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Petr Hliněný, Sparsity, Logic . . . , Warwick, 2018 2 / 19 Shrub-depth measure for dense graphs

Measuring Width or Depth?Measuring Width or Depth?

• Being close to a TREE – “•-width”

sparse dense

tree-width / branch-width
– showing a structure clique-width / rank-width

– showing a construction



page.19
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Measuring Width or Depth?Measuring Width or Depth?

• Being close to a TREE – “•-width”

sparse dense

tree-width / branch-width
– showing a structure clique-width / rank-width

– showing a construction

• Being close to a STAR – “•-depth”

sparse dense

tree-depth
– containment in a structure ???

(will show)
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1 Recall: Width Measures1 Recall: Width Measures

Tree-width tw(G) ≤ k if whole G can
be covered by bags of size ≤ k + 1,

arranged in a “tree-like fashion”.

The underlying idea: G is recursively de-

composed along small v. separators.

Structural properties

• Monotone under subgraphs and minors,

• degenerate and “very” sparse,

• asymptotically equivalent to NO large grid minor.
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a k-expression (over k-labelled gr.),

k-expression ∼ disjoint unions, rela-

belling, edge-add. between labels.
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Clique-width cwd(G) ≤ k if G given by
a k-expression (over k-labelled gr.),

k-expression ∼ disjoint unions, rela-

belling, edge-add. between labels.

The underlying idea: G rec. constructed
in a way that only k groups of vertices

can be distiguished at any moment.

Structural properties

• Preserved by ind. subgraphs and “vertex-minors” (asympt.),

• no nice “excluded something” characterization known so far,

• but can be characterized by MSO1 interpretations into trees.
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contained in the closure of a rooted
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and Depth Measuresand Depth Measures

Tree-depth td(G) ≤ k if whole G is
contained in the closure of a rooted
forest of height ≤ k + 1.

Structural properties

• Monotone under subgraphs and minors,

• again degenerate and “very” sparse,

• equiv. also to bounding the height of a tree-decomposition,

• asymptotically equivalent to a no long path subgraph,

• and well-behaved wrt. MSO2 interpretations.
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“Clique-depth” ???

How to restrict the height of
k-expression? Not working. . .

(though, NLC-width provides some hint, and further simplified)

Desired structural properties

• Ones similar to clique-width, but of small depth?

(Related to clique-width as tree-depth related to tree-width. . . )

• Small also on some dense graphs, stable under complements.

Recursive construction with limited inform. and of small depth.

• Stable under FO / MSO1 interpretations!
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{ graphs with a tree-model of m colours and depth d }

– closed under complements and induced subgraphs,
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Shrub-depthShrub-depth

G

T

Class TMm(d) =

{ graphs with a tree-model of m colours and depth d }

– closed under complements and induced subgraphs,

– but neither under disjoint unions nor under subgraphs.

Definition

A graph class G is of shrub-depth d iff

there exists m such that G ⊆ TMm(d) (same m for all G!),

while for all m′ we have G 6⊆ TMm′(d− 1).
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Examples and simple properties

• Shrub-depth 1: e.g., cliques, stars, . . .
gen. BND – bounded neighbourhood diversity.

• Shrub-depth 2: e.g., matchings, union of cliques,

generally – take a BND graph, and expand
each vertex by any (other) BND graph.

• The previous can be generalized to d levels. . .

• Bounded tree-depth ⇒ bounded shrub-depth.

• Bounded shrub-depth ⇒ bounded linear clique-width.
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Petr Hliněný, Sparsity, Logic . . . , Warwick, 2018 10 / 19 Shrub-depth measure for dense graphs

Alternative: SC-depthAlternative: SC-depth
Goal: to get a depth parameter valid for a single graph. . .

SC-classes (“subset-complementation”):

– SC(0)= {K1},
– having G1, G2, . . . , Gp ∈SC(k),

take the disjoint union H := G1 ∪G2 ∪ . . . ∪Gp and,
for every X ⊆ V (H),

H with complemented edges on X ↪→ SC(k + 1).



page.19
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G ∈ SC(k) but G 6∈ SC(k − 1).
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Definition

A graph G is of SC-depth k iff

G ∈ SC(k) but G 6∈ SC(k − 1).

Theorem For a graph class G;

bounded shrub-depth ⇐⇒ bounded SC-depth.

A proof sketch:

– SC(k) ⊆ TM2k(k), and

– TMm(d) ⊆ SC(dm(m+ 1)).
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Petr Hliněný, Sparsity, Logic . . . , Warwick, 2018 12 / 19 Shrub-depth measure for dense graphs

Alternative II: Rank-depthAlternative II: Rank-depth
Warning: just a very brief sketch (assuming you know branch-width).

• Branch-width of a submodular function
; rank-width of a graph:

consider the cut-rank function on the vertex set of a graph.

• [Geelen] Branch-width ; branch-depth:

allowing high-degree nodes, and

node width measured over all bipartitions of incident subtrees.

• Branch-depth of a submodular function

; rank-depth of a graph.



page.19
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Alternative II: Rank-depthAlternative II: Rank-depth
Warning: just a very brief sketch (assuming you know branch-width).

• Branch-width of a submodular function
; rank-width of a graph:

consider the cut-rank function on the vertex set of a graph.

• [Geelen] Branch-width ; branch-depth:

allowing high-degree nodes, and

node width measured over all bipartitions of incident subtrees.

• Branch-depth of a submodular function

; rank-depth of a graph.

Theorem [DeVos, Kwon, Oum] For a graph class G;

bounded shrub-depth ⇐⇒ bounded rank-depth.
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3 Further Combinatorial Properties3 Further Combinatorial Properties

Theorem Each of TMm(d) and SC(k) have

finite sets of forbidden induced subgraphs (obstructions).

Proof sketch:

– e.g., min. obstructions for TMm(d) contained in TM2m+1(d);

– plus [Ding] WQO of coloured rooted trees of bounded height

(simply iterate classical Higman’s lemma. . . ).

Theorem (shrub-depth “from” tree-depth)

A class G of bounded shrub-depth ⇒ exists d such that

each graph of G is a vertex-minor of a graph of tree-depth d.

Proof sketch:

– start from an SC-depth tree, and
“simulate” subset complem. via extra vert. with local complem.
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Theorem (“no long paths” in tree-models)

Let P` := path of length `, where ` = 3 · 2m − 4. Then

P` ∈ TMm(2m+ 1) but ∀d : P`+1 6∈ TMm(d).

Proof sketch:

– the tight bound comes from a delicate induction (skipped),

– easy weaker argument: every large tree-model of bounded d,m
has triplicate subtrees → cannot represent a path.
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Observation Forbidding induced paths is not enough!

(to bound shrub-depth/SC-depth)

Conjecture A class G is of bounded shrub-depth

⇐⇒
there exists t such that no graph of G contains Pt as a vertex minor.
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Petr Hliněný, Sparsity, Logic . . . , Warwick, 2018 16 / 19 Shrub-depth measure for dense graphs

4 Shrub-depth and Interpretations4 Shrub-depth and Interpretations

Observation (tree-model → interpretation)
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4 Shrub-depth and Interpretations4 Shrub-depth and Interpretations

Observation (tree-model → interpretation)

Graphs have FO interpretations in their tree-models from TMm(d).

Theorem (interpretation → tree-model)

A graph class G has a simple CMSO1 interpretation
in a class Td of coloured rooted trees of height ≤ d

⇒ G is of shrub-depth ≤ d.

Some consequences

• Shrub-depth preserved under vertex-minors (exactly);

using [Courcelle–Oum].

• The finite levels of the MSO1 transduction hierarchy are given
(almost) by shrub-depth 1, 2, 3 . . .; cf. [Blumensath–Courcelle].
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– vertex set V (G) := {u : T |= α(u)} – can be ignored,
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Proof sketchProof sketch

• CMSO1 interpretation I(Td) = G, given by I = (α, β):

– vertex set V (G) := {u : T |= α(u)} – can be ignored,

– edge set E(G) := {uv : T |= β(u, v)} – crucial.

• Avoid free vars.: β′ ≡ ∃x, y[L(x) ∧ L(y) ∧ β(x, y)],
and give the new label L to u, v, as needed,

T |= β(u, v) ⇐⇒ T [L(u), L(v)] |= β′.

• Now, . . . * miracle happens *. . . , reducing every

T [L(u), L(v)] ; bounded T0[L(u), L(v)] such that

T [L(u), L(v)] |= β′ ⇐⇒ T0[L(u), L(v)] |= β′.

Moreover, doing this carefully, there is such universal T ; T0 to
which L(u′), L(v′) can be added afterwards!
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• CMSO1 interpretation I(Td) = G, given by I = (α, β):

– vertex set V (G) := {u : T |= α(u)} – can be ignored,

– edge set E(G) := {uv : T |= β(u, v)} – crucial.

. . . . . . . . . . . . . . . . . .
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Petr Hliněný, Sparsity, Logic . . . , Warwick, 2018 18 / 19 Shrub-depth measure for dense graphs

• CMSO1 interpretation I(Td) = G, given by I = (α, β):

– vertex set V (G) := {u : T |= α(u)} – can be ignored,

– edge set E(G) := {uv : T |= β(u, v)} – crucial.

. . . . . . . . . . . . . . . . . .

• Recall univ. T ; T0, and choose L(u), L(v) to “query” uv ∈?E(G)

– this T0 is bounded → part of the signature, but



page.19
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• CMSO1 interpretation I(Td) = G, given by I = (α, β):

– vertex set V (G) := {u : T |= α(u)} – can be ignored,

– edge set E(G) := {uv : T |= β(u, v)} – crucial.

. . . . . . . . . . . . . . . . . .

• Recall univ. T ; T0, and choose L(u), L(v) to “query” uv ∈?E(G)

– this T0 is bounded → part of the signature, but

– how to get appropriate T0[L(u
′), L(v′)] then?

• The final step:

each u ∈ V (T ) 7→ orbit O(u′) of Aut(T0),

and we can assign O(u′) as the colour of u in our tree-model. 2
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Petr Hliněný, Sparsity, Logic . . . , Warwick, 2018 19 / 19 Shrub-depth measure for dense graphs

Concluding RemarksConcluding Remarks

• Asymptotic shrub-depth *or* concrete SC-depth (rank-depth)?



page.19
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Concluding RemarksConcluding Remarks

• Asymptotic shrub-depth *or* concrete SC-depth (rank-depth)?

– actually, choose any one you want (always good to have options).

• Generalize shrub-depth to relational structures? Straightforward. . .

• Characterise (combinatorially) classes of unbounded shrub-depth?

(Recall long paths as vertex minors. . . )

• Get a better grip on shrub-depth (similarly to tree-depth)?

Thank you for your attention.
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