
Let G(d) denote the set of graphs G ∈ G for which ϕ(G) 6 d. The problems ΠG
that we consider are such that for all d ∈ N, ΠG has FII in G(d). This means that
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while ≡ΠG ,t can have an infinite number of equivalence classes, for each d ∈ N,
at most g(t, d) of these equivalence classes contain a graph G with ϕ(G) 6 d,
where g is some function of t, d and Π. For each boundary size t and d ∈ N,
we let Rt,G(d) denote a set of graphs from G(d) that are representatives of these
equivalence classes of ≡ΠG ,t that contain at least one graph G with ϕ(G) 6 d.

Lemma 1. [?] Fix c, d, t ∈ N. If H is a t-boundaried graph in G(c · d) such that
H ≡ΠG ,t H

′ for some t-boundaried graph H ′ in G(d), then there exists R ∈ Rt,G(d)
such that R ≡ΠG ,t H.

For a graph problem Π that has FII in the class G, we let ρΠG (t, d) denote
the size of the largest representative in Rt,G(d). Subscripts are omitted when the
problem is clear from the context. Our reduction rule is formalized as follows.

Reduction Rule 1 (Protrusion replacement) Let (G, ξ) ∈ ΠG and c, d, t ∈
N be constants. Suppose that W ⊆ V (G) is a t-protrusion such that |W | 6
2ρ(t, cd) and suppose that ϕ(GW ) 6 cd, and G[W ] ≡ΠG ,t H, where ϕ(H) 6 d.
Further let R ∈ Rt,G(d) be the representative of H. The protrusion replacement
rule is the following:

Reduce (G, ξ) to (G′, ξ′) := ((G	B GW )⊕B R, ξ +∆ΠG ,t(GW , R)).

The next lemma shows that this rule is indeed safe.

Proposition 2 (Safety [16]). If (G′, ξ′) is the instance obtained from one
application of the protrusion Reduction rule 1 to the instance (G, ξ) of ΠG, then
G′ ∈ G and (G′, ξ′) is a yes-instance iff (G, ξ) is a yes-instance.

In what follows, when applying protrusion replacement rules, we will assume
that for each t ∈ N, we are given the set Rt,G of representatives of the equivalence
classes of ≡ΠG ,t. Note that this makes our algorithms of Section 4 non-uniform.
However non-uniformity is implicitly assumed in previous work that used the
protrusion machinery [5, 12–14], too.

4 Linear Kernels on Graphs of Bounded Expansion
In this section we show that graph-theoretic problems that have FII on fixed-
treedepth graphs admit linear kernels on graphs of bounded expansion, when
parameterized by the size of a modulator to constant treedepth.

Theorem 1. Let G be a graph class of bounded expansion and for p ∈ N,
let G(p) ⊆ G be its subclass of graphs of treedepth 6 p. Let ΠG be a graph problem
that has FII on G(p) for each p ∈ N and let d ∈ N be a constant. Then there
is an algorithm that takes as input (G, ξ) ∈ ΠG and, in time O(|G|), outputs
an equivalent instance (G′, ξ′) such that |G′| = O(|S|), where S is an optimum
treedepth-d modulator of the graph G.

For the remainder of this section we fix the meaning of G, G(p), and ΠG as in
the statement of Theorem 1. The proof goes in several steps. First note that we do
not assume that we are given an optimal treedepth-d modulator: our proof uses
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an approximate modulator S ⊆ V (G) to decompose V (G) into vertex-disjoint
sets Y0 ] Y1 ] · · · ] Y` such that S ⊆ Y0 and |Y0| = O(|S|) and for 1 6 i 6 l, Yi
induces a collection of connected components that have exactly the same small
neighborhood in Y0. We then use properties of graphs of bounded expansion to
show that ` = O(|S|) and the protrusion replacement rule to replace each Yi by a
graph of constant size. Every time the protrusion replacement rule is applied, ξ is
modified. This results in an equivalent instance (G′, ξ′) such that |G′| = O(|S|),
which is what Theorem 1 claims. First lemma shows that a treedepth-d modulator
can be efficiently approximated to within a constant.

Lemma 2. [?] Fix d ∈ N. Given a graph G, one can in polynomial time compute
a subset S ⊆ V (G) such that td(G− S) 6 d and |S| is at most 2d times the size
of an optimal treedepth-d modulator of G. For graphs of bounded expansion, the
approximation algorithm can be made to run in linear time.

To prove the size bounds on decompositions of V (G) into vertex-disjoint sets
Y0 ] Y1 ] · · · ] Y`, we use the following lemma about grads of bipartite graphs.

Lemma 3. [?] Let G = (X,Y,E) be a bipartite graph. Then there are at most
2∇1(G) · |X| vertices in Y with degree greater than 2∇1(G); and (4∇1(G) +
2∇1(G)) · |X| subsets X ′ ⊆ X such that X ′ = N(u) for some u ∈ Y .

The proof of the next Lemma tells us how to find clusters of connected
components with a small neighborhood, which will be targeted by the reduction.

Lemma 4. Let G be a graph class with expansion bounded by f , G ∈ G and
S ⊆ V (G) be a set of vertices such that td(G−S) 6 d (d a constant). There is an
algorithm that runs in time O(|G|) and computes a partition, called protrusion-
decomposition, of V (G) into sets Y0 ] Y1 ] · · · ] Y` such that the following hold:
1. S ⊆ Y0 and |Y0| = O(|S|);
2. for 1 6 i 6 `, Yi induces a set of connected components of G− Y0 that have

the same neighborhood in Y0 of size at most 2d+1 + 2 · f(2d);
3. ` 6

(
4f(2d) + 2f(2d)

)
· |S| = O(|S|).

Proof Sketch. We first construct a DFS-forest F of G−S. Assume that there are q
trees T1, . . . , Tq in this forest rooted at r1, . . . , rq, respectively. Since td(G−S) 6
d, the height of every tree in F is at most 2d − 1. Next we construct for each Ti,
1 6 i 6 q, a path decomposition of the subgraph of G[V (Ti)]. Suppose that Ti has
leaves l1, . . . , ls ordered according to their DFS-number. For 1 6 j 6 s, create a
bag Bj containing the vertices on the unique path from lj to ri and string these
bags together in the order B1, . . . , Bs. Clearly, this is a path decomposition Pi of
G[V (Ti)] with width at most 2d − 2. Note that the root ri is in every bag of Pi.

We now use a marking algorithm similar to the one in [16] to mark O(|S|)
bags in the path decompositions P1, . . . ,Pq with the property that each marked
bag can be uniquely identified with a connected subgraph of G− S that has a
large neighborhood in the modulator S. We use Lemma 3 to show that the setM
of marked bags has at most 2 · f(2d − 1 + 1) · |S| = O(|S|) members, allowing us
to put Y0 := V (M)∪ S. We also show that each connected component in G− Y0
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has less than t = 2 · f(2d) + 1 neighbors in S. To complete the proof, we simply
cluster the connected components of G− Y0 according to their neighborhoods in
Y0 to obtain the sets Y1, . . . , Y`. Finally, we again use Lemma 3 to show that the
number ` of clusters is at most

(
4f(2d) + 2f(2d)

)
· |S| = O(|S|), as claimed. ut

All which is left to show is that each cluster Yi, 1 6 i 6 `, can be reduced to
constant size. Note that each cluster is separated from the rest of the graph via a
small set of vertices in S and that each component of G−S has constant treedepth.
These facts enable us to use the protrusion reduction rule. Recall that ρ(t, d)
denotes the size of the largest representative in Rt,G(d), for the problem ΠG .

Lemma 5. [?] For fixed d, h ∈ N, let (G, ξ) be an instance of ΠG and let S ⊆
V (G) be a treedepth-d modulator of G. Let Y0 ] Y1 ] · · · ] Y` be a protrusion-
decomposition of G, where S ⊆ Y0 and for 1 6 i 6 `, |NY0(Yi)| 6 h. Then
one can in O(|G|) time obtain an equivalent instance (G′, ξ′) and a protrusion-
decomposition Y ′0 ] Y ′1 ] · · · ] Y ′` of G′ where Y ′0 = Y0, and for 1 6 i 6 ` it is
|NY ′

0
(Y ′i )| 6 h and |Y ′i | 6 ρ(d+ h, d) = O(1).

Proof (Theorem 1). Given an instance (G, ξ) of Π with G ∈ G for a graph class
G with expansion bounded by f : N → R and having fixed a constant d ∈ N,
we calculate a 2d-approximation S of a minimal treedepth-d-modulator using
Lemma 2. In the next step, using the algorithm outlined in the proof of Lemma 4,
we compute the decomposition Y0 ]Y1 ] · · · ]Y`. Each cluster Yi, 1 6 i 6 ` forms
a protrusion with boundary size |N(Yi)| 6 2d+1 +2f(2d) =: h and treedepth (and
thus treewidth) 6 d. Applying the protrusion reduction rule to each individual
cluster as in Lemma 5 then yields an equivalent instance (G′, ξ′) with

|V (G′)| = |Y0|+
∑̀
i=1

Y ′i 6 O(|S|) + ` · ρ(d+ 2d+1 + 2f(2d), d) = O(|S|)

where Y ′i denote the clusters obtained through applications of the reduction rule.
As G is degenerate, the above implies that |V (G′)|+ |E(G′)| = O(|S|), too. ut

Some problems do not have FII in general (see [9]) but only when restricted
to graphs of bounded treedepth or bounded treewidth.

Lemma 6. [?] Let G be any graph class and G(d) be those graphs of G that have
treedepth at most d. The problems Longest Path, Longest Cycle, Exact
s, t-Path, Exact Cycle restricted to G have FII in G(d) ⊆ G for any d ∈ N.

Lemma 7. [?] Let G be any graph class and G(w) be those graphs of G that have
treewidth at most w. The problems Treewidth and Pathwidth restricted to G
have FII in G(w) ⊆ G for any w ∈ N.

Corollary 1. The following graph problems either have FII in general or on
graphs of bounded treedepth, and hence have linear kernels in graphs of bounded
expansion, when the parameter is the size of a modulator to constant treedepth:
(Connected) Dominating Set, r-Dominating Set, Efficient Dom. Set,
(Connected) Vertex Cover, Hamiltonian Path/Cycle, Independent
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Set, Feedback Vertex Set, Edge Dom. Set, Induced Matching, Chordal
Vertex Deletion, Odd Cycle Transversal, Induced d-Degree Sub-
graph, Min Leaf Spanning Tree, Max Full Degree Spanning Tree,
Longest Path/Cycle, Exact s, t-Path, Exact Cycle, Treewidth, Path-
width.
For a more comprehensive list of problems that have FII in general graphs (and
hence fall under the purview of the above corollary), see [5].

4.1 Extension to larger graph classes
We can lift our results to prove polynomial kernels in graphs of locally bounded
expansion and the even larger class of nowhere dense graphs.
Definition 7 (Locally bounded expansion [11]). A graph class G has locally
bounded expansion if there exists a function f : N×N→ R (called the expansion
function) such that for every graph G ∈ G and all r, d ∈ N and every vertex
v ∈ V (G), it holds that ∇r(G[Nd(v)]) 6 f(d, r).
Definition 8 (Nowhere dense [18,19]). A graph class G is nowhere dense if
for all r ∈ N it holds that ω(G O r) <∞.

The two kernelization results that we are about to state apply to all problems
listed in Section 4. In the following, let G be a graph class and G(p) ⊆ G the
subclass of graphs of treedepth at most p. Further let ΠG be a graph problem
that has FII on G(p) for all p ∈ N.
Theorem 2. Let G be class of locally bounded expansion and let d ∈ N be a
constant. Then there is an algorithm that takes as input (G, ξ) ∈ ΠG and, in
polynomial time, outputs an equivalent instance (G′, ξ′) such that |G′| = O(|S|2),
where S is an optimum treedepth-d modulator of the graph G.
Theorem 3. Let G be nowhere-dense and let d ∈ N be a constant. Then there is
an algorithm that takes as input (G, ξ) ∈ ΠG and, in polynomial time, outputs an
equivalent instance (G′, ξ′) such that |G′| = O(|S|c) for some constant c, where S
is an optimum treedepth-d modulator of the graph G.

The proofs of Theorems 2 and 3 follow analogously to the proof of Theorem 1
using next Lemma 8 in place of Lemma 3 (see details in the appendix).

Hence the point is to generalize Lemma 3 to make it amenable to larger
graph classes. We achieve that goal as follows. Let #ω(G) denote the number
of complete subgraphs of G. For a graph class G and an integer ` we let G6` :=
{H ∈ G | |H| 6 `} denote those graphs of G which have size 6 `.
Definition 9 (Greatest reduced average clique density). For a graph G
and integer r we define �r(G) = maxH∈GO r(#ω(H)/|H|) to be the greatest
reduced clique density (clique-grad) with rank r of G. For a graph class G the
clique expansion with rank r is defined as �r(G) = supG∈G �r(G).
Lemma 8. [?] Let G = (X,Y,E) be a bipartite graph let HX = (GO 1)6|X|.
Then there are at most 2∇0(HX) · |X| vertices in Y with degree larger than
ω(HX); and, at most

(
�0(HX) + 2∇0(HX)

)
· |X| subsets X ′ ⊆ X such that

X ′ = N(u) for some u ∈ Y .
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5 Polynomial Kernel for Longest Path
In this section we show that the problem Longest Path has a polynomial kernel
when parameterized by a modulator to constant treedepth. Our result almost
entirely closes the gap between the polynomial kernel of Longest Path when
parameterized by the size of a vertex cover and the no polynomial kernel result
for Longest Path when parameterized by the size of a modulator to pathwidth
two [6].
Lemma 9. [?] For fixed d ∈ N, d > 1, let S ⊆ V (G) be a treedepth-d modulator
of a graph G and let k = |S|. Then there is an induced subgraph G′ of G and a
set S′ ⊆ V (G′) such that: (1) G and G′ are equivalent instances of Longest
Path (for the same path length), (2) G′ and S′ can be computed from G and S
in polynomial time O(k2 · |V (G)|), and (3) S′ is a treedepth-(d− 1) modulator of
G′ of size |S′| 6 (k + 1)3.
Theorem 4. Let d ∈ N be a constant, and let the function g be defined as
follows; g(0, k) = k and g(i, k) = g

(
i− 1, (k + 1)3). Then Longest Path has

a polynomial kernel of size at most g(d, k) parameterized by the size k of a
modulator to treedepth d where, asymptotically, g(d, k) = O(k3d). This kernel is
computable in time O(k2 · |V (G)|).
Proof. Let G be a graph, and S ⊆ V (G) a treedepth-d modulator of G. We
proceed by induction on d > 0: For d = 0 we necessarily have S = V (G) (cf.
Lemma 9) and hence immediately a kernel of size k = g(0, k). For d > 0, we
apply Lemma 9 to obtain an equivalent instance G′ with modulator S′ of size
k′ = |S′| 6 (k + 1)3. Then G′ can be kernelized to an instance of size at most
g(d− 1, k′) by the inductive assumption, and g(d− 1, k′) 6 g(d, k) as desired.

6 Conclusions and Further Research
In this paper we presented kernelization results on graphs of bounded expansion,
locally bounded expansion, and nowhere dense graphs. To the best of our knowl-
edge, these are the very first kernelization results on these graph classes. The
parameter that we use is the size of a modulator to constant treedepth graphs.
Evidence suggests that any meta-theorem on linear kernels on graphs of bounded
expansion that includes all the problems in Corollary 1 necessarily requires a
parameter that cannot be weaker than what we have. However for problems whose
solution sizes are not invariant under edge subdivisions, such as Dominating
Set and Hamiltonian Cycle, it might be possible to obtain such a result.

There are some interesting open questions regarding the polynomial kerneliz-
ability of Longest Path. We conjecture that Longest Path has no polynomial
kernel in general graphs with the size of a modulator to a single path (of arbitrary
length) as parameter. This would show that if we use the size of a modulator to
a (subgraph closed) graph property as parameter, then in general graphs there
exists a dichotomy for Longest Path: If the graph property excludes long paths,
there is a polynomial kernel; otherwise not. The polynomial kernel presented
here has size kg(d), where k is the size of a treedepth-d modulator and g(d) = 3d.
Is there a kernel of size g(d) · kO(1), for some function g?
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7 Appendix

In this appendix, we state our notation, definitions, and provide complete proofs
to all the lemmas and theorems that appear in this paper.

7.1 Problem definitions

In this subsection, we define some of the problems that we mention in this paper.

Longest Path
Input: A graph G and a positive integer `.
Problem: Does G contain a simple path of length at least `?

Longest Cycle
Input: A graph G and a positive integer `.
Problem: Does G contain a simple cycle of length at least `?

Exact s, t-Path
Input: A graph G, two special vertices s, t ∈ V (G) and a positive

integer `.
Problem: Is there a simple path in G from s to t of length exactly `?

Exact Cycle
Input: A graph G and a positive integer `.
Problem: Is there a simple cycle in G of length exactly `?

Feedback Vertex Set
Input: A graph G and a positive integer `.
Problem: Is there a vertex set S ⊆ V (G) with at most ` vertices such

that G− S is a forest?

Treewidth
Input: A graph G and a positive integer `.
Problem: Is the treewidth of G at most `?
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Pathwidth
Input: A graph G and a positive integer `.
Problem: Is the pathwidth of G at most `?

Treewidth-t Vertex Deletion
Input: A graph G and a positive integer `.
Problem: Is there a vertex set S ⊆ V (G) with at most ` vertices such

that the treewidth of G− S is at most t?

Dominating Set
Input: A graph G = (V,E) and a positive integer `.
Problem: Is there a vertex set S ⊆ V with at most ` vertices such that

for all u ∈ V \ S there exists v ∈ S such that uv ∈ E?

If in addition, we require that G[S] is a connected graph then the problem is
called Connected Dominating Set.

r-Dominating Set
Input: A graph G = (V,E) and a positive integer `.
Problem: Is there a vertex set S ⊆ V with at most ` vertices such that

for all u ∈ V \ S there exists v ∈ S such that d(u, v) 6 r?

Efficient Dominating Set
Input: A graph G = (V,E) and a positive integer `.
Problem: Is there an independent set S ⊆ V with at most ` vertices such

that for every u ∈ V \ S there exists exactly one v ∈ S such
that uv ∈ E?

Edge Dominating Set
Input: A graph G = (V,E) and a positive integer `.
Problem: Is there an edge set S ⊆ E of size at most ` such that for

every e ∈ E \ S there exists e′ ∈ S such that e and e′ share an
endpoint?
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Induced Matching
Input: A graph G = (V,E) and a positive integer `.
Problem: Is there an edge set S ⊆ E of size at least ` such that S is a

matching and for all u, v ∈ V (S), if uv ∈ E then uv ∈ S?

Chordal Vertex Deletion
Input: A graph G = (V,E) and a positive integer `.
Problem: Is there a vertex set S ⊆ V of size at most ` such that G− S

is chordal?

7.2 Preliminaries
We first describe notation and the most important definitions pertaining to
graphs. All our graphs are finite and simple. Given a graph G, we use V (G) and
E(G) to denote its vertex and edge sets. For convenience we assume that V (G)
is a totally ordered set, and use uv instead of {u, v} to denote an edge of G.
For X ⊆ V (G), we let G[X] denote the subgraph of G induced by X, and we
define G−X := G[V (G) \X]. Since we are mainly concerned with sparse graphs
in this paper, we let |G| denote the number of vertices in the graph G. The
distance dG(v, w) of two vertices v, w ∈ V (G) is the length (number of edges) of
a shortest v, w-path in G and ∞ if v and w lie in different connected components
of G. The diameter diam(G) of a graph is defined as maxu,v∈V (G){dG(u, v)}. We
denote by ω(G) the size of the largest complete subgraph of G.

The neighborhood of a vertex v ∈ V (G) is the set NG(v) = {w ∈ V (G)|vw ∈
E(G)}, the degree of v is degG(v) = |NG(v)|, and the closed neighborhood of v is
defined as NG[v] := NG(v)∪{v}. We extend this naturally to sets of vertices and
subgraphs: For S ⊆ V (G) we let NG(S) denote the set of vertices in V (G)\S that
have at least one neighbor in S, and for a subgraph H of G we define NG(H) :=
NG(V (H)). Finally, if X is a subset of vertices disjoint from S, then NG

X (S) is the
set NG(S)∩X (and similarly for NG

X (H)). Given a graph G and a setW ⊆ V (G),
we also define ∂G(W ) as the set of vertices in W that have a neighbor in V \W .
Note that NG(W ) = ∂G(V (G)\W ). A graph G is d-degenerate if every subgraph
of G′ ⊆ G contains a vertex v ∈ V (G′) with degG(v) 6 d. The degeneracy of G is
the smallest d such that G is d-degenerate. In the rest of the paper we often drop
the index G from all the notation if it is clear which graph is being referred to.

Given an edge e = uv of a graph G, we let G/e denote the graph obtained
from G by contracting the edge e, which amounts to deleting the endpoints
of e, introducing a new vertex wuv, and making it adjacent to all vertices in
(N(u) ∪ N(v)) \ {u, v}. By contracting e = uv to the vertex w, we mean that
the vertex wuv is renamed as w. Subdividing an edge is, in a sense, an opposite
operation to contraction. A graph G is called a 6k-subdivision of a graph H if
(some) edges of H are replaced by paths of length at most k + 1. A minor of G
is a graph obtained from a subgraph of G by contracting zero or more edges.
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Definition 10 (Kernelization). A kernelization of a parameterized problem
(Q, κ) over the alphabet Σ is a polynomial-time computable function A : Σ∗ → Σ∗

such that for all x ∈ Σ∗, we have

1. x ∈ Q if and only if A(x) ∈ Q,
2. |A(x)| 6 g(κ(x)),

where g is some computable function. The function g is called the size of the
kernel. If g(κ(x)) = κ(x)O(1) or g(κ(x)) = O(κ(x)), we say that Π admits a
polynomial kernel and a linear kernel, respectively.

Definition 11 (Treewidth). Given a graph G = (V,E), a tree-decomposition
of G is an ordered pair (T,W), where T is a tree and W = {Wx ⊆ V | x ∈ V (T )}
is a collection of vertex sets of G, with one set for each node of the tree T such
that the following hold:

1.
⋃
x∈V (T ) Wx = V (G);

2. for every edge e = uv in G, there exists x ∈ V (T ) such that u, v ∈Wx;
3. for each vertex u ∈ V (G), the set of nodes {x ∈ V (T ) | u ∈ Wx} induces a

subtree.

The vertices of the tree T are usually referred to as nodes and the sets Wx

are called bags. The width of a tree-decomposition is the size of a largest bag
minus one. The treewidth of G, denoted tw(G), is the smallest width of a
tree-decomposition of G.

In the definition above, if we restrict T to being a path, we obtain well-known no-
tions of a path-decomposition and pathwidth. We let pw(G) denote the pathwidth
of G.

7.3 The Protrusion Machinery

The following lemma forms the basis of our reduction rule.
Lemma 1. Fix c, d, t ∈ N. If H is a t-boundaried graph in G(c · d) such that
H ≡ΠG ,t H

′ for some t-boundaried graph H ′ in G(d), then there exists R ∈ Rt,G(d)
such that R ≡ΠG ,t H.

Proof. Since H ≡ΠG ,t H
′, the equivalence class of ≡ΠG ,t containing H contains

at least one graph from G(d), namely H ′ itself. By the definition of Rt,G(d) there
exists an R ∈ G(d) that is a member of Rt,G(d) with R ≡ΠG ,t H. ut

7.4 Linear Kernels on Graphs of Bounded Expansion

We begin by describing a constant-factor approximation algorithm for the
treedepth of a graph.
Lemma 2. Fix d ∈ N. Given a graph G, one can in polynomial time compute a
subset S ⊆ V (G) such that td(G− S) 6 d and |S| is at most 2d times the size
of an optimal treedepth-d modulator of G. If G is from a graph class of bounded
expansion, then the same can be achieved in linear time.
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Proof. We use the fact that any DFS-tree of a graph of treedepth d has depth at
most 2d − 1. We compute a DFS-tree of the graph G and if it has depth more
than 2d − 1, then td(G) > d. So, we take some path P from the root of the tree
of length 2d − 1 and add all the 2d vertices of P into the modulator; delete V (P )
from the graph and repeat. (Clearly, at least one of the vertices of P must be
in any modulator.) At the end of this procedure, the DFS-tree of the remaining
graph has depth at most 2d − 1. This gives us a tree (path) decomposition of
the graph of width at most 2d − 2. Now use standard dynamic programming to
obtain an optimum treedepth-d modulator. Since the treewidth of the remaining
graph is a constant, the dynamic programming algorithm runs in time linear in
the size of the graph. The overall size of the modulator has size at most 2d times
the optimal solution.

For a graph G from a class of bounded expansion, we modify the iterated depth-
first search. By [17], graph classes of bounded expansion admit low treedepth
coloring: Given any integer p, there exists an integer np such that any graph of
the class can be properly vertex colored using np colors such that for any set of
1 6 i 6 p colors, the graph induced by the vertices that receive these i colors has
treedepth at most i. Such a coloring is called a p-treedepth coloring and can be
computed in linear time. Here we choose p = 2d and obtain such a coloring for G
using np colors. Let G1, . . . , Gr denote the subgraphs induced by at most 2d of
these color classes where r < 2np = O(1). Note that

∑
j |Gj | = O(|G|), since

every vertex of G appears in at most a constant number of subgraphs. Any path
in G of length 2d − 1 must be in some subgraph Gj , for 1 6 j 6 r. For each
subgraph Gj , we simply construct a treedepth decomposition, find all paths of
length 2d− 1, add their vertices into the solution and delete them from the graph.
The time taken to do this for each subgraph Gj is O(|Gj |). The total time taken
is therefore

∑
j |Gj | = O(|G|). ut

The next lemma and its corollaries (Corollaries 2 and 3) are used to show how
to construct a protrusion-decomposition Y0 ] Y1 ] · · · ] Y`.
Lemma 3. Let G = (X,Y,E) be a bipartite graph. Then there are at most

1. 2∇1(G) · |X| vertices in Y with degree greater than 2∇1(G);
2. (4∇1(G) + 2∇1(G)) · |X| subsets X ′ ⊆ X such that X ′ = N(u) for some

u ∈ Y .

Proof. We construct a sequence of graphs G0, G1, . . . , G` such that Gi ∈ GO 1
for all 0 6 i 6 ` as follows. Set G0 = G, and for 0 6 i 6 ` − 1 construct Gi+1
from Gi by choosing a vertex v ∈ V (Gi) \X such that N(v) ⊆ X contains two
non-adjacent vertices u,w in Gi; if no such vertex v exists, stop with ` := i. Set
ei+1 = uv and contract this edge to the vertex u to obtain Gi+1. Recall that
contracting uv to u is equivalent to deleting vertex v and adding edges between
each vertex in N(v) \u and u. It is clear from the construction that for 0 6 i 6 `,
X ⊆ V (Gi) ⊆ X ∪ Y .

This process clearly terminates, as Gi+1 has at least one more edge between
vertices ofX than Gi. Note that Gi ∈ GO 1 for 0 6 i 6 `, as the edges e1, . . . , ei−1
that were contracted to vertices in X in order to construct Gi had one endpoint
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each in X and Y , the endpoint in Y being deleted after each contraction. Thus,
e1, . . . , ei−1 induce a set of stars in V (G) = V (G0), and Gi is obtained from G
by contracting these stars. We therefore conclude that Gi is a depth-one shallow
minor of G. In particular, this implies G`[X] is 2∇1(G)-degenerate and has at
most 2∇1(G) · |X| edges. Further, note that for each 0 6 i 6 `, Y ∩ V (Gi) is, by
construction, still an independent set in Gi.

Let us now prove the first claim. To this end, assume that there is a vertex
v ∈ Y ∩ V (G`) such that degree(v) > 2∇1(G). We claim that G`[N(v)] (where
N(v) ⊆ X) is a clique. If not, we could choose a pair of non-adjacent vertices
in G`[N(v)] and construct a (` + 1)-th graph for the sequence which would
contradict the fact that G` is the last graph of the sequence. However, a clique
of size |{v} ∪N(v)| > 2∇1(G) + 1 is not 2∇1(G)-degenerate. Hence we conclude
that no vertex of Y ∩ V (G`) has degree larger than 2∇1(G) in G` (and in G).
Therefore the vertices of Y of degree greater than 2∇1(G) in the graph G, if there
were any, must have been deleted during the edge contractions that resulted in
the graph G`. As every contraction added at least one edge between vertices in
X and since G`[X] contains at most 2∇1(G) · |X| edges, the first claim follows.

For the second claim, consider the set Y ′ = Y ∩ V (G`). The neighbourhood
of every vertex v ∈ Y ′ induces a clique in G`[X]. From the degeneracy of G`[X],
it follows that G`[X] has at most 22∇1(G)|G`[X]| = 4∇1(G) · |X| cliques. Thus
the number of subsets of X that are neighbourhoods of vertices in Y in G is
at most (4∇1(G) + 2∇1(G)) · |X|, where we accounted for vertices of Y lost via
contractions by the bound on the number of edges in G`[X]. ut

The following two corollaries to Lemma 3 show how it can be applied in our
situation.

Corollary 2. Let G be a graph-class whose expansion is bounded by a function
f : N → R. Suppose that for G ∈ G and S ⊆ V (G), C1, . . . , Cs are disjoint
connected subgraphs of G−S satisfying the following two conditions: for 1 6 i 6 s,
diam(G[V (Ci)]) 6 δ and |NS(Ci)| > 2 · f(δ + 1). Then s 6 2 · f(δ + 1) · |S|.

Proof. We construct an auxilliary bipartite graph G̃ with partite sets S and
Y = {C1, . . . , Cs}. There is an edge between Ci and x ∈ S iff x ∈ NS(Ci). Note
that G̃ is a depth-δ shallow minor of G with branch sets Ci, 1 6 i 6 s. By
Lemma 3,

s 6 2∇1(G̃)|S| 6 2∇1(GO δ)|S| = 2∇δ+1(G)|S| 6 2f(δ + 1)|S|.

ut

Corollary 3. Let G be a graph-class whose expansion is bounded by a function
f : N → R. Suppose that for G ∈ G and S ⊆ V (G), C1, . . . , Ct are sets of
connected components of G − S such that for all C,C ′ ∈

⋃
i Ci it holds that

C,C ′ ∈ Cj for some j if and only if NS(C) = NS(C ′). Let δ > 0 be a bound on
the diameter of the components, i.e. for all C ∈

⋃
i Ci, diam(G[V (C)]) 6 δ. Then

there can be only at most t 6 (4f(δ+1) + 2f(δ + 1)) · |S| such sets Ci.
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Proof. As in the proof of Corollary 2, we construct a bipartite graph G̃ with
partite sets S and Y = {C1, . . . , Cr}, where the vertices Cj represent connected
components in

⋃
i Ci and Cj has an edge to x ∈ S iff x ∈ NS(Cj). As before, G̃

is a shallow minor at depth δ of G with branch sets Cj , 1 6 j 6 r. By Lemma 3,

t 6 |{S′ ⊆ S | ∃Ci ∈ Y : N(Ci) = S′}| 6 (4∇1(G̃) + 2∇1(G̃)) · |S|
6 (4∇1(GO δ) + 2∇1(GO δ)) · |S|
= (4∇δ+1(G) + 2∇δ+1(G)) · |S|
6 (4f(δ+1) + 2f(δ + 1)) · |S|.

ut

Algorithm 1: Bag marking algorithm
Input: A graph G, a subset S ⊆ V (G) such that td(G− S) 6 d, and an integer

t > 0.
SetM← ∅ as the set of marked bags;
for each connected component C of G− S such that NS(C) > t do

Choose an arbitrary vertex v ∈ V (C) as a root and construct a DFS-tree
starting at v;
Use the DFS-tree to obtain a path-decomposition PC = (PC ,BC) of width at
most 2d − 2 in which the bags are ordered from left to right;

Repeat the following loop for the path-decomposition PC of every C;
while PC contains an unprocessed bag do

Let B be the leftmost unprocessed bag of PC ;
Let GB denote the subgraph of G induced by the vertices in the bag B and
in all bags to the left of it in PC .
[Large-subgraph marking step]
if GB contains a connected component CB such that |NS(CB)| > t then
M←M∪ {B} and remove the vertices of B from every bag of PC ;

Bag B is now processed;

return Y0 = S ∪ V (M);

Lemma 4. Let G be a graph class with expansion bounded by f , G ∈ G and
S ⊆ V (G) be a set of vertices such that td(G−S) 6 d (d a constant). There is an
algorithm that runs in time O(|G|) and partitions V (G) into sets Y0]Y1]· · ·]Y`
such that the following hold:
1. S ⊆ Y0 and |Y0| = O(|S|);
2. for 1 6 i 6 `, Yi induces a set of connected components of G− Y0 that have

the same neighborhood in Y0 of size at most 2d+1 + 2 · f(2d);
3. ` 6

(
4f(2d) + 2f(2d)

)
· |S| = O(|S|).
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Proof. We first construct a DFS-forest F of G−S. Assume that there are q trees
T1, . . . , Tq in this forest rooted at r1, . . . , rq, respectively. Since td(G− S) 6 d,
the height of every tree in F is at most 2d − 1. Next we construct for each Ti,
1 6 i 6 q, a path decomposition of the subgraph of G[V (Ti)]. Suppose that Ti has
leaves l1, . . . , ls ordered according to their DFS-number. For 1 6 j 6 s, create a
bag Bj containing the vertices on the unique path from lj to ri and string these
bags together in the order B1, . . . , Bs. Clearly, this is a path decomposition Pi of
G[V (Ti)] with width at most 2d − 2. Note that the root ri is in every bag of Pi.

We now use a marking algorithm similar to the one in [16] to mark O(|S|) bags
in the path decompositions P1, . . . ,Pq with the property that each marked bag
can be uniquely identified with a connected subgraph of G− S that has a large
neighborhood in the modulator S. This algorithm is described in Figure 1 in which
we set t, the size of a large neighborhood in S, to be t := 2·f(2d)+1. Note that there
is a one-to-one correspondence between marked bagsM and connected subgraphs
with a neighborhood of size at least t in S. Moreover each connected subgraph
has treedepth at most d and hence diameter at most 2d − 1. By Corollary 2, the
number of connected subgraphs of large neighborhood and hence the number of
marked bags is at most 2 · f(2d − 1 + 1) · |S| = O(|S|). We set Y0 := V (M) ∪ S.

Now observe that each connected component in G − Y0 has less than t =
2·f(2d)+1 neighbors in S: for every connected subgraph C with at least t neighbors
in S, there exists a marked bag B. Importantly, the bag B was the first bag
that was marked before the number of neighbors in S of any connected subgraph
reached the threshold t. Hence each connected component of G[V (C) \B] has
degree less than t in S. Since every component is connected to at most two marked
bags (in Y0) and since each bag is of size at most 2d−1, the size of the neighborhood
of every component of G− Y0 in Y0 is at most 2(2d − 1) + t 6 2d+1 + 2 · f(2d).

To complete the proof, we simply cluster the connected components of G− Y0
according to their neighborhoods in Y0 to obtain the sets Y1, . . . , Y`. Since each
connected component of G − S is of diameter δ 6 2d − 1, by Corollary 3, the
number ` of clusters is at most

(
4f(2d) + 2f(2d)

)
· |S| = O(|S|), as claimed. ut

Lemma 5 shows how to use the protrusion replacement rule to reduce a
protrusion-decomposition. In the proof of this lemma, it will be convenient to use
the following normal form of tree decompositions: A triple (T, {Wx | x ∈ V (T )}, r)
is a nice tree decomposition of a graph G if (T, {Wx | x ∈ V (T )}) is a tree
decomposition of G, the tree T is rooted at node r ∈ V (T ), and each node of T
is of one of the following four types:

1. a leaf node: a node having no children and containing exactly one vertex in
its bag;

2. a join node: a node x having exactly two children y1, y2, and Wx = Wy1 =
Wy2 ;

3. an introduce node: a node x having exactly one child y, and Wx = Wy ∪ {v}
for a vertex v of G with v 6∈Wy

4. a forget node: a node x having exactly one child y, and Wx = Wy \ {v} for a
vertex v of G with v ∈Wy.
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Given a tree decomposition of a graph G of width w, one can effectively obtain
in time O(|V (G)|) a nice tree decomposition of G with O(|V (G)|) nodes and of
width at most w [7].

Lemma 5. For fixed d, h ∈ N, let (G, ξ) be an instance of ΠG and let S ⊆ V (G) be
a treedepth-d modulator of G. Let Y0 ]Y1 ] · · · ]Y` be a protrusion-decomposition
of G, where S ⊆ Y0 and for 1 6 i 6 `, |NY0(Yi)| 6 h. Then one can in
O(|G|) time obtain an equivalent instance (G′, ξ′) and a protrusion-decomposition
Y ′0 ] Y ′1 ] · · · ] Y ′` of G′ where Y ′0 = Y0, and for 1 6 i 6 ` it is |NY ′

0
(Y ′i )| 6 h

and |Y ′i | 6 ρ(d+ h, d) = O(1).

Proof. Since S ⊆ Y0 is a treedepth-d modulator, for all 1 6 i 6 `, we have
td(G[Yi]) 6 d and hence tw(G[Yi]) 6 d − 1. Moreover treedepth at most d
implies diameter at most 2d − 1 for each component. For each index 1 6 i 6 `,
our algorithm constructs a tree-decomposition of G[Yi ∪N(Yi)] of width d+ h
that satisfies certain properties that we mention below. The algorithm then uses
this tree-decomposition to replace Yi in a systematic manner using the protrusion
replacement rule. The properties that this tree-decomposition satisfies enable
the algorithm to perform this replacement in O(|Yi ∪ N(Yi)|) time. The total
time taken to replace all sets Yi is

∑`
i=1 |Yi ∪ N(Yi)| and since by Lemma 3,∑`

i=1 |N(Yi)| = O(|Y0|), the running time is indeed O(|G|). It therefore suffices
to describe what properties our tree-decompositions satisfy and how each Yi is
replaced.

The tree-decomposition Ti = (Ti, {Wx | x ∈ V (Ti)}) of width d + h for
Gi := G[Yi ∪N(Yi)] satisfies the following conditions:

1. there is a node r ∈ V (Ti) such that N(Yi) = Wr;
2. the tree-decomposition is nice and the leaf bags contain one vertex.

The first condition can be achieved by simply modifying the graph Gi so that
N(Yi) induces a clique, and then introducing an extra node r if no such node
exists. The decomposition Ti is rooted at the node r. For x ∈ V (Ti), we let Gx
denote the (d+ h)-boundaried graph induced by the vertices in the bags of the
subtree of Ti rooted at x. That is,

Gx = G
[⋃

Wy

]
,

where the union is over all y ∈ V (Ti) that are descendants of x and bd(Gx) = Wx.
For x ∈ V (Ti), denote by Λ(x) the representative of Gx in Rd+h,G(d) and let
µ(x) = ∆ΠG ,d+h(Λ(x), Gx). Note that the treedepth of Gx is at most d and since
ΠG has FII in G(d), such a representative Λ(x) is indeed well founded. Moreover,
|Λ(x)| 6M where M := ρ(d+ h, d) denotes the size of the largest representative
in Rd+h,G(d).

In order to replace Yi, it is sufficient to know Λ(r) and µ(r) which we will
calculate in a bottom-up manner in O(|Yi|) time as follows. If y ∈ V (Ti) is a leaf
node then these values can be computed in constant time. Let x ∈ V (Ti) be a
node with exactly one child y whose Λ and µ values are known. Consider the
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(d+ h)-boundaried graph G′x := (Gx 	Wy
Gy)⊕Wy

Λ(y) with bd(G′x) = Wx. We
claim that G′x ≡ΠG ,d+h Gx. To prove this, we need to demonstrate that for all
graphs G̃ and all ξ ∈ N,

(G′x ⊕Wx
G̃, ξ) ∈ ΠG if and only if (Gx ⊕Wx

G̃, ξ + µ′) ∈ ΠG ,

where µ′ = ∆ΠG ,d+h(G′x, Gx). Now

(G′x ⊕Wx G̃, ξ) ∈ ΠG iff ((Gx 	Wy Gy)⊕Wy Λ(y))⊕Wx G̃, ξ) ∈ ΠG
iff ((Gx ⊕Wx

G̃)	Wy
Gy)⊕Wy

Λ(y), ξ) ∈ ΠG
iff ((Gx ⊕Wx

G̃)	Wy
Gy)⊕Wy

Gy, ξ + µ(y)) ∈ ΠG ,

where the last step follows because of Λ(y) ≡ΠG ,d+h Gy. Since (Gx ⊕Wx G̃)	Wy

Gy)⊕Wy
Gy is just the graph Gx⊕Wx

G̃, this proves our claim. In fact, µ′ = µ(y).
Observe that G′x is of constant size, bounded from above by M + |Wx| 6

M+d+h = O(1). Although Λ(y) has treedepth at most d, G′x is not guaranteed to
have treedepth at most d. In fact, G′x can have treedepth up to d+h. However since
td(Gx) 6 d, we can use Lemma 1 to conclude that there exists R ∈ Rd+h,G(d)
with G′x ≡ΠG ,d+h R, and obtain this R in constant time since G′x is of constant
size. We set Λ(x) = R and µ(x) = µ(y) + ∆Π,d+h(G′x, R). Note that the total
time spent at node x to generate these values is a constant.

Finally consider the case when x ∈ V (Ti) has exactly two children y1 and y2
whose Λ and µ values are known. Since our tree-decomposition is nice, we have
Wy1 = Wx = Wy2 and therefore bd(Gy1) = bd(Gy2) = Wx. Consider the (d+ h)-
boundaried graph G′′x = Λ(y1)⊕Wx

Λ(y2) with bd(G′′x) = Wx. Similarly as in the
above case, we demonstrate that for all graphs G̃ and all ξ ∈ N,

(G′′x ⊕Wx G̃, ξ) ∈ ΠG if and only if (Gx ⊕Wx G̃, ξ + µ′′) ∈ ΠG ,

where µ′′ = µ(y1)+µ(y2). Then G′′x has size at most 2M which is a constant. One
can therefore, again in constant time, calculate a representative R ∈ Rd+h,G(d) of
G′′x. Set Λ(x) = R and µ(x) = ∆Π,d+h(G′′x, R). This shows that one can in time
O(|Yi|) obtain Λ(r) and µ(r), as desired. ut

The next two lemmas show that a number of problems that do not have FII
in general graphs have FII in graphs of bounded treedepth.
Lemma 6. Let G be any graph class and G(d) be those graphs of G that have
treedepth at most d. The problems Longest Path, Longest Cycle, Exact
s, t-Path, Exact Cycle restricted to G have FII in G(d) ⊆ G for any d ∈ N.
Proof. Let Π be any one of the mentioned problems restricted to G, and let
d, t be constants. Consider the class Gt of t-boundaried graphs over G, and let
T = {0, 1, . . . , t}.

We define a configuration of Π with respect to Gt as a mutiset

C = {(s1, d1, t1), . . . , (sp, dp, tp)}

of triples from (T ×N× T ). We say a t-boundaried graph G ∈ Gt satisfies the
configuration C if there exists a set of (distinct) paths P1, . . . , Pp in G such that
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– si, ti can only be endvertices of Pi, V (Pi) ∩ bd(G) ⊆ {si, ti}, and |Pi| = di,
for 1 6 i 6 p,

– V (Pi) ∩ V (Pj) ⊆ bd(G) for 1 6 i < j 6 p,
– V (Pi) ∩ V (Pj) ∩ V (Pk) = ∅ for 1 6 i < j < k 6 p.

Note that, for simplicity, we identify the boundary vertices in bd(G) with their
labels 1, . . . , t from T . Moreover, si, ti can take the value 0 which is not contained
in bd(G): semantically these tuples describe paths which intersect the boundary
of G at only one or no vertex. Another special case are tuples with si = ti and
d = 0: those describe single vertices of the boundary. In short, a graph satisfies
a configuration if it contains internally non-intersecting paths of length and
endvertices prescribed by the tuples of the configuration, and no three of the
paths are prescribed to have the same endvertex (hence some configurations are
not satisfiable at all, but this is a small technicality).

The signature σ[G] of a graph G ∈ Gt is a function from the configurations
into {0, 1} where σ[G](C) = 1 iff G satisfies C. We claim that the equivalence
relation 'σ defined via

G1 'σ G2 ⇐⇒ σ[G1] ≡ σ[G2] for G1, G2 ∈ Gt

is a refinement of ≡Π,t. We provide only a sketch for Π = Longest Path,
the proofs for the other problems work analogous. To this end we assume the
contrary, that σ[G1] ≡ σ[G2] while G1 6≡Π,t G2. Up to symmetry, this means
that for all integers c there exists a graph G3 ∈ Gt such that (G1 ⊕G3, `) ∈ Π
but (G2 ⊕G3, `+ c) 6∈ Π. We choose c = 0 and show the contradiction. Thus the
graph G1 ⊕G3 contains a path P of length ` but G2 ⊕G3 does not.

Using the implicit order given through the vertex order of P we sort the
subpaths of P contained in P ∩G1 and so obtain a sequence of paths P1, . . . , Pq ⊆
G1, each with at most two vertices – the ends, in bd(G1). By identifying each
subpath Pi with the tuple (si, di, ti) where di = |Pi| and si is the label of the start
of Pi in bd(G1) (or 0 if si 6∈ bd(G1)) and ti the label of the end of Pi in bd(G1)
(ditto), we obtain a configuration CP = {(s1, d1, t1), . . . , (sq, dq, tq)}. Now, G1
satisfies CP by the definition. Since σ[G1](CP ) = σ[G2](CP ), there exists a set
of paths Q1, . . . , Qq ⊆ G2 witnessing that G2 satisfies CP . But then Q1, . . . , Qq
together with P ∩G3 form a path Q of length ` in G2 ⊕G3, a contradiction.

Second, although 'σ is generally of infinite index, we claim that for every
t, only a finite number of equivalence classes of 'σ carry a representative from
Gt(d) – the subclass of treedepth at most d. This is rather easy since graphs of
treedepth 6 d do not contain paths of length 2d − 1 or longer, and so a graph
G ∈ Gt(d) can satisfy a configuration C = {(s1, d1, t1), . . . , (sp, dp, tp)} only if
di ∈ {0, 1, . . . , 2d − 2} for 1 6 i 6 p. Recall, each boundary vertex label occurs
at most twice among s1, t1, . . . , sp, tp in a satisfiable configuration. Hence only
finitely many such configurations C can be satisfied by a graph from Gt(d), and
consequently, finitely many function values of σ[G] are nonzero for any G ∈ Gt(d)
and the number of the nonempty classes of 'σ restricted to Gt(d) is finite. ut
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Lemma 7. Let G be any graph class and G(w) be those graphs of G that have
treewidth at most w. The problems Treewidth and Pathwidth restricted to G
have FII in G(w) ⊆ G for any w ∈ N.

Proof. Let Π = Treewidth (the proof works analogously for Pathwidth)
restricted to G, and let w, t be constants. Consider the class Gt of t-boundaried
graphs over G, and let U = {1, 2, . . . , t}. We again, for simplicity, identify the
boundary vertices in a graph from Gt with their labels 1, . . . , t from U .

We mimic the proof of Lemma 6 with some changes. We define a configuration
of Π wrt. Gt as a set C = {(X1, w1), . . . , (Xp, wp)} of pairs such that Xi ⊆ 2U
and wi ∈ N for i = 1, . . . , p. We say a t-boundaried graph G ∈ Gt satisfies the
configuration C if there exists a collection of induced subgraphs H1, . . . ,Hp of G
such that

– V (Hi) ∩ V (Hj) ⊆ bd(G) for 1 6 i < j 6 p, and H1 ∪ . . . ∪Hp = G,
– there exists a tree decomposition (Ti,Wi), i = 1, 2, . . . , p, of the graph Hi of

width at most wi,
– each X ∈ Xi is a bag in this decomposition, i.e., X ∈ Wi.

The signature σ[G] of a graph G ∈ Gt is a function from the configurations
into {0, 1} where σ[G](C) = 1 iff G satisfies C. We claim that the equivalence
relation 'σ defined via

G1 'σ G2 ⇐⇒ σ[G1] ≡ σ[G2] for G1, G2 ∈ Gt

is a refinement of ≡Π,t. To this end we assume the contrary, that σ[G1] ≡ σ[G2]
while G1 6≡Π,t G2. Up to symmetry, this means that for all integers c there exists
a graph G3 ∈ Gt such that (G1 ⊕ G3, k) ∈ Π but (G2 ⊕ G3, k + c) 6∈ Π. We
choose c = 0 and show the contradiction. Thus the graph G1 ⊕ G3 has a tree
decomposition (T,W) of width k but G2 ⊕G3 does not. We will set B = bd(G1)
and assume for simplicity that B = bd(G2) = bd(G3) = U , i.e., B ⊆ G1 ⊕G3 as
well as B ⊆ G2⊕G3. As B is a vertex-separator of G1⊕G3, we can assume that
no bag in W contains both vertices from G1 \B and from G3 \B. We will further
assume that each bag in W appears exactly once in the tree decomposition, that
every subset X ⊆ B which is contained in some bag also exists exclusively as a
bag X ∈ W, and that for no adjacent bags their union contains both vertices
from G1 \B and from G3 \B (all three conditions can easily be enforced without
increasing the width of the decomposition).

We color the nodes of T with colors white, black and red according to the
following criterion: every x ∈ V (T ) is assigned the color c(x), where c(x) is

– red if Wx ⊆ B, and otherwise
– white if Wx ⊆ V (G1) and black if Wx ⊆ V (G3).

The above conditions on the structure of (T,W) now imply that c partitions
the nodes V (T ) into Twhite, Tblack, Tred, and that no white node is adjacent to a
black node in T .

From this coloring we create a collection of subtrees T1, . . . , Tq – the connected
components of T − Tblack. Let Hi, i = 1, . . . , q, be the subgraph of G1 induced
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by
⋃
x∈V (Ti) Wx, and let (Ti,Wi) denote the corresponding tree decomposition

of Hi. We denote by wi the width of (Ti,Wi) and set Xi = {Wx ∈ Wi : x ∈
V (Tred)}. Now, the subgraphs H1, . . . ,Hq witness that the graph G1 satisfies the
configuration CT = {(X1, w1), . . . , (Xq, wq)} by definition.

Since σ[G1](CT ) = σ[G2](CT ), there exists a collection of induced subgraphs
H ′1, . . . ,H

′
q of G2, and their tree decompositions (T ′1,W ′1), . . . , (T ′q,W ′q) witness-

ing that also G2 satisfies CT (particularly with the same widths w1, . . . , wq,
respectively). Moreover, for each x ∈ V (Tred), the bag W ′x ∈ W ′i (for the ap-
propriate i such that Wx ∈ Wi above) is the same as W ′x = Wx ∈ W on the
boundary B. We make T ′ as the union, by identification of nodes in V (Tred), of
T − V (Twhite) with T ′1 ∪ . . . ∪ T ′q, and set W ′ to be the union of W restricted
to the nodes of Tblack ∪ Tred with W ′1 ∪ . . . ∪ W ′q. But then (T ′,W ′) is a tree
decomposition of width k in G2 ⊕G3, a contradiction.

Second, although 'σ is generally of infinite index, we claim that for every
t, only a finite number of equivalence classes of 'σ carry a representative from
Gt(w) – the subclass of treewidth at most w. For this we claim that a graph G of
treewidth 6 w can satisfy a configuration C = {(X1, w1), . . . , (Xp, wp)} only if G
satisfies also the configuration {(X1, w

′
1), . . . , (Xp, w′p)} where w′i = min(wi, w+ t)

for 1 6 i 6 p. To see this, notice that one can take a tree decomposition of
whole G restricted to witness subgraphs Hi (notation as above) and add suitable
subsets of the boundary to (some) bags, to form the witness tree decomposition
for (Xi, w′i). Moreover, p 6 22t as every combination of subsets of the boundary
can appear at most once. Therefore, finiteness of 'σ restricted to Gt(w) follows
as at the end of Lemma 6. ut

7.5 Extension to larger graph classes

Lemma 8. Let G = (X,Y,E) be a bipartite graph and denote by HX =
(GO 1)6|X|. Then there are at most

1. 2∇0(HX) · |X| vertices in Y with degree larger than ω(HX),
2.
(
�0(HX) + 2∇0(HX)

)
· |X| subsets X ′ ⊆ X such that X ′ = N(u) for some

u ∈ Y .

Proof. We construct a sequence of graphs G0, G1, . . . , G` analogous to the proof
of Lemma 3 Note that, by construction, we have that Gi[X] ∈ HX for 1 6 i 6 `.
In particular, this implies that G`[X] has at most 2∇0(HX) · |X| edges.

Let us now prove the first claim. To this end, assume that there is a vertex
v ∈ Y ∩ V (G`) such that deg(v) > ω(HX). We claim that G`[N(v)] (where
N(v) ⊆ X) is a clique. If not, we could choose a pair of non-adjacent vertices in
G`[N(v)] and construct a (`+1)-th graph for the sequence which would contradict
the fact that G` is the last graph of the sequence. However, the set N(v) then
induces a clique of size larger than ω(HX), a contradiction.

Hence we conclude that no vertex of Y ∩ V (G`) has degree > ω(HX) in G`
(and thus in G). Therefore the vertices of Y of degree > ω(HX) in the graph G, if
there were any, must have been deleted during the edge contractions that resulted



26

in the graph G`. As every contraction added at least one edge between vertices in
X and since G`[X] contains at most 2∇0(HX) · |X| edges, the first claim follows.

For the second claim, consider the set Y ′ = Y ∩ V (G`). As observed above,
the neighborhood of every vertex v ∈ Y ′ induces a clique in G`[X]. The number
such sets therefore can be upper bounded by the number of cliques in G`[X],
which in turn can be bounded as follows:

#ω(G`[X]) = �0(G`[X])|X| 6 �0((GO 1)6|X|)|X| = �0(HX)|X|

In total then the number of subsets of X that are neighborhoods of vertices in Y
in G is at most (�0(HX) + 2∇0(HX))|X|, where we accounted for vertices of Y
lost via contractions by the bound on the number of edges in G`[X]. ut

The following two corollaries are analogs of Corollary 2 and 3 and will be used
in a similar fashion.

Corollary 4. Let G be a graph-class. Suppose that for G ∈ G and S ⊆ V (G),
C1, . . . , Cs are disjoint connected subgraphs of G− S satisfying the following two
conditions: for 1 6 i 6 s, diam(G[V (Ci)]) 6 δ and |NS(Ci)| > ω(HS) where
HS = (GO(δ + 1))6|S|. Then s 6 2∇0(HS) · |S|.

Proof. We construct an auxiliary bipartite graph G̃ with partite sets S and
Y = {C1, . . . , Cs}. There is an edge between Ci and x ∈ S iff x ∈ NS(Ci). Note
that G̃ is a shallow minor at depth δ of G by the assumption, and therefore
(G̃O 1)6|S| ⊆ HS . By Lemma 8,

s 6 2∇0((G̃O 1)6|S|)|S| 6 2∇0(HS)|S|.

ut

Corollary 5. Let G be a graph-class. Suppose that for G ∈ G and S ⊆ V (G),
C1, . . . , Ct are sets of connected components of G−S such that for all C,C ′ ∈

⋃
i Ci

it holds that C,C ′ ∈ Cj for some j if and only if NS(C) = NS(C ′). Let δ > 0 be a
bound on the diameter of the components, i.e. for all C ∈

⋃
i Ci, diam(G[V (C)]) 6

δ. Then there can be only at most t 6 (�0(HS) + 2∇0(HS)) · |S| such sets Ci
where again HS = (GO(δ + 1))6|S|.

Proof. As in the proof of Corollary 4, we construct a bipartite graph G̃ with
partite sets S and Y = {C1, . . . , Cr}, where the vertices Cj represent connected
components in

⋃
i Ci and Cj has an edge to x ∈ S iff x ∈ NS(Cj). As before, G̃ is

a shallow minor at depth δ of G and therefore (G̃O 1)6|S| ⊆ HS . By Lemma 8,

t 6 |{S′ ⊆ S | ∃Ci ∈ Y : N(Ci) = S′}|
6 (�0((G̃O 1)6|S|) + 2∇0((G̃O 1)6|S|)) · |S|
6 (�0(HS) + 2∇0(HS)) · |S|.

ut
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Note that, using the notation of Lemma 8, we have the trivial bounds
2∇0(HX) 6 |X| and �0(HX) 6 |X|ω(HX)−1. For graphs of locally bounded
expansion this second bound can be improved as follows.

Lemma 10. Let G be a graph class with local expansion bounded by f : N×N→
R. Then for any graph G ∈ G, any constant c and any integer 0 6 ` 6 |V (G)|,
�0
(
(GO c)6`

)
6 4f(1+c,0)`.

Proof. Consider any H ∈ (GO c)6`. Note that H ∈ (GO c)6` ⊆ GO c, and thus
H has local expansion bounded by f ′(d, r) = f(d+ c, r).

We upper-bound the cliques in H iteratively as follows: pick a vertex v, count
all cliques that contain v and add those to the number of cliques in H − v. Now,
all cliques that contain a fixed vertex v must be contained in N [v]. As G[N [v]] is
a radius-one subgraph of H, it has bounded expansion with expansion function
f ′(1, r) = f(1 + c, r) and thus is 2f(1 + c, 0)-degenerate. We can now apply the
result of [23], stating that every d-degenerate graph G with n > d vertices has
at most 2d(n − d + 1) cliques. Doing so we see that G[N [v]] contains at most
22f(1+c,0)|N [v]| 6 4f(1+c,0)|H| 6 4f(1+c,0)` cliques. Iterating this counting over
all vertices of H then yields a generous bound of 4f(1+c,0)`2 and therefore we
obtain the desired bound for the clique density through division by `. ut

The following generalization of Lemma 4 follows easily using the above two
corollaries.

Lemma 11. Let G be a graph class, G ∈ G and S ⊆ V (G) be a set of vertices
such that td(G− S) 6 d (d a constant). Let HS = (GO 2d)6|S|. If ω(HS) is a
constant, then there is an algorithm that runs in time linear in |G| and partitions
V (G) into sets Y0 ] Y1 ] · · · ] Y` such that the following hold:

1. S ⊆ Y0 and |Y0| 6 2∇0(HS) · |S|;
2. for 1 6 i 6 `, Yi induces a set of connected components of G− Y0 that have

the same neighborhood in Y0 of size at most ω(HS);
3. ` 6

(
�0(HS) + 2∇0(HS)

)
· |S|.

Proof. We proceed exactly as in the proof of Lemma 4 using t := ω(HS) and the
bounds from Corollary 4 and 5 ut

We are now ready to prove the two theorems.

Proof (Proof of Theorem 2). Analogously to the proof of Theorem 1 we use
Lemma 11 to obtain a protrusion-decomposition Y0 ] Y1 ] · · · ] Y` in place of
Lemma 4. Let G be a graph from a class of locally bounded expansion and
let d be an integer and S ⊂ V (G) be a treedepth-d modulator of G. It is
left to show that for HS = (GO 2d)6|S| the bounds of Lemma 11 are indeed
quadratic in |S|. Clearly, ∇0(G) 6 |G|, thus ∇0(HS) 6 |S| and therefore |Y0| =
O(|S|2). The bound �0(HS) = O(|S|) was proved in Lemma 10 and therefore
` 6 (�0(HS) + 2∇0(HS))|S| = O(|S|2) and the claim follows. ut
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Proof (Proof of Theorem 3). Analogously to the proof of Theorem 1 we use
Lemma 11 to obtain a protrusion-decomposition Y0 ] Y1 ] · · · ] Y` in place of
Lemma 4. Let G be a graph from a nowhere-dense graph class and let d be an
integer and S ⊂ V (G) a treedepth-d modulator of G. It is left to show that for
HS = (GO 2d)6|S| the bounds of Lemma 11 are indeed polynomial in |S|. Clearly,
∇0(G) 6 |G|, thus ∇0(HS) 6 |S| and therefore |Y0| = O(|S|2).

For �0(HS) we use the trivial bound of �0(HS) 6 |S|ω(HS)−1, so it is left to
show that ω(HS) is a constant. As HS ⊆ GO 2d and per definition of nowhere-
dense graph classes, ω(GO r) <∞ for every constant r, the claim follows. ut

7.6 Polynomial Kernel for Longest Path

It is well-known that Longest Path can be solved in linear time if the treewidth
of the input graph is bounded by some constant [3]. Because of the relationship
between treewidth and treedepth (see Section 2) this result carries over to
treedepth.

Proposition 3. Longest Path can be solved in linear time if the treedepth of
the input graph is bounded by some constant.

Lemma 9. For fixed d ∈ N, d > 1, let S ⊆ V (G) be a treedepth-d modulator of
a graph G and let k = |S|. Then there is an induced subgraph G′ of G and a
set S′ ⊆ V (G′) such that: (1) G and G′ are equivalent instances of Longest
Path (for the same path length), (2) G′ and S′ can be computed from G and S
in time O(k2 · |V (G)|), and (3) S′ is a treedepth-(d− 1) modulator of G′ of size
|S′| 6 (k + 1)3.

Proof. Let U be the family of vertex sets of all connected components of G− S.
Since for each U ∈ U the graph G[U ] has treedepth at most d, there exists rU ∈ U
(the root of some treedepth d decomposition) such that G[U−{rU}] has treedepth
d− 1. Therefore if we can find in time O(k2 · |V (G)|) a subfamily U ′ ⊆ U of size
at most (k + 1)3 − k such that G′ = G[S ∪

⋃
U∈U ′ U ] is an equivalent instance

of Longest Path, the claim of the lemma follows. To see this, notice that we
can use vertices rU , one for each U ∈ U ′, together with vertices from S to form
treedepth-(d− 1) modulator S′ of G′. The modulator S′ will therefore consist of
k vertices from S and at most (k+1)3−k new vertices, one from each component
of U ′, and so |S′| 6 (k + 1)3, as claimed.

In the rest of the proof, we show that we can find the family U ′ :with the
aforementioned properties in desired time.

Assume |U| > k + 1. For all U ∈ U and x, y ∈ S with x 6= y we denote

i. by LP(U) a longest path in the graph G[U ] (we choose any one if not unique),
and by U0 ∈ U a representative achieving maximum value |LP(U0)| over U ;

ii. by LP(x, U) a longest path starting from x in the graph G[{x} ∪ U ], and by
Ux ⊆ U a subfamily of |Ux| = k+1 (“top k+1 representatives” by |LP(x, U)|)
such that for any U1 ∈ Ux, U2 ∈ U \ Ux it is |LP(x, U1)| > |LP(x, U2)|;
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iii. by LP(x, y, U) a longest path between x and y in the graph G[{x, y} ∪ U ],
or LP(x, y, U) = ∅ if no such path exists, and analogously by Ux,y ⊆ U a
subfamily of |Ux,y| = k+1 (“top k+1 representatives” by |LP(x, y, U)|) such
that for any U1 ∈ Ux,y, U2 ∈ U \ Ux,y it is |LP(x, y, U1)| > |LP(x, y, U2)|.

Because td(G[U ]) 6 td(G[{x} ∪ U ]) 6 td(G[{x, y} ∪ U ]) 6 d+ 2 (a constant),
it follows from Proposition 3 that LP(U), LP(x, U), LP(x, y, U) can each be
computed in linear time, and hence the whole computation of U0,Ux,Ux,y can
be done in O(k2 · |V (G)|) time.

We claim that the family U ′ = {U0} ∪
⋃
x∈S Ux ∪

⋃
x,y∈S,x 6=y Ux,y together

with S induces graph G′ which satisfies the conclusion of the lemma. Clearly,
|U ′| 6

(
k
2
)
(k + 1) + k(k + 1) + 1 = 1

2k(k + 1)2 + 1 6 (k + 1)3. It remains to show
that if G has a path of length at least ` then so does G′ = G[S ∪

⋃
U∈U ′ U ].

Let P be a path of length at least ` in G and let q = |V (P ) ∩ S| 6 k. Then
S “cuts” P into q + 1 sections, i.e., we can write P = P0 ∪ P1 ∪ . . . ∪ Pq where
Pi, i = 0, . . . , q are mutually edge-disjoint paths disjoint from S except possibly
at their ends. Suppose that P 6⊆ G′. There are three cases to consider for the
subpaths Pi:

I. q = 0 and P = P0. Then the length of P is at most |LP(U0)| by the
definition, and hence we can choose P ′ := LP(U0) ⊆ G′ straight away.

II. q > 1 and P0 6⊆ G′ or Pq 6⊆ G′. Consider, without loss of generality, the
latter case Pq 6⊆ G′ and let {x} = V (Pq) ∩ S. Then the length of Pq is at
most |LP(x, U)| for any U ∈ Ux by the definition. Notice that each of the
q 6 k paths Pi, i = 0, . . . , q − 1, can intersect only at most one component
from U by connectivity (and Pq is disjoint from all of Ux). Hence, at least
k + 1− q > 1 component(s) in Ux, say U1, is disjoint from whole P . Then
in P we replace Pq with LP(x, U1).

III. q > 1 and Pi 6⊆ G′ where 0 < i < q. Let {x, y} = V (Pi)∩S. Then the length
of Pi is at most |LP(x, y, U)| for any U ∈ Ux,y by the definition. For the
same reason as above there exists a component U2 ∈ Ux,y not intersected
by P , and we then in P replace Pi with LP(x, y, U2).

Repeating II, III for all sections of P , the resulting path P ′ ⊆ G′ has length at
least |P | > `, and this concludes the proof of the lemma.

ut
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