

Shrub-Depth

a successful depth measure for dense graphs

Petr Hliněný

Faculty of Informatics, Masaryk University Brno, Czech Republic

Shrub-Depth

a successful depth measure for dense graphs

Petr Hliněný

Faculty of Informatics, Masaryk University Brno, Czech Republic

Ingredients: joint results with

J. Gajarský, R. Ganian, O. Kwon, J. Nešetřil, J. Obdržálek, S. Ordyniak, P. Ossona de Mendez

Measuring Width or Depth?

• Being close to a TREE – "•-width"

SPARSE

tree-width / branch-width - showing a *structure*

DENSE

clique-width / rank-width - showing a *construction*

Measuring Width or Depth?

• Being close to a TREE - "•-width"

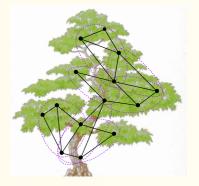
SPARSE

tree-width / branch-width - showing a *structure*

clique-width / rank-width - showing a *construction*

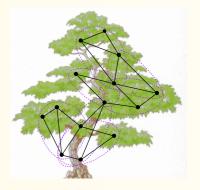
• Being close to a STAR - "•-depth"

Tree-width $tw(G) \le k$ if whole G can be covered by bags of size $\le k + 1$, arranged in a "tree-like fashion".



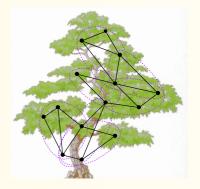
Tree-width $tw(G) \le k$ if whole G can be covered by bags of size $\le k + 1$, arranged in a "tree-like fashion".

The underlying idea: *G* is recursively decomposed along small v. separators.



Tree-width $tw(G) \le k$ if whole G can be covered by bags of size $\le k + 1$, arranged in a "tree-like fashion".

The underlying idea: *G* is recursively decomposed along small v. separators.

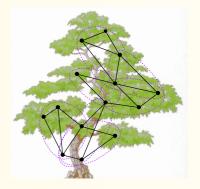


Structural properties

• Monotone under subgraphs and *minors*,

Tree-width $tw(G) \le k$ if whole G can be covered by bags of size $\le k + 1$, arranged in a "tree-like fashion".

The underlying idea: *G* is recursively decomposed along small v. separators.



Structural properties

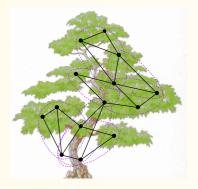
• Monotone under subgraphs and *minors*,

3/19

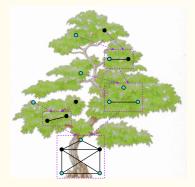
• degenerate and "very" sparse,

Tree-width $tw(G) \le k$ if whole G can be covered by bags of size $\le k + 1$, arranged in a "tree-like fashion".

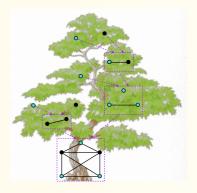
The underlying idea: *G* is recursively decomposed along small v. separators.



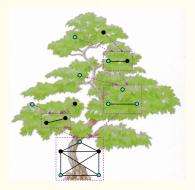
- Monotone under subgraphs and minors,
- degenerate and "very" sparse,
- asymptotically equivalent to NO large grid minor.



The underlying idea: G rec. constructed in a way that only k groups of vertices can be distiguished at any moment.



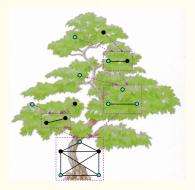
The underlying idea: G rec. constructed in a way that only k groups of vertices can be distiguished at any moment.



Structural properties

Preserved by ind. subgraphs and "vertex-minors" (asympt.),

The underlying idea: *G* rec. constructed in a way that only *k* groups of vertices can be distiguished at any moment.

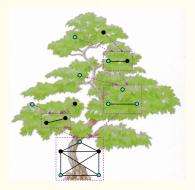


Structural properties

- Preserved by ind. subgraphs and "vertex-minors" (asympt.),
- no nice "excluded something" characterization known so far,

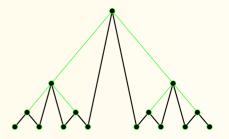
4/19

The underlying idea: G rec. constructed in a way that only k groups of vertices can be distiguished at any moment.

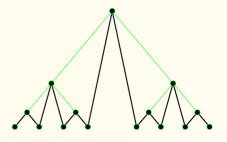


- Preserved by ind. subgraphs and "vertex-minors" (asympt.),
- no nice "excluded something" characterization known so far,
- but can be characterized by MSO₁ interpretations into trees.

Tree-depth $td(G) \leq k$ if whole G is contained in the closure of a rooted forest of height $\leq k + 1$.



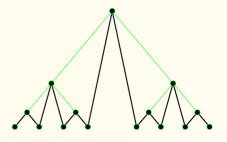
Tree-depth $td(G) \leq k$ if whole G is contained in the closure of a rooted forest of height $\leq k + 1$.



Structural properties

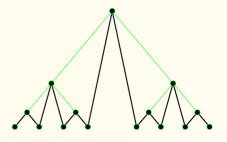
• Monotone under subgraphs and *minors*,

Tree-depth $td(G) \leq k$ if whole G is contained in the closure of a rooted forest of height $\leq k + 1$.



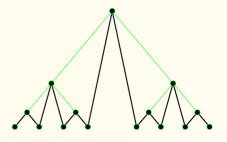
- Monotone under subgraphs and *minors*,
- again degenerate and "very" sparse,

Tree-depth $td(G) \leq k$ if whole G is contained in the closure of a rooted forest of height $\leq k + 1$.



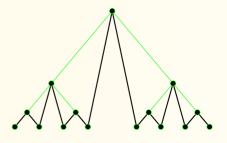
- Monotone under subgraphs and *minors*,
- again degenerate and "very" sparse,
- equiv. also to bounding the height of a tree-decomposition,

Tree-depth $td(G) \leq k$ if whole G is contained in the closure of a rooted forest of height $\leq k + 1$.



- Monotone under subgraphs and *minors*,
- again degenerate and "very" sparse,
- equiv. also to bounding the height of a tree-decomposition,
- asymptotically equivalent to a no long path subgraph,

Tree-depth $td(G) \leq k$ if whole G is contained in the closure of a rooted forest of height $\leq k + 1$.



- Monotone under subgraphs and *minors*,
- again degenerate and "very" sparse,
- equiv. also to bounding the height of a tree-decomposition,
- asymptotically equivalent to a no long path subgraph,
- and well-behaved wrt. MSO₂ interpretations.



How to restrict the height of *k*-expression? Not working...

(though, *NLC-width* provides some hint, and further simplified)

How to restrict the height of *k*-expression? Not working...

(though, *NLC-width* provides some hint, and further simplified)

Desired structural properties

 Ones similar to clique-width, but of small depth? (Related to clique-width as tree-depth related to tree-width...)

How to restrict the height of *k*-expression? Not working...

(though, *NLC-width* provides some hint, and further simplified)

Desired structural properties

- Ones similar to clique-width, but of small depth? (Related to clique-width as tree-depth related to tree-width...)
- Small also on some dense graphs, stable under complements. Recursive construction with limited inform. and of small depth.

How to restrict the height of *k*-expression? Not working...

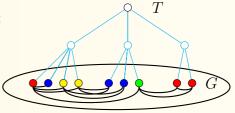
(though, *NLC-width* provides some hint, and further simplified)

Desired structural properties

- Ones similar to clique-width, but of small depth? (Related to clique-width as tree-depth related to tree-width...)
- Small also on some dense graphs, stable under complements.
 Recursive construction with limited inform. and of small depth.
- Stable under FO / MSO₁ interpretations!

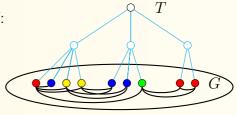
Tree-model of *m* colours and depth *d*:

• a rooted tree T of height d,



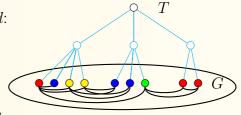
Tree-model of *m* colours and depth *d*:

- a rooted tree T of height d,
- leaves are the vertices of G,
 each leaf has one of m colours,



Tree-model of m colours and depth d:

- a rooted tree T of height d,
- leaves are the vertices of G,
 each leaf has one of m colours,

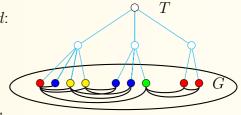


an associated *signature* determining the edge set of G as follows:
 for i = 1, 2, ..., d, let u and v

be leaves with the least common ancestor at height i in T,

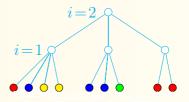
Tree-model of *m* colours and depth *d*:

- a rooted tree T of height d,
- leaves are the vertices of G,
 each leaf has one of m colours,



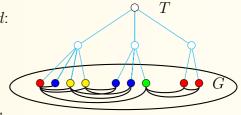
• an associated *signature* determining the edge set of G as follows:

for i = 1, 2, ..., d, let u and vbe leaves with the least common ancestor at height i in T,



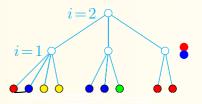
Tree-model of *m* colours and depth *d*:

- a rooted tree T of height d,
- leaves are the vertices of G,
 each leaf has one of m colours,



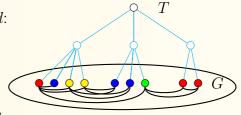
• an associated *signature* determining the edge set of G as follows:

for i = 1, 2, ..., d, let u and vbe leaves with the least common ancestor at height i in T,



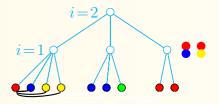
Tree-model of *m* colours and depth *d*:

- a rooted tree T of height d,
- leaves are the vertices of G,
 each leaf has one of m colours,



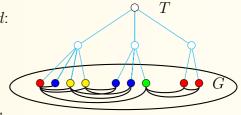
• an associated *signature* determining the edge set of G as follows:

for i = 1, 2, ..., d, let u and vbe leaves with the least common ancestor at height i in T,



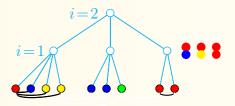
Tree-model of *m* colours and depth *d*:

- a rooted tree T of height d,
- leaves are the vertices of G,
 each leaf has one of m colours,



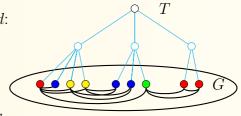
• an associated *signature* determining the edge set of G as follows:

for i = 1, 2, ..., d, let u and vbe leaves with the least common ancestor at height i in T,



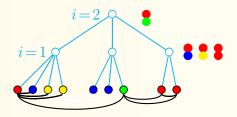
Tree-model of m colours and depth d:

- a rooted tree T of height d,
- leaves are the vertices of G,
 each leaf has one of m colours,



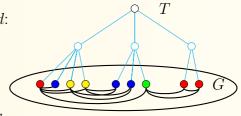
• an associated *signature* determining the edge set of G as follows:

for i = 1, 2, ..., d, let u and vbe leaves with the least common ancestor at height i in T,



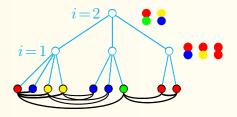
Tree-model of *m* colours and depth *d*:

- a rooted tree T of height d,
- leaves are the vertices of G,
 each leaf has one of m colours,

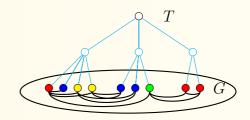


• an associated *signature* determining the edge set of G as follows:

for i = 1, 2, ..., d, let u and vbe leaves with the least common ancestor at height i in T,



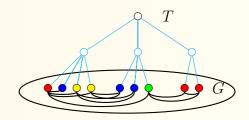
Shrub-depth



$\mathsf{Class} \ \mathcal{TM}_m(d) =$

{ graphs with a tree-model of m colours and depth d }

Shrub-depth

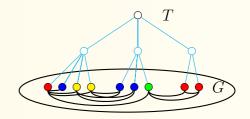


$\mathsf{Class} \ \mathcal{TM}_m(d) =$

{ graphs with a tree-model of m colours and depth d }

- closed under complements and induced subgraphs,

Shrub-depth

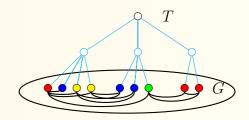


$\mathsf{Class} \ \mathcal{TM}_m(d) =$

{ graphs with a tree-model of m colours and depth d }

- closed under complements and induced subgraphs,
- but neither under disjoint unions nor under subgraphs.

Shrub-depth



$\mathsf{Class} \ \mathcal{TM}_m(d) =$

{ graphs with a tree-model of m colours and depth d }

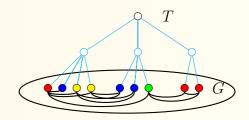
- closed under complements and induced subgraphs,
- but neither under disjoint unions nor under subgraphs.

Definition

A graph class \mathcal{G} is of shrub-depth d iff

there exists m such that $\mathcal{G} \subseteq \mathcal{TM}_m(d)$ (same m for all \mathcal{G} !),

Shrub-depth



$\mathsf{Class} \ \mathcal{TM}_m(d) =$

{ graphs with a tree-model of m colours and depth d }

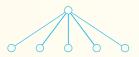
- closed under complements and induced subgraphs,
- but neither under disjoint unions nor under subgraphs.

Definition

A graph class \mathcal{G} is of shrub-depth d iff

there exists m such that $\mathcal{G} \subseteq \mathcal{TM}_m(d)$ (same m for all \mathcal{G} !), while for all m' we have $\mathcal{G} \not\subseteq \mathcal{TM}_{m'}(d-1)$.

 Shrub-depth 1: e.g., cliques, stars, ... gen. BND – bounded neighbourhood diversity.



 Shrub-depth 1: e.g., cliques, stars, ... gen. BND – bounded neighbourhood diversity.

• Shrub-depth 2: e.g., matchings, union of cliques,

- Shrub-depth 1: e.g., cliques, stars, ... gen. BND – bounded neighbourhood diversity.
- Shrub-depth 2: e.g., matchings, union of cliques, generally – take a BND graph, and expand each vertex by any (other) BND graph.

- Shrub-depth 1: e.g., cliques, stars, ... gen. BND – bounded neighbourhood diversity.
- Shrub-depth 2: e.g., matchings, union of cliques, generally – take a BND graph, and expand each vertex by any (other) BND graph.
- The previous can be generalized to d levels...

- Shrub-depth 1: e.g., cliques, stars, ... gen. BND – bounded neighbourhood diversity.
- Shrub-depth 2: e.g., matchings, union of cliques, generally – take a BND graph, and expand each vertex by any (other) BND graph.
- The previous can be generalized to d levels...
- Bounded tree-depth \Rightarrow bounded shrub-depth.

- Shrub-depth 1: e.g., cliques, stars, ... gen. BND – bounded neighbourhood diversity.
- Shrub-depth 2: e.g., matchings, union of cliques, generally – take a BND graph, and expand each vertex by any (other) BND graph.
- The previous can be generalized to d levels...
- Bounded tree-depth \Rightarrow bounded shrub-depth.
- Bounded shrub-depth ⇒ bounded linear clique-width.

Goal: to get a depth parameter valid for a single graph...

Goal: to get a depth parameter valid for a single graph...

SC-classes ("subset-complementation"):

- $SC(0) = \{K_1\},\$

Goal: to get a depth parameter valid for a single graph...

SC-classes ("subset-complementation"):

$$- \mathcal{SC}(\mathbf{0}) = \{K_1\},\$$

- having $G_1, G_2, \ldots, G_p \in \mathcal{SC}(k)$,

take the disjoint union $H := G_1 \cup G_2 \cup \ldots \cup G_p$ and,

Goal: to get a depth parameter valid for a single graph...

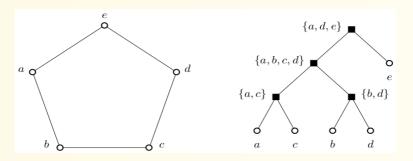
SC-classes ("subset-complementation"):

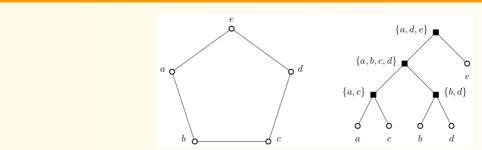
$$- \mathcal{SC}(\mathbf{0}) = \{K_1\},\$$

- having $G_1, G_2, \ldots, G_p \in \mathcal{SC}(k)$,

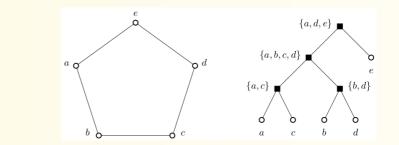
take the disjoint union $H := G_1 \cup G_2 \cup \ldots \cup G_p$ and, for every $X \subseteq V(H)$,

H with complemented edges on $X \hookrightarrow \mathcal{SC}(k+1)$.





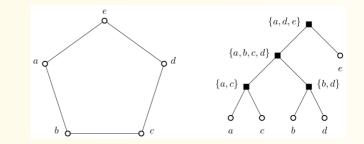
A graph G is of **SC-depth** k iff $G \in SC(k)$ but $G \notin SC(k-1)$.



A graph G is of **SC-depth** k iff $G \in SC(k)$ but $G \notin SC(k-1)$.

Theorem For a graph class \mathcal{G} ;

bounded shrub-depth \iff bounded SC-depth.



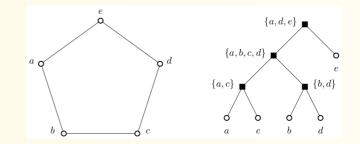
A graph G is of **SC-depth** k iff $G \in SC(k)$ but $G \notin SC(k-1)$.

Theorem For a graph class \mathcal{G} ;

bounded shrub-depth \iff bounded SC-depth.

A proof sketch:

- $\mathcal{SC}(k) \subseteq \mathcal{TM}_{2^k}(k)$, and



A graph G is of **SC-depth** k iff $G \in SC(k)$ but $G \notin SC(k-1)$.

Theorem For a graph class \mathcal{G} ;

bounded shrub-depth \iff bounded SC-depth.

A proof sketch:

- $\mathcal{SC}(k) \subseteq \mathcal{TM}_{2^k}(k)$, and
- $\mathcal{TM}_m(d) \subseteq \mathcal{SC}(dm(m+1)).$

Warning: just a very brief sketch (assuming you know branch-width).

Warning: just a very brief sketch (assuming you know branch-width).

Branch-width of a submodular function
 → rank-width of a graph:

consider the *cut-rank* function on the vertex set of a graph.

Warning: just a very brief sketch (assuming you know branch-width).

Branch-width of a submodular function
 → rank-width of a graph:

consider the cut-rank function on the vertex set of a graph.

• [Geelen] Branch-width → branch-depth:

Warning: just a very brief sketch (assuming you know branch-width).

Branch-width of a submodular function
 → rank-width of a graph:

consider the *cut-rank* function on the vertex set of a graph.

 [Geelen] Branch-width → branch-depth: allowing high-degree nodes, and node width measured over all bipartitions of incident subtrees.

Warning: just a very brief sketch (assuming you know branch-width).

Branch-width of a submodular function
 → rank-width of a graph:

consider the cut-rank function on the vertex set of a graph.

- [Geelen] Branch-width → branch-depth: allowing high-degree nodes, and node width measured over all bipartitions of incident subtrees.
- Branch-depth of a submodular function

 \rightarrow rank-depth of a graph.

Warning: just a very brief sketch (assuming you know branch-width).

Branch-width of a submodular function
 → rank-width of a graph:

consider the cut-rank function on the vertex set of a graph.

- [Geelen] Branch-width → branch-depth: allowing high-degree nodes, and node width measured over all bipartitions of incident subtrees.
- Branch-depth of a submodular function

 \rightarrow rank-depth of a graph.

Theorem [DeVos, Kwon, Oum] For a graph class G;

bounded shrub-depth \iff bounded rank-depth.

Theorem Each of $\mathcal{TM}_m(d)$ and $\mathcal{SC}(k)$ have

finite sets of forbidden induced subgraphs (obstructions).

Theorem Each of $\mathcal{TM}_m(d)$ and $\mathcal{SC}(k)$ have

finite sets of forbidden induced subgraphs (obstructions).

Proof sketch:

– e.g., min. obstructions for $\mathcal{TM}_m(d)$ contained in $\mathcal{TM}_{2m+1}(d)$;

Theorem Each of $\mathcal{TM}_m(d)$ and $\mathcal{SC}(k)$ have

finite sets of forbidden induced subgraphs (obstructions).

Proof sketch:

- e.g., min. obstructions for $\mathcal{TM}_m(d)$ contained in $\mathcal{TM}_{2m+1}(d)$;
- plus [Ding] WQO of coloured rooted trees of bounded height (simply iterate classical Higman's lemma...).

Theorem Each of $\mathcal{TM}_m(d)$ and $\mathcal{SC}(k)$ have

finite sets of forbidden induced subgraphs (obstructions).

Proof sketch:

- e.g., min. obstructions for $\mathcal{TM}_m(d)$ contained in $\mathcal{TM}_{2m+1}(d)$;
- plus [Ding] WQO of coloured rooted trees of bounded height (simply iterate classical Higman's lemma...).

Theorem (shrub-depth "from" tree-depth) A class \mathcal{G} of bounded shrub-depth \Rightarrow exists d such that each graph of \mathcal{G} is a vertex-minor of a graph of tree-depth d.

Theorem Each of $\mathcal{TM}_m(d)$ and $\mathcal{SC}(k)$ have

finite sets of forbidden induced subgraphs (obstructions).

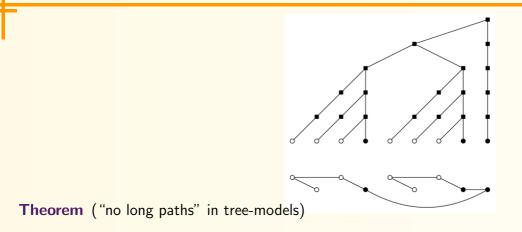
Proof sketch:

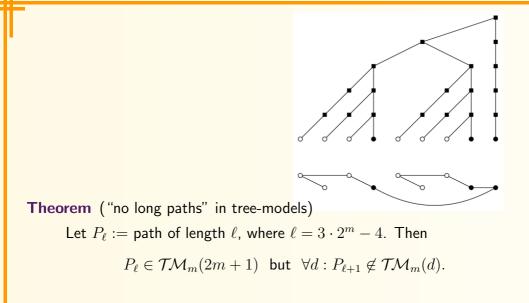
- e.g., min. obstructions for $\mathcal{TM}_m(d)$ contained in $\mathcal{TM}_{2m+1}(d)$;
- plus [Ding] WQO of coloured rooted trees of bounded height (simply iterate classical Higman's lemma...).

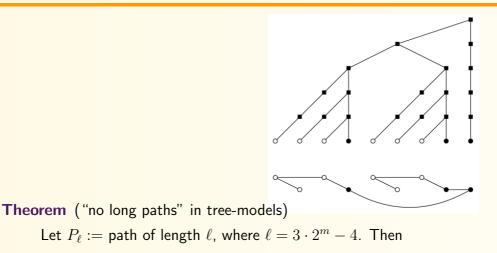
Theorem (shrub-depth "from" tree-depth)

A class \mathcal{G} of bounded shrub-depth \Rightarrow exists d such that each graph of \mathcal{G} is a vertex-minor of a graph of tree-depth d. Proof sketch:

 start from an SC-depth tree, and "simulate" subset complem. via extra vert. with local complem.



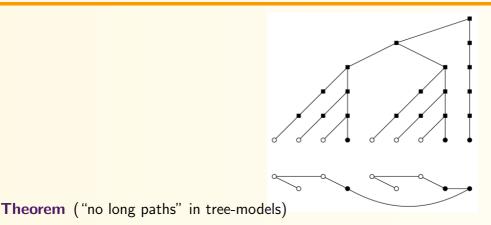




$$P_{\ell} \in \mathcal{TM}_m(2m+1)$$
 but $\forall d : P_{\ell+1} \notin \mathcal{TM}_m(d)$.

Proof sketch:

- the tight bound comes from a delicate induction (skipped),



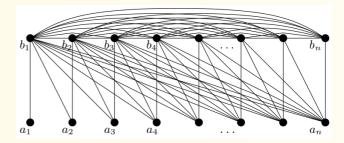
Let $P_{\ell} :=$ path of length ℓ , where $\ell = 3 \cdot 2^m - 4$. Then

 $P_{\ell} \in \mathcal{TM}_m(2m+1)$ but $\forall d: P_{\ell+1} \notin \mathcal{TM}_m(d)$.

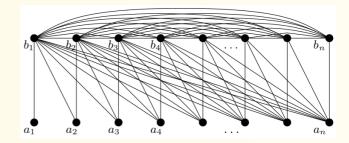
Proof sketch:

- the tight bound comes from a delicate induction (skipped),
- easy weaker argument: every large tree-model of bounded d, mhas triplicate subtrees \rightarrow cannot represent a path.

Observation Forbidding induced paths is not enough! (to bound shrub-depth/SC-depth) **Observation** Forbidding induced paths is not enough! (to bound shrub-depth/SC-depth)



Observation Forbidding induced paths is not enough! (to bound shrub-depth/SC-depth)

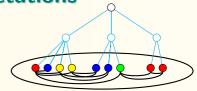


Conjecture A class G is of bounded shrub-depth

there exists t such that no graph of \mathcal{G} contains P_t as a vertex minor.

4 Shrub-depth and Interpretations

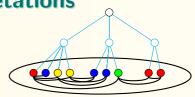
Observation (tree-model \rightarrow interpretation)



Graphs have FO interpretations in their tree-models from $\mathcal{TM}_m(d)$.

4 Shrub-depth and Interpretations

Observation (tree-model \rightarrow interpretation)



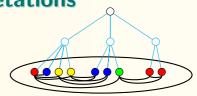
Graphs have FO interpretations in their tree-models from $\mathcal{TM}_m(d)$.

Theorem (interpretation \rightarrow tree-model)

A graph class \mathcal{G} has a simple CMSO₁ interpretation in a class \mathcal{T}_d of coloured rooted trees of height $\leq d$ $\Rightarrow \mathcal{G}$ is of shrub-depth $\leq d$.

4 Shrub-depth and Interpretations

Observation (tree-model \rightarrow interpretation)



Graphs have FO interpretations in their tree-models from $\mathcal{TM}_m(d)$.

Theorem (interpretation \rightarrow tree-model)

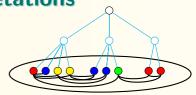
A graph class \mathcal{G} has a simple CMSO₁ interpretation in a class \mathcal{T}_d of coloured rooted trees of height $\leq d$ $\Rightarrow \mathcal{G}$ is of shrub-depth $\leq d$.

Some consequences

 Shrub-depth preserved under vertex-minors (exactly); using [Courcelle–Oum].

4 Shrub-depth and Interpretations

Observation (tree-model \rightarrow interpretation)



Graphs have FO interpretations in their tree-models from $\mathcal{TM}_m(d)$.

Theorem (interpretation \rightarrow tree-model)

A graph class \mathcal{G} has a simple CMSO₁ interpretation in a class \mathcal{T}_d of coloured rooted trees of height $\leq d$ $\Rightarrow \mathcal{G}$ is of shrub-depth $\leq d$.

Some consequences

- Shrub-depth preserved under vertex-minors (exactly); using [Courcelle–Oum].
- The finite levels of the MSO₁ transduction hierarchy are given (almost) by shrub-depth 1, 2, 3...; cf. [Blumensath–Courcelle].

Shrub-depth measure for dense graphs

• CMSO₁ interpretation $I(\mathcal{T}_d) = \mathcal{G}$, given by $I = (\alpha, \beta)$:

- vertex set $V(G) := \{u : T \models \alpha(u)\}$ - can be ignored,

- CMSO₁ interpretation $I(\mathcal{T}_d) = \mathcal{G}$, given by $I = (\alpha, \beta)$:
 - vertex set $V(G) := \{u : T \models \alpha(u)\}$ can be ignored,
 - edge set $E(G) := \{uv : T \models \beta(u, v)\}$ crucial.

- CMSO₁ interpretation $I(\mathcal{T}_d) = \mathcal{G}$, given by $I = (\alpha, \beta)$:
 - vertex set $V(G) := \{u : T \models \alpha(u)\}$ can be ignored,
 - edge set $E(G) := \{uv : T \models \beta(u, v)\}$ crucial.
- Avoid free vars.: $\beta' \equiv \exists x, y[L(x) \land L(y) \land \beta(x, y)]$, and give the new label L to u, v, as needed,

- CMSO₁ interpretation $I(\mathcal{T}_d) = \mathcal{G}$, given by $I = (\alpha, \beta)$:
 - vertex set $V(G) := \{u : T \models \alpha(u)\}$ can be ignored,

- edge set $E(G) := \{uv : T \models \beta(u, v)\}$ - crucial.

• Avoid free vars.: $\beta' \equiv \exists x, y[L(x) \land L(y) \land \beta(x, y)]$, and give the new label L to u, v, as needed,

$$T \models \beta(u, v) \iff T[L(u), L(v)] \models \beta'.$$

- CMSO₁ interpretation $I(\mathcal{T}_d) = \mathcal{G}$, given by $I = (\alpha, \beta)$:
 - vertex set $V(G) := \{u : T \models \alpha(u)\}$ can be ignored,

- edge set $E(G) := \{uv : T \models \beta(u, v)\}$ - crucial.

• Avoid free vars.: $\beta' \equiv \exists x, y[L(x) \land L(y) \land \beta(x, y)]$, and give the new label L to u, v, as needed,

$$T \models \beta(u, v) \iff T[L(u), L(v)] \models \beta'.$$

Now, ...* miracle happens *..., reducing every
 T[L(u), L(v)] → bounded T₀[L(u), L(v)] such that

- CMSO₁ interpretation $I(\mathcal{T}_d) = \mathcal{G}$, given by $I = (\alpha, \beta)$:
 - vertex set $V(G) := \{u : T \models \alpha(u)\}$ can be ignored,

- edge set $E(G) := \{uv : T \models \beta(u, v)\}$ - crucial.

• Avoid free vars.: $\beta' \equiv \exists x, y[L(x) \land L(y) \land \beta(x, y)]$, and give the new label L to u, v, as needed,

$$T \models \beta(u, v) \iff T[L(u), L(v)] \models \beta'.$$

• Now, ...* miracle happens *..., reducing every $T[L(u), L(v)] \rightsquigarrow$ bounded $T_0[L(u), L(v)]$ such that $T[L(u), L(v)] \models \beta' \iff T_0[L(u), L(v)] \models \beta'.$

- CMSO₁ interpretation $I(\mathcal{T}_d) = \mathcal{G}$, given by $I = (\alpha, \beta)$:
 - vertex set $V(G) := \{u : T \models \alpha(u)\}$ can be ignored,

- edge set $E(G) := \{uv : T \models \beta(u, v)\}$ - crucial.

• Avoid free vars.: $\beta' \equiv \exists x, y[L(x) \land L(y) \land \beta(x, y)]$, and give the new label L to u, v, as needed,

$$T \models \beta(u, v) \iff T[L(u), L(v)] \models \beta'.$$

• Now,* miracle happens *..., reducing every

$$\begin{split} T[L(u),L(v)] &\leadsto \text{ bounded } T_0[L(u),L(v)] \text{ such that} \\ T[L(u),L(v)] &\models \beta' \iff T_0[L(u),L(v)] \models \beta'. \end{split}$$

Moreover, doing this carefully, there is such universal $T \rightsquigarrow T_0$ to which L(u'), L(v') can be added afterwards!

- CMSO₁ interpretation $I(\mathcal{T}_d) = \mathcal{G}$, given by $I = (\alpha, \beta)$:
 - vertex set $V(G) := \{u : T \models \alpha(u)\}$ can be ignored,
 - edge set $E(G) := \{uv : T \models \beta(u, v)\}$ crucial.

- CMSO₁ interpretation $I(\mathcal{T}_d) = \mathcal{G}$, given by $I = (\alpha, \beta)$:
 - vertex set $V(G) := \{u : T \models \alpha(u)\}$ can be ignored,
 - edge set $E(G) := \{uv : T \models \beta(u, v)\}$ crucial.

- Recall univ. $T \rightarrow T_0$, and choose L(u), L(v) to "query" $uv \in {}^{?}E(G)$
 - this T_0 is bounded \rightarrow part of the signature, but

- CMSO₁ interpretation $I(\mathcal{T}_d) = \mathcal{G}$, given by $I = (\alpha, \beta)$:
 - vertex set $V(G) := \{u : T \models \alpha(u)\}$ can be ignored,
 - edge set $E(G) := \{uv : T \models \beta(u, v)\}$ crucial.

- Recall univ. $T \rightarrow T_0$, and choose L(u), L(v) to "query" $uv \in {}^?E(G)$
 - this T_0 is bounded \rightarrow part of the signature, but
 - how to get appropriate $T_0[L(u'), L(v')]$ then?

- CMSO₁ interpretation $I(\mathcal{T}_d) = \mathcal{G}$, given by $I = (\alpha, \beta)$:
 - vertex set $V(G) := \{u : T \models \alpha(u)\}$ can be ignored,

- edge set
$$E(G) := \{uv : T \models \beta(u, v)\}$$
 - crucial.

- Recall univ. $T \rightarrow T_0$, and choose L(u), L(v) to "query" $uv \in E(G)$
 - this T_0 is bounded \rightarrow part of the signature, but
 - how to get appropriate $T_0[L(u'), L(v')]$ then?
- The final step:

each $u \in V(T) \mapsto$ orbit O(u') of $Aut(T_0)$,

- CMSO₁ interpretation $I(\mathcal{T}_d) = \mathcal{G}$, given by $I = (\alpha, \beta)$:
 - vertex set $V(G) := \{u : T \models \alpha(u)\}$ can be ignored,

- edge set
$$E(G) := \{uv : T \models \beta(u, v)\}$$
 - crucial.

- Recall univ. $T \rightarrow T_0$, and choose L(u), L(v) to "query" $uv \in {}^?E(G)$
 - this T_0 is bounded \rightarrow part of the signature, but
 - how to get appropriate $T_0[L(u'), L(v')]$ then?
- The final step:

each $u \in V(T) \mapsto$ orbit O(u') of $Aut(T_0)$,

and we can assign O(u') as the colour of u in our tree-model.

• Asymptotic shrub-depth *or* concrete SC-depth (rank-depth)?

- Asymptotic shrub-depth *or* concrete SC-depth (rank-depth)?
 - actually, choose any one you want (always good to have options).

- Asymptotic shrub-depth *or* concrete SC-depth (rank-depth)?
 - actually, choose any one you want (always good to have options).
- Generalize shrub-depth to relational structures? Straightforward...

- Asymptotic shrub-depth *or* concrete SC-depth (rank-depth)?
 - actually, choose any one you want (always good to have options).
- Generalize shrub-depth to relational structures? Straightforward...
- Characterise (combinatorially) classes of unbounded shrub-depth? (Recall long paths as vertex minors...)

- Asymptotic shrub-depth *or* concrete SC-depth (rank-depth)?
 - actually, choose any one you want (always good to have options).
- Generalize shrub-depth to relational structures? Straightforward...
- Characterise (combinatorially) classes of unbounded shrub-depth? (Recall long paths as vertex minors...)
- Get a better grip on shrub-depth (similarly to tree-depth)?

- Asymptotic shrub-depth *or* concrete SC-depth (rank-depth)?
 - actually, choose any one you want (always good to have options).
- Generalize shrub-depth to relational structures? Straightforward...
- Characterise (combinatorially) classes of unbounded shrub-depth? (Recall long paths as vertex minors...)
- Get a better grip on shrub-depth (similarly to tree-depth)?

Thank you for your attention.