
Automata Approach to Graphs of Bounded

Rank-width

Robert Ganian⋆ and Petr Hliněný⋆⋆

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

ganian@mail.muni.cz, hlineny@fi.muni.cz

Abstract. Rank-width is a rather new structural graph measure in-
troduced by Oum and Seymour in 2003 in order to find an efficiently
computable approximation of clique-width of a graph. Being a very
nice graph measure indeed, the only serious drawback of rank-width
was that it is virtually impossible to use a given rank-decomposition
of a graph for running dynamic algorithms on it. We propose a new
independent description of rank-decompositions of graphs using labeling
parse trees which is, after all, mathematically equivalent to the recent al-
gebraic graph-expression approach to rank-decompositions of Courcelle
and Kanté [WG’07]. We then use our labeling parse trees to build a
Myhill-Nerode-type formalism for handling restricted classes of graphs
of bounded rank-width, and to directly prove that (an already indirectly
known result) all graph properties expressible in MSO logic are decidable
by finite automata running on the labeling parse trees.

Keywords: graph, parameterized algorithm, rank-width, clique-width,
tree automaton, MSO logic.

1 Introduction

Most graph problems are known to be NP -hard in general, and yet a solution
to these is needed for practical applications. One common method to provide
such a solution is through restricting the input graph to have a certain structure.
Often the input graphs are restricted to have bounded tree-width [19] (or branch-
width), but a useful weaker structural restriction has been brought by the notion
of clique-width, defined by Courcelle and Olariu in [7].

Now, many hard graph problems (in particular all those expressible in MSO
logic of adjacency graphs) are solvable in polynomial time [6, 10, 16, 12], as long
as the input graph has bounded clique-width and is given in the form of the
“decomposition for clique-width”, called a k-expression. A k-expression is an
algebraic expression with the following four operations on vertex-labeled graphs
using k labels: create a new vertex with label i; take the disjoint union of two
labeled graphs; add all edges between vertices of label i and label j; and relabel

⋆ Supported by the Institute for Theoretical Computer Science ITI, project 1M0545.
⋆⋆ Supported by the Czech research grant GAČR 201/08/0308 and project 1M0545.

all vertices with label i to have label j. However, for fixed k > 3, it is not known
how to find a k-expression of an input graph having clique-width at most k.

Rank-width is another graph complexity measure introduced by Oum and
Seymour [18, 8, 17], aiming at providing an f(k)-expression of the input graph
having clique-width k for some fixed function f in polynomial time. Rank-width
is defined (see Section 2) as the branch-width of a so-called cut-rank function
of graphs. Rank-width turns out to be very useful for algorithms on graphs
of bounded clique-width since it can be computed, together with an optimal
decomposition, in time O(n3) on n-vertex graphs of bounded rank-width [15].
Moreover, if rank-width of a graph is k, then its clique-width lies between k

and 2k+1 − 1 [18] and a corresponding expression can be constructed from a
rank-decomposition of width k.

In view of the previous facts, particularly that clique-width can be up to
exponentially larger than rank-width [4], it appears desirable to design efficient
algorithms running straight on an optimal rank-decomposition rather than trans-
forming a width-k rank-decomposition into an f(k)-expression. Unfortunately,
this goal seems practically impossible in a direct way given the rather “strange
nature” of a rank-decomposition. Thus one has to look for indirect approaches,
say those inspired by a natural geometric link of rank-decompositions of graphs
to branch-decompositions of binary matroids [15].

In 2007 Courcelle and Kanté [5] gave an alternative characterization of rank-
decompositions of graphs using algebraic terms over multi-coloured graphs. In-
dependently from them, the first author’s Master thesis [11] has recently brought
the concept of labeling parse trees (also called rank-width parse trees) which ex-
actly characterize decompositions of graphs of given rank-width, too. We post-
pone all the technical definitions till the next section. For now we just note that
the latter approach of [11] turns out to be exactly equivalent to the former of
[5], though they come from different perspectives.

The aim of this paper is to continue in the labeling parse–tree approach in
order to bring a different new view of dynamic algorithms on graphs of bounded
rank-width, which is more computer–science oriented (and hence perhaps better
understandable among the CS audience) than the algebraic–logic view of Cour-
celle and Kanté. We make an effort to employ finite tree automata in the task
and develop a Myhill–Nerode kind of a characterization of the finite state prop-
erties of graphs of bounded rank-width. This viewpoint is not new in other areas,
whereas it has been inspired by an analogous handling of bounded tree-width
graphs by Abrahamson and Fellows [1] (or [9, Chapter 6]) and of represented
matroids of bounded branch-width by the second author [14].

Our characterization then leads to an elementary proof that all MSO express-
ible graph properties (MS1, to be precise) are decidable by tree automata over
our labeling parse trees, and hence solvable in linear time. We suggest that this
new characterization and the related proof techniques may be of independent
interest among computer scientists who are working in designing dynamic algo-
rithms for graphs of bounded rank-width (see Section 5 for further discussion).

2 Definitions and Basics

We consider finite simple undirected graphs by default. Here we bring some tech-
nical definitions and basic results which are the building blocks of our research.

Branch-width. A set function f : 2M → Z is called symmetric if f(X) =
f(M \ X) for all X ⊆ M . A tree is subcubic if all its nodes have degree at
most 3. For a symmetric function f : 2M → Z on a finite set M , the branch-
width of f is defined as follows.

A branch-decomposition of f is a pair (T, µ) of a subcubic tree T and a
bijective function µ : M → {t : t is a leaf of T}. For an edge e of T , the connected
components of T \ e induce a bipartition (X,Y) of the set of leaves of T . The
width of an edge e of a branch-decomposition (T, µ) is f(µ−1(X)). The width of
(T, µ) is the maximum width over all edges of T . The branch-width of f is the
minimum of the width of all branch-decompositions of f . (If |M | ≤ 1, then we
define the branch-width of f as f(∅).)

A natural application of this definition is the branch-width of a graph, as
introduced by Robertson and Seymour [19] along with better known tree-width,
and its natural matroidal counterpart. In that case we use M = E(G), and f the
connectivity function of G. There is, however, another interesting application of
the aforementioned general notions, in which we consider the vertex set V (G) =
M of a graph G as the ground set.

Rank-width. For a graph G, let AG[U,W] be the bipartite adjacency matrix
of a bipartition (U,W) of the vertex set V (G) defined over the two-element field
GF(2) as follows: the entry au,w, u ∈ U and w ∈ W , of AG[U,W] is 1 if and only
if uw is an edge of G. The cut-rank function ρG(U) = ρG(W) then equals the
rank of AG[U,W] over GF(2). A rank-decomposition and rank-width of a graph
G is the branch-decomposition and branch-width of the cut-rank function ρG
of G on M = V (G), respectively.

The main reason for the popularity of rank-width over clique-width is the
fact that there are parameterized algorithms for rank-decompositions [18, 15].

Theorem 2.1 (Hliněný and Oum [15]). For every fixed t there is an
O(n3)-time algorithm that, for a given n-vertex graph G, either finds a rank-
decomposition of G of width at most t, or confirms that the rank-width of G is
more than t.

Few rank-width examples. Any complete graph of more than one vertex has
clearly rank-width 1 since any of its bipartite adjacency matrices consists of all
1s. It is similar with complete bipartite graphs if we split the decomposition
along the parts. We illustrate the situation with graph cycles: while C3 and C4

have rank-width 1, C5 and all longer cycles have rank-width equal 2. A rank-
decomposition of, say, the cycle C5 is shown in Fig. 1. Conversely, every subcubic
tree with at least 4 leaves has an edge separating at least 2 leaves on each side,
and every corresponding bipartition of C5 gives a matrix of rank ≥ 2.

s s

s

s

s

a b

c

d

e

a b

cd

e

„

0 0 1
1 0 0

«

0

@

1 0
0 1
0 0

1

A

`

1 0 0 1
´

`

1 1 0 0
´

`

0 1 1 0
´`

0 0 1 1
´

`

1 0 0 1
´

Fig. 1. A rank-decomposition of the graph cycle C5.

We also mention so-called distance-hereditary graphs, i.e. graphs such that
the distances in any of their connected induced subgraphs are the same as in the
original graph, which have been independently studied, e.g. [3], before. It turns
out that distance-hereditary graphs are exactly the graphs of rank-width 1 [17],
and this simple fact explains many of their “nice” algorithmic properties.

Labeling parse trees. A (vertex) t-labeling of a graph is a mapping
lab : V (G) → 2Lt where Lt = {1, 2, . . . , t} is the set of labels (this notion is
equivalent to so-called multicoloured graphs of [5]). Having a graph G with an
(implicitly) associated t-labeling lab, we refer to the pair G, lab as to a t-labeled
graph and use notation Ḡ. Notice that each vertex of a t-labeled graph may
have zero, one or more labels. So even an unlabeled graph can be considered as
t-labeled with no labels, and every t-labeled graph is also t′-labeled for all t′ > t.

A t-relabeling is a mapping f : Lt → 2Lt. For a t-labeled graph Ḡ = (G, lab)
we define f(Ḡ) as the same graph with a vertex t-labeling lab′ = f ◦ lab. Notice
that—since the values of lab are subsets of Lt, or vectors from GF(2)t—the
relabeling f in the composition f ◦ lab acts as a linear transformation in the
vector space GF(2)t. Informally, f is applied separately to each label in lab(v)
and the outcomes are summed up “modulo 2”; such as for lab(v) = {1, 2} and
f(1) = {1, 3, 4}, f(2) = {1, 2, 3}, we get lab′(v) = {2, 4} = {1, 3, 4}△{1, 2, 3}.

Let ⊙ be a nullary operator creating a single new graph vertex of label {1}.
For relabelings f1, f2, g : Lt → 2Lt let ⊕[g | f1, f2] be a binary operator over
pairs of t-labeled graphs Ḡ1 = (G1, lab

1) and Ḡ2 = (G2, lab
2) defined as follows:

(G1, lab
1) ⊕[g | f1, f2] (G2, lab

2) = (H, lab)

where the graph H is constructed from the disjoint union G1∪̇G2 by adding all
edges uw, u ∈ V (G1) and w ∈ V (G2) such that |lab1(u) ∩ g ◦ lab2(w)| is odd,
and with the new labeling lab(v) = fi ◦ labi(v) for v ∈ V (Gi), i = 1, 2.

A labeling parse tree T , see [11, Definition 6.11], is a finite rooted ordered
subcubic tree (with the root degree at most 2) such that

– all leaves of T contain the ⊙ operator, and
– all internal nodes of T contain one of the ⊕[g | f1, f2] operators.

A parse tree T then generates (parses) the graph G which is obtained by succes-
sive leaves-to-root applications of the operators in the nodes of T . See Fig. 2.

s s

s

s

s

a b

c

d

e

⊙ a
⊙ b ⊙ c ⊙ d ⊙ e

⊕[id | · , ·]

⊕[id | id, 1→2]

⊕[id | id, 1→∅]
⊕[id |1→2, id]

Fig. 2. An example of a labeling parse tree which generates a 2-labeled cycle C5, with
symbolic operators at the nodes (id denotes the relabeling preserving all labels).

The following substantial Theorem 2.2 is actually equivalent to [5, Theo-
rem 3.4]. Its independent detailed proof can be found in the first author’s Master
thesis [11, Chapter 6] (the time complexity bound being implicit there).

Theorem 2.2 (Rank-width parsing theorem [11]). A graph G has rank-
width at most t if and only if (some labeling of) G can be generated by a labeling
parse tree using t labels. Furthermore, an optimal rank-decomposition of G can
be transformed into a labeling parse tree with t labels in time O(n2).

We add a short note that time complexity O(n2) can be considered “linear”
in this case since the size of the graphG can be of order up to n2. We suggest that
this complexity can be improved even to O(|E(G)|) if one carefully reconsiders
all the technical details, but that would not be useful in our context in which
we use Theorem 2.2 together with Theorem 2.1 to construct an optimal labeling
parse tree of a given graph G in parameterized O(n3) time.

3 Regularity Theorem for Rank-width

The core new contribution of our paper lies in developing a mathematical for-
malism for easy handling of graph properties which are efficiently solvable on
graphs of bounded rank-width. Our formalism is closely tied with the classical
Myhill–Nerode regularity theorem in automata theory. As we have already noted
above, we are inspired by analogous formalisms used in [1] (graphs of bounded
tree-width) and in [14] (matroids of bounded branch-width).

Recalling the notation of labeling parse trees, we shortly write ⊕[g] for
⊕[g | ∅, ∅] where ∅ stands for the relabeling L → {∅} “forgetting” all vertex
labels. Notice that the binary operation ⊕[g] which creates an unlabeled graph
from two labeled graphs is not commutative, but its operands can be exchanged
together with a suitable modification of g. The role of a specific relabeling g in
⊕[g] is rather technical after all, as the next immediate claim says. Let id be
the relabeling preserving all labels.

Proposition 3.1. Let G1, G2 be t-labeled graphs generated by labeling parse
trees T1, T2, and g : Lt → 2Lt be any relabeling. Then there is a tree T g2 parsing
a t-labeled graph Gg2 (actually unlabeled-equal to G2) such that

G1 ⊕[g] G2 = G1 ⊕[id] Gg2 .

Canonical equivalence. Let Πt denote the finite set (alphabet) of operators
of labeling parse trees with t labels, and let subsequently Pt ⊆ Π∗∗

t be the class
(language) of all valid labeling parse trees with t labels. If Rt denotes the class
of all unlabeled graphs of rank-width at most t and Rt is the class of all t-labeled
graphs parsed by the trees from Pt, then (Theorem 2.2) G ∈ Rt if and only if
Ḡ ∈ Rt for some t-labeling Ḡ of G.

Let D be any class of graphs, and Dt = D∩Rt. In analogy to classical theory
of regular languages we define a canonical equivalence of Dt, denoted by ≈D,t,
as follows: Ḡ1 ≈D,t Ḡ2 for any Ḡ1, Ḡ2 ∈ Rt if and only if, for all H̄ ∈ Rt,

Ḡ1 ⊕[id] H̄ ∈ Dt ⇐⇒ Ḡ2 ⊕[id] H̄ ∈ Dt .

In informal words, the classes of ≈D,t “capture” all information we need to know
about a t-labeled subgraph Ḡ ∈ Rt to decide membership in D further on in our
parse tree processing.

The previous informal finding can be formalized as follows:

Theorem 3.2 (Rank-width regularity theorem). Let t ≥ 1, D be a graph
class, and Dt = D ∩ Rt. The collection of all those labeling parse trees which
generate the members of Dt is accepted by a finite tree automaton if, and only
if, the canonical equivalence ≈D,t of Dt over Rt is of finite index.

Sketch of proof. A detailed proof of this statement is contained in [11, Chap-
ter 7]. We only sketch its main ideas due to space restrictions here.

Our starting point is the classical Myhill–Nerode theorem for tree automata.
Let Σ∗∗ denote the set of all rooted binary trees over a finite alphabet Σ. For
a language λ ⊆ Σ∗∗ we can define a congruence ∼λ such that T1 ∼λ T2 for
T1, T2 ∈ Σ∗∗ if, and only if, T1 ⋄x U ∈ λ ⇐⇒ T2 ⋄x U ∈ λ where U runs over
all special rooted binary trees over Σ with one distinguished leaf node x, and
Ti ⋄x U results from U by replacing the leaf x with the subtree Ti. Then λ is
accepted by a finite tree automaton if and only if ∼λ has finite index.

In our case Σ = Πt, and λ are the labeling parse trees of the members of Dt.
So, to prove our theorem it is enough to show that ≈D,t has infinite index if and
only if ∼λ has infinite index.

Suppose the former holds, i.e. there are infinitely many Ḡk ∈ Rt, k = 1, 2, . . . ,
such that for all indices i 6= j there exists H̄i,j ∈ Rt for which Ḡi⊕[id] H̄i,j ∈ Dt
but Ḡj ⊕[id] H̄i,j 6∈ Dt, or vice versa. Let Sk be a labeling parse tree of Ḡk, and
Qi,j that of H̄i,j . We define a new parse tree Ui,j such that the root operator is
⊕[id | ∅, ∅] , its left son is the distinguished leaf x, and its right subtree is Qi,j .
Hence the special trees Ui,j witness that all the parse trees Sk, k = 1, 2, . . .
belong to distinct classes of ∼λ.

Conversely, suppose that the latter holds. So there are infinitely many trees
Sk ∈ Π∗∗

t , k = 1, 2, . . . , such that for each pair of indices i 6= j there exists
Ui,j as above for which Si ⋄x Ui,j ∈ λ but Sj ⋄x Ui,j 6∈ λ, or vice versa. We may
assume without loss of generality that Sk ∈ Pt are valid labeling parse trees for
all k. Let Ḡk be the graphs parsed by Sk. Using technical [11, Lemma 7.3] and
Proposition 3.1, we deduce that there exist graphs H̄i,j such that

– the graph parsed by Si ⋄x Ui,j is equal up to labeling to Ḡi⊕[id] H̄i,j ∈ Dt,
– and the graph parsed by Sj ⋄x Ui,j equals up to labeling Ḡj ⊕[id] H̄i,j 6∈ Dt.

This assertion certifies that the graphs Ḡk indeed belong to distinct classes of
our canonical equivalence ≈D,t.

Remark 3.3. Notice that the arguments used in our proof of Theorem 3.2 do not
straightforwardly translate from rank-width (and labeling parse trees) to clique-
width (and its k-expressions). Quite the opposite, the “only if” direction of this
theorem seems not at all provable in the above way since one cannot freely
choose the “root” of a k-expression (cf. [11, Lemma 7.3]). We consider that
another small reason to favor rank-width over clique-width in CS applications.

3-colourability example. We briefly demonstrate the use of Theorem 3.2 on
graph 3-colourability which is a well-known NP-complete problem. Let C denote
the class of all simple 3-colourable graphs. To construct a tree automaton ac-
cepting the labeling parse trees of the members of Ct = C ∩ Rt, it is enough
to identify the classes of the canonical equivalence ≈C,t. We actually give the
finitely many classes X0, X1, X2, . . . of the following refinement of ≈C,t:

– X0 = {G : G is not 3-colourable}.
– Otherwise, for any t-labeled graph G with a proper 3-colouring χ, we define

a vector c(G,χ) = (cℓ : ℓ ∈ 2Lt) where cℓ ⊆ {1, 2, 3} is the set of χ-colours
occurring in the vertices of G labeled by ℓ.
X1, X2, . . . , Xh(t) are then the equivalence classes of ∼, where over t-labeled
graphs G1 ∼ G2 if and only if it holds {c(G1, χ) : χ is a proper 3-colouring
of G1} = {c(G2, χ) : χ is a proper 3-colouring of G2}.

4 Regularity and MSO Definable Properties

From a logic point of view, we consider a graph as a relational structure on
the ground set V , with one binary predicate edge(u, v). When the language of
MSO logic is applied to such a graph adjacency structure, one gets a descriptional
language over graphs commonly abbreviated as MS1. For an illustration we show
an MS1 expression of the 3-colourability property of a graph:

∃V1, V2, V3

[

∀v (v ∈ V1 ∨ v ∈ V2 ∨ v ∈ V3) ∧
∧

i=1,2,3 ∀v, w (v 6∈ Vi ∨ w 6∈ Vi ∨ ¬ edge(v, w))
]

It is also common to consider the “counting” version of MSO logic which more-
over has predicates modp,q(X) stating that |X | mod p = q.

To avoid possible confusion we remark ahead that there is a stronger descrip-
tional language MS2 of graphs which allows to quantify also over graph edges
and their sets, and which is related to graphs of bounded tree-width. There are
MS2 expressible graph properties, e.g. Hamiltonicity, which are not expressible
in MS1, whilst MS2 properties cannot be efficiently handled in general on graphs
of bounded rank-width.

In [6] Courcelle, Makowsky, and Rotics proved that all MS1 definable graph
properties are solvable in linear time, in fact by a tree automaton, running on a
given k-expression (k fixed) of the graph. Their indirect proof used MSO inter-
pretation (transduction) of the graphs generated by k-expressions into labeled
binary trees. Since a graph class has bounded clique-width if and only if it has
bounded rank-width, the results of [6] carry over to graphs of bounded rank-
width (with a possible exponential jump in the width parameter).

We, on the other hand, favor the independent direct combinatorial approach
to these problems, paralleling [1, 14]:

Theorem 4.1. Let t ≥ 1. If D is a graph class definable in the MS1 language,
then the collection of all those labeling parse trees which generate the members
of Dt = D ∩Rt is accepted by a finite tree automaton.

To prove this statement, in view of Theorem 3.2, it is enough to prove that the
associated canonical equivalence ≈D,t is of finite index. However, the latter claim
needs a generalization in order to use mathematical induction on the structure
of an MS1 sentence φ describing D. This generalization of ≈D,t to ≈ ◦

φ,t lies in
allowing formulas φ with free variables.

Extended canonical equivalence of φ. Let Free(φ) = Fr(φ) ∪ FR(φ) be
the partition of the free variables into those Fr = Fr(φ) for vertices and those
FR = FR(φ) for vertex sets. We define a partial equipment signature of φ as
a triple σ = (Fr, FR, q) where q : Fr → {0, 1}. A t-labeled graph G is σ-
partially equipped if it has distinguished vertices and vertex sets assigned as
interpretations of the free variables in σ. Formally, for each X ∈ FR there is a
distinguished subset SX ⊆ V (G), and for each x ∈ Fr such that q(x) = 0 there
is a distinguished vertex vx ∈ V (G). Nothing is assigned to variables x ∈ Fr

such that q(x) = 1. For σ we define a complemented partial equipment signature
σ− = (Fr, FR, q′) where q′(x) = 1 − q(x) for all x ∈ Fr.

See that if H̄1 is σ-partially equipped and H̄2 is σ−-partially equipped, then
H = H̄1 ⊕[g] H̄2 has a full and consistent interpretation for all the free variables
of φ (hence this H is a logic model of φ). So, we can define equivalence ≈σ

φ,t over

all t-labeled σ-partially equipped graphs as follows: Ḡ1 ≈σ
φ,t Ḡ2 if and only if the

following
(Ḡ1 ⊕[id] H̄) |= φ ⇐⇒ (Ḡ2 ⊕[id] H̄) |= φ

holds for all t-labeled σ−-partially equipped graphs H̄ .
Here we have extended the meaning of ≈σ

φ,t in two directions. Firstly, by
allowing free variables in φ we enlarge the studied universe to partially equipped
graphs. Secondly, the universe is further enlarged by allowing all t-labeled un-
derlying graphs – not only those from Rt. Even in this stronger variant we can
prove the following key statement which also concludes above Theorem 4.1:

Theorem 4.2. Let t ≥ 1 be fixed. Suppose φ is a formula in the language MS1,
and σ is a partial equipment signature for φ. Then ≈σ

φ,t has finite index on the
universe of t-labeled σ-partially equipped graphs.

Proof. We retain the notation introduced above. The induction base is to
prove the statement for the atomic formulas in MS1: φ ≡ (v ∈ W), (v = w),
modp,q(W), or edge(u, v). The first three are all rather trivial cases which we
skip here, and we focus on the last predicate edge(u, v) (since this one actually
“defines” the graph we study).

(4.3) Suppose φ ≡ edge(u, v). Then the index of ≈σ
φ,t is one if q(u) = q(v) = 1,

two if q(u) = q(v) = 0, and 2t if q(u) = 0 and q(v) = 1 or vice versa.

In the first case both vertices u, v with a possible edge uv are interpreted in
the right-hand graph H̄ , and hence no matter what Ḡ1 or Ḡ2 are, they become
equivalent in ≈σ

φ,t. In the second case both vertices u, v are interpreted in the

left-hand graphs Ḡi, and hence there are exactly two classes formed by those
graphs having and those not having u adjacent to v. It is the third case which
interests us: Recalling the definition of our summation operator ⊕[id] , we see
that all information needed to decide whether some u in the left-hand graph is
adjacent to a specific v in the right-hand graph is encoded in the labeling of u,
and hence the 2t possibilities there.

For the inductive step, we consider that a formula φ is created from shorter
formula(s) in one of the following ways: φ ≡ ¬ψ, ψ ∧ η, ∃v ψ(v), or ∃W ψ(W),
where v ∈ Fr(ψ) or W ∈ FR(ψ) in the latter cases. One may easily express the
∨ or ∀ symbols using these. The arguments we are going to give in the rest of
this proof are not novel, but similar to those used in [1] and merely a translation
of the arguments used in [14, Lemma 6.2].

We assume by induction that ≈π
ψ,t (≈ ρ

η,t) has finite index, where the signature
π (ρ) is inherited from σ for ψ (for η, see below the case-by-case details). The
first case of φ ≡ ¬ψ is quite easy to resolve — the equivalence ≈π

ψ,t is the same
as ≈σ

φ,t. We look at the second case.

(4.4) Suppose φ ≡ ψ ∧ η, and let π, ρ denote the restrictions of signature σ
to Free(ψ), Free(η), respectively. If ≈π

ψ,t has index p and ≈ ρ
η,t has index r,

then ≈σ
φ,t has index at most p · r.

Consider an arbitrary pair of t-labeled σ-partially equipped graphs Ḡ1 6≈σ
φ,t Ḡ2,

and an associated σ−-partially equipped graph H̄ such that (Ḡ1 ⊕[id] H̄) |= φ

but (Ḡ2 ⊕[id] H̄) 6|= φ. Then it has to be (Ḡ1 ⊕[id] H̄) |= ψ (or |= η) but
(Ḡ2 ⊕[id] H̄) 6|= ψ (or 6|= η, resp.). Hence it immediately holds that Ḡ1 6≈π

ψ,t Ḡ2

or Ḡ1 6≈ ρ
η,t Ḡ2 with the restricted equipments, and so the equivalence classes of

≈σ
φ,t are suitable unions of the classes of the “intersection” ≈π

ψ,t ∩ ≈ ρ
η,t.

The third case of ∃v ψ(v) is technically more complicated, and so we first
deal with the similar but easier fourth case of ∃W ψ(W).

(4.5) Suppose φ ≡ ∃W ψ(W), and let the signature π = (Fr, FR ∪ {W}, q). If
≈π
ψ,t has index p, then ≈σ

φ,t has index at most 2p − 1.

Again consider an arbitrary pair of t-labeled σ-partially equipped graphs
Ḡ1 6≈σ

φ,t Ḡ2, and H̄ such that (Ḡ1 ⊕[id] H̄) |= φ but (Ḡ2 ⊕[id] H̄) 6|= φ. We

shortly write Ḡ[W = S] for the π-partially equipped graph obtained from σ-
partially equipped Ḡ by interpreting the variable W as S ⊆ V (Ḡ). Then our
assumption about Ḡ1, Ḡ2 means there exist SW ⊆ V (Ḡ1) and S′

W ⊆ V (H̄)
such that

(

Ḡ1[W = SW]⊕[id] H̄ [W = S′
W]

)

|= ψ, whilst
(

Ḡ2[W = TW]⊕[id]

H̄ [W = S′
W]

)

6|= ψ for all TW ⊆ V (Ḡ2). Hence Ḡ1[W = SW] 6≈π
ψ,t Ḡ2[W = TW].

We now, in search for a contradiction, look at the problem from the other side.
Let the equivalence classes of ≈π

ψ,t over t-labeled π-partially equipped graphs

be C1, C2, . . . , Cp. For a σ-partially equipped graph Ḡ we define a nonempty set
Ix(Ḡ) ⊆ {1, 2, . . . , p} as follows: i ∈ Ix(Ḡ) if and only if Ḡ[W = S] ∈ Ci for some
S ⊆ V (Ḡ). If there were 2p pairwise incomparable σ-partially equipped graphs
in the relation ≈σ

φ,t, then some two of them, say Ḡ1 6≈σ
φ,t Ḡ2, would receive

Ix(Ḡ1) = Ix(Ḡ2) by the pigeon-hole principle. However, from the argument

of the previous paragraph — Ḡ1[W = SW] 6≈π
ψ,t Ḡ2[W = TW] for some SW ⊆

V (Ḡ1) and all TW ⊆ V (Ḡ2), we conclude that j ∈ Ix(Ḡ1) \ Ix(Ḡ2) where j is
such that Ḡ1[W = SW] ∈ Cj . This contradiction proves (4.5).

(4.6) Suppose φ ≡ ∃v ψ(v), and let signatures π = (Fr ∪ {v}, FR, q1) and
ρ = (Fr ∪ {v}, FR, q2) where q1(v) = 0 and q2(v) = 1. If ≈π

ψ,t has index p

and ≈ ρ
ψ,t has index r, then ≈σ

φ,t has index at most 2p · r + 1 − r.

Notice that a ρ-partial equipment of Ḡ does not interpret the variable v in
V (G), and so σ-partially equipped graph Ḡ may be viewed also as ρ-partially
equipped. Take an arbitrary pair of nonempty t-labeled σ-partially equipped
graphs Ḡ1 6≈σ

φ,t Ḡ2, and H̄ such that (Ḡ1 ⊕[id] H̄) |= φ but (Ḡ2 ⊕[id] H̄) 6|= φ.

Let xv ∈ V (Ḡ1) ∪ V (H̄) be an interpretation of the variable v that satisfies ψ
over Ḡ1 ⊕[id] H̄ . In particular, ψ is false over Ḡ2 ⊕[id] H̄ here. If xv ∈ V (H̄),
then immediately Ḡ1 6≈ ρ

ψ,t Ḡ2. Otherwise, xv ∈ V (Ḡ1) and we are in a situa-

tion analogous to the first paragraph of (4.5):
(

Ḡ1[v = xv]⊕[id] H̄
)

|= ψ, whilst
(

Ḡ2[v = yv]⊕[id] H̄
)

6|= ψ for all yv ∈ V (Ḡ2).
Again, in search for a contradiction, we look at the problem from the other

side. If there are 2pr + 2− r pairwise incomparable σ-partially equipped graphs
with respect to ≈σ

φ,t, then at least 2pr + 1 − r = (2p − 1)r + 1 of those graphs
are nonempty, and out of them at least 2p belong to the same equivalence
class of ≈ ρ

ψ,t. Let their set be denoted by G (Hence for each pair in G, the
latter conclusion of the previous paragraph applies). Considering the equiva-
lence classes C1, C2, . . . , Cp of ≈π

ψ,t, we again (as in 4.5) define a nonempty set

Ix(Ḡ) ⊆ {1, 2, . . . , p}, for σ-partially equipped Ḡ, by i ∈ Ix(Ḡ) if and only if
Ḡ[v = y] ∈ Ci for some y ∈ V (Ḡ). Then some pair, say Ḡ1, Ḡ2 ∈ G, must sat-
isfy Ix(Ḡ1) = Ix(Ḡ2) by the pigeon-hole principle. However, that analogously
contradicts the latter conclusion of the previous paragraph.

This contradiction proves (4.6), and thus the whole theorem.

5 Concluding Notes

As already mentioned in the introduction, the driving force of our research is to
provide a framework for easy design of efficient parameterized algorithms run-

ning on a bounded-width rank-decomposition of a graph. In this sense we have
provided two directly applicable results in Theorems 2.2 and 4.1. Unfortunately,
applicability of Theorem 4.1 is limited to pure decision problems (like 3-colour-
ability), but many practical problems are formulated as optimization ones. (The
usual way of transforming optimization problems into decision ones does not
work here since MS1 logic cannot handle arbitrary numbers.)

Nevertheless, there is a known solution. Arnborg, Lagergren, and Seese [2]
(while studying graphs of bounded tree-width), and later Courcelle, Makowsky,
and Rotics [6] (for graphs of bounded clique-width), specifically extended the
expressive power of MSO logic to define so-called LinEMSO optimization prob-
lems, and consequently shown existence of linear-time algorithms in the respec-
tive cases. Briefly saying, LinEMSO problems allow, in addition to ordinary MSO
expressions, to optimize over and compare between linear evaluation terms.

We can achieve an analogous solution in our framework directly using The-
orem 4.2. The basic idea is that, in a dynamic processing of the input parse
tree, we can keep track only of suitable “optimal” representatives of the possible
interpretations of the free variables in φ, per each class of the extended canonical
equivalence ≈σ

φ,t. We illustrate this idea with the next simple example.

Dominating set example. This problem asks for a subset X ⊆ V (G) of the
least cardinality such that each vertex not in X is adjacent to some in X . Since it
is not a decision question, we cannot hope in a direct application of Theorem 4.1.
We, however, can write in MS1

δ(X) ≡ ∀v∃w
[

v ∈ X ∨
(

w ∈ X ∧ edge(v, w)
)]

stating that X is a dominating set in G. And now Theorem 4.2 can be applied.
Let G be a graph of rank-width t, and T its labeling parse tree. We denote

by Tx the subtree below a node x of T , and by Gx the subgraph of G parsed
by Tx. For any D ⊆ V (Gx), the t-labeled partially equipped graph Gx with
interpretation X = D falls into one of the finitely many classes of ≈σ

δ,t (where
σ = (∅, {X}, ∅)). A dynamic algorithm for the dominating set problem has to
remember just one representative interpretation X = Di of the least cardinality
from the i-th class of ≈σ

δ,t, and with knowledge of the associated tree automaton
(Theorem 3.2) this information can easily be processed from leaves of T to the
root in total linear time.

Non-FPT algorithms for bounded widths. Lastly we note the follow-
ing interesting phenomenon: for some problems on graphs of bounded width
parameters, there are known algorithms which run faster than in general
case, but they are not fixed parameter tractable. Among those we mention a
(pseudo)polynomial algorithm for the chromatic number of graphs of bounded
clique-width [16], or a subexponential algorithm for the Tutte polynomial of
graphs of bounded clique-width [13]. Finite automata clearly cannot be applied
there. Though, it would be interesting to extend the framework of Theorem 4.2
to also cover the aforementioned situation.

References

1. Abrahamson, K.A. and Fellows, M.R.: Finite Automata, Bounded Treewidth, and
Well-Quasiordering. In: Graph Structure Theory, Contemporary Mathematics 147.
American Mathematical Society (1993) 539–564

2. Arnborg, S., Lagergren, J., and Seese, D.: Problems easy for Tree-decomposible
Graphs. Proc. 15th Colloq. Automata, Languages and Programming. Volume 317
of Lecture Notes in Comput. Sci. Springer, Berlin (1988) 38–51

3. Bandelt, H.-J. and Mulder, H.M.: Distance-hereditary graphs. J. Combin. Theory
Ser. B 41(2) (1986) 182–208

4. Corneil, D.G., Rotics, U.: On the relationship between cliquewidth and treewidth.
SIAM J. Comput. 34(4) (2005) 825–847

5. Courcelle, B. and Kanté, M.M.: Graph Operations Characterizing Rank-Width and
Balanced Graph Expressions. In: Graph-theoretic concepts in computer science,
Volume 4769 of Lecture Notes in Comput. Sci., Berlin, Springer (2007) 66–75

6. Courcelle, B., Makowsky, J.A., and Rotics, U.: Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2) (2000)
125–150

7. Courcelle, B. and Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Appl. Math. 101(1-3) (2000) 77–114

8. Courcelle, B. and Oum, S.: Vertex-minors, monadic second-order logic, and a
conjecture by Seese. J. Combin. Theory Ser. B 97(1) (2007) 91–126

9. Downey, R.G. and Fellows, M.R.: Parameterized complexity . Monographs in Com-
puter Science. Springer-Verlag, New York, 1999.

10. Espelage, W., Gurski, F., and Wanke, E.: How to solve NP-hard graph problems on
clique-width bounded graphs in polynomial time. In: Graph-theoretic concepts in
computer science. Volume 2204 of Lecture Notes in Comput. Sci., Berlin, Springer
(2001) 117–128

11. Ganian, R.: Automata formalization for graphs of bounded rank-width. Master
thesis. Faculty of Informatics of the Masaryk University, Brno, Czech republic
(2008)

12. Gerber, M.U. and Kobler, D.: Algorithms for vertex-partitioning problems on
graphs with fixed clique-width. Theoret. Comput. Sci. 299(1-3) (2003) 719–734

13. Gimenez, O., Hliněný, P. and Noy, M.: Computing the Tutte Polynomial on Graphs
of Bounded Clique-Width. In: Graph-theoretic concepts in computer science. Vol-
ume 3787 of Lecture Notes in Comput. Sci., Berlin, Springer (2005) 59–68

14. Hliněný, P.: Branch-width, parse trees, and monadic second-order logic for ma-
troids. J. Combin. Theory Ser. B 96(3) (2006) 325–351

15. Hliněný, P. and Oum, S.: Finding Branch-decomposition and Rank-decomposition.
SIAM J. Comput. (2008) to appear

16. Kobler, D. and Rotics, U.: Edge dominating set and colorings on graphs with fixed
clique-width. Discrete Appl. Math. 126(2-3) (2003) 197–221

17. Oum, S.: Rank-width and vertex-minors. J. Combin. Theory Ser. B 95(1) (2005)
79–100

18. Oum, S. and Seymour, P.: Approximating clique-width and branch-width. J.
Combin. Theory Ser. B 96(4) (2006) 514–528

19. Robertson, N. and Seymour, P.: Graph minors. X. Obstructions to tree-
decomposition. J. Combin. Theory Ser. B 52(2) (1991) 153–190

