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Abstract. In this paper we look at complexity aspects of the following
problem (matroid representability) which seems to play an important
role in structural matroid theory: Given a rational matrix representing
the matroid M , the question is whether M can be represented also over
another specific finite field. We prove this problem is hard, and so is the
related problem of minor testing in rational matroids. The results hold
even if we restrict to matroids of branch-width three.
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1 Introduction

We postpone necessary formal definitions until later sections. Matroids present
a wide combinatorial generalization of graphs. A useful geometric essence of a
matroid is shown in its vector representation over a field F; the elements–vectors
of the representation can be viewed as points in the projective geometry over F.
Not all matroids, however, have vector representations. That is why the question
of F-representability of a matroid is important to solve.

Another motivation for our research lies in a current hot trend in structural
matroid theory; work of Geelen, Gerards and Whittle, e.g. [4, 5] extending signifi-
cant portion of the Robertson–Seymour’s Graph Minors project [15] to matroids.
It turns out that matroids represented over finite fields F play a crucial role in
that research, analogous to the role played by graphs embedded on surfaces in
Graph Minors. Such a role is further justified by related works concerning logic
and complexity aspects of matroids, e.g. our [8, 10], and by a somehow surprising
connection of binary matroids with graph rank-width [1] of Courcelle and Oum.

In this paper we prove that it is hard to decide whether a matroid given by a
vector representation over the rational numbers, has a vector representation over
a specific finite field F (Theorems 3.1 and 4.1). In particular this result implies



that also the problem of minor testing in rational matroids is generally hard. We
moreover prove that the minor testing problem is hard even for a certain small
planar minor (Theorem 5.6).

2 Matroids and Vector Representations

We refer to Oxley’s book [12]. Since matroid theory seems not widely known
among computer scientists, we should briefly review some basic terms here:

A matroid is a pair M = (E, B) where E = E(M) is the finite ground set
of M (elements of M), and B ⊆ 2E is a nonempty collection of bases of M , no
two of which are in an inclusion. Moreover, matroid bases satisfy the “exchange
axiom”: if B1, B2 ∈ B and x ∈ B1 \ B2, then there is y ∈ B2 \ B1 such that
(B1 \ {x}) ∪ {y} ∈ B. Subsets of bases are called independent sets, and the
remaining sets are dependent. Minimal dependent sets are called circuits. All
bases have the same cardinality called the rank r(M) of the matroid. The rank
function rM (X) in M assigns the maximal cardinality of an independent subset
of a set X ⊆ E(M). A set X is spanning if rM (X) = r(M), and maximal
non-spanning sets are called hyperplanes.

The reader may notice that a matroid, according to the presented defini-
tion, carries some information about all subsets of E which is exponential in
the number of elements |E|. (See also [11].) Studying computational complexity
on matroids one has to find a workaround for that: A common way to handle
a matroid input is to consider a particular polynomially sized representation,
instead.
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Fig. 1. An example of a vector representation (on the right) A of the cycle matroid
M(K4) of the complete graph K4 (on the left). The matroid elements are depicted by
dots, and their (linear) dependency is shown using lines.



If G is a (multi)graph, then its cycle matroid on the ground set E(G) is
denoted by M(G): The independent sets of M(G) are the acyclic subsets (forests)
in G, and the circuits of M(G) are the cycles in G. Another example of a matroid
is a finite set of vectors with usual linear independence: If A is a matrix, then
the matroid formed by the column vectors of A is called the vector matroid of A,
and denoted by M(A). (Fig. 1.) The matrix A is a vector representation of a
matroid M ≃ M(A), and such M(A) is F-represented when A is over a fieldF. We say that a matroid M is F-representable if M has a vector representation
over F.

Questions of representability over finite fields F seem to play very impor-
tant role in structural matroid theory. (We refer also to Section 5 for a closer
discussion.) We now look at the problem from a complexity point of view.

Definition. The F-representability problem for F′-represented matroids is:

Input. A matrix A over a field F′.
Question. Is the vector matroid M(A) representable over F?

Summary. If the input (matrix A) is represented over F′ = Q (the rational
numbers), the known answers to the F-representability problem follow.

(2.1) For F = GF (2), the F-representability problem for the matroid M(A) is
solvable in polynomial time by a deep result of Seymour [16].

(2.2) For F = GF (3), the answer is still open.
(2.3) For F = GF (q) a finite field on q ≥ 4 elements, the F-representability

problem is co-NP -complete by our Theorems 3.1 and 4.1 and by [6].

Discussing (2.1), we explain that if a GF (2)-representable (binary) matroid
M had also a vector representation over any field of characteristic not 2, then
M could be represented by a totally-unimodular matrix. Hence M would be a
so called regular matroid (representable over all fields), and then one can use
Seymour’s decomposition theorem [16] for regular matroids to recognize suchQ-represented M in polynomial time.

About (2.3) in the summary, one should understand why an apparently
straightforward argument “guess an F-representation and verify it” does not
readily prove membership of the F-representability problem in NP : The prob-
lem is that verifying whether two matrices represent isomorphic matroids may
require evaluating too many subdeterminants. Indeed, Seymour [16] has proved
that verifying a matrix over GF (2) represents a matroid M (given by an or-
acle) requires testing independence on an exponential number of subsets. On
the other hand, the following interesting result, showing membership of the F-
representability problem in co-NP , is proved in [6, Theorem 1.3]:

Theorem 2.4 (Geelen, Gerards and Whittle).
Let F = GF (q) be a finite field. Proving non-F-representability of a matroid M
needs only O

(

|E(M)|2
)

rank evaluations in M .

Lastly we add two remarks concerning possible extensions of our results
in (2.3). First, the proofs of Theorems 3.1 and 4.1 show that the hardness



result holds even for matroids of branch-width 3. On contrary to that, the F-
representability problem, as well as all other minor-closed properties, can be
tested in polynomial time [7] if the input matroid is represented over a finite
field GF (q) and has bounded branch-width. Second, Theorems 3.1 and 4.1 could
be extended to other infinite fields using the method of [9, Section 5]. We skip
such extensions here to avoid the boring technical details.

3 Spikes: The Case of Non-prime Fields

The purpose of this section is to prove one case of the hardness result:

Theorem 3.1. Let F = GF (q), where q = pa, a > 1, be a finite non-prime field.
Suppose A is a matrix given over Q, and let M = M(A) be its vector matroid.
Then it is NP -hard to recognize that M has no vector representation over F.
The same conclusion remains true even if M is restricted to have branch-width 3.

For the proof we need a definition of an interesting class of matroids, called
“spikes”. Let n ≥ 3 and S0 be a matroid circuit on the ground set e0, e1, . . . , en.
Denote by S1 an arbitrary simple matroid obtained from S0 by adding n new
elements fi for i ∈ [1, n] such that {e0, ei, fi} is a triangle. Then the matroid
S = S1 \ e0 obtained by deleting the central element e0 is called a rank-n spike.
The pairs {ei, fi}, i ∈ [1, n] are called the legs of the spike. (Fig. 2.) Let main
circuits / bases be those circuits / bases of S which intersect each leg of S in
exactly one element. For instance, {e1, . . . , en} is a main basis of S. We say that
a spike S is a free spike if S has no main circuit. There is just one free spike of
each rank up to isomorphism, see also Proposition 3.2(b),(e).

e0
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f2 fn

en

. . .

Fig. 2. An illustration of the definition of a rank-n spike.

Spikes are known for giving “difficult counterexamples” in structural matroid
theory. Some well known simple properties of spikes are summarized next; these
implicitly originate perhaps in [13], and we refer to e.g. [9] for explicit proofs.
Let D

1(x1, . . . , xn) = [di,j ]
n
i=1 denote an n × n matrix such that di,j = 1 if

i 6= j ∈ [1, n], and di,i = xi.

Proposition 3.2. Let S be a rank-n spike where n ≥ 3. Then

a) the union of any two legs forms a 4-element circuit in S,
b) every other circuit intersects all legs of S,



c) S is 3-connected and the branch-width of S is 3,
d) S has a vector representation, if and only if it has a representation of the

form [ In | D1(x1, . . . , xn) ] where x1, . . . , xn 6= 1 and In displays a chosen
main basis of S, see e.g.

e1
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...

en−1

en











e1 e2 . . . en−1 en f1 f2 . . . fn−1 fn

1 0 · · · 0 0 x1 1 · · · 1 1
0 1 0 0 0 1 x2 1 1 1
... 0

. . . 0
...

... 1
. . . 1

...

0 0 0 1 0 1 1 1 xn−1 1
0 0 · · · 0 1 1 1 · · · 1 xn











,

e) if S has a representation, as in (d), and X ⊆ E(S) is such that X intersects
each leg of S in exactly one element, then X is a circuit of S if and only if

∑

j∈[1,n]; fj∈X

1

xj − 1
= −1 ,

f) the free spike is F-representable if F is a non-prime finite field.

Remark. Notice that a vector representation of a matroid in the “standard”
form A = [I |A′] has a property that the matroid bases are in a one-to-one
correspondence with the nonzero subdeterminants in A

′ (via matrix pivoting).

Following [9], we have chosen to prove Theorem 3.1 via a polynomial reduc-
tion from the NP -complete PARTITION problem [2] over the integers. (Briefly
saying, the PARTITION problem asks whether a given multiset of integers can be
partitioned into two parts such that their sums equal.)

Let F = GF (q), where q = pa, be a finite non-prime field.

Lemma 3.3. If S is an F-representable spike that is not the free spike, and
B ⊂ E(S) is any main basis of S, then there is a main circuit C ⊂ E(S) such
that |C \ B| < q (independently of S).

Proof. We refer to Proposition 3.2. According to (d), we select an F-
representation [ In | D1(x1, . . . , xn) ] of S where In shows the basis B = {e1, e2,
. . . , en}. We choose the circuit C such that |C \ B| is the smallest possible. Let
J = {j ∈ [1, n]; fj ∈ C}. For a contradiction, we assume |J | = |C \B| ≥ q. Then
among the partial sums S(J ′) =

∑

j∈J′

1
xj−1 ∈ F for J ′ ⊆ J , there exist two

such equal, S(J1) = S(J2) where J1 ⊂ J2 ⊆ J , by the pigeon-hole principle. We
set J0 = J2 \ J1, and by (e) we may write

−1 =
∑

j∈J

1

xj − 1
= S(J) = S(J) − S(J2) + S(J1) =

∑

j∈J\J0

1

xj − 1
.

Hence there is another main circuit C′ = B∆ {ej, fj : j ∈ J \ J0} in S such that
|C′ \ B| = |J \ J0| < |J | = |C \ B|, a contradiction to our choice of C.

Proof of Theorem 3.1. Let T = {t1, t2, . . . , tn} be a multiset of positive
integers – an input to the PARTITION problem, and t = t1 + t2 + . . . + tn. We



denote by zi = −2ti

t
and set xi = 1

zi
+ 1, for i ∈ [1, n]. We consider the matrix

A = [ In |D1(x1, . . . , xn) ] overQ as the input in the theorem. The vector matroid
S = M(A) is actually a spike by Proposition 3.2(d). Let B = {e1, . . . , en} be
the main basis of S displayed by In in A.

Assume J ⊂ [1, n] is such that the multiset partition
(

{ti : i ∈ J}, {ti : i ∈

[1, n] \ J}
)

is a solution to PARTITION. That is equivalent to
∑

i∈J zi = −1, i.e.
∑

i∈J
1

xi−1 = −1. Hence by Proposition 3.2(e) the set X = B∆ {ei, fi : i ∈ J} is

a main circuit. We conclude:

Claim 3.4. Solutions to the PARTITION problem on T are in a one-to-one corre-
spondence with main circuits in the associated spike S.

Our polynomial reduction from PARTITION to F-representability follows:

1. In the first stage we check by brute force all parts of T smaller than q. If we
succeed, we answer YES to PARTITION.

2. In the second stage we ask about F-representability of the matroid S =
M(A) defined above. If the outcome is negative, we again answer YES to
PARTITION. Otherwise, our answer is NO.

It remains to prove that our reduction is correct. Assume the PARTITION problem
on T has no solution (S is the free spike). Then in the first stage we find nothing,
and in the second stage we answer NO by Proposition 3.2(f). Conversely, assume
the PARTITION problem on T has a solution (T1, T2). If min(|T1|, |T2|) < q, then
we answer YES in stage 1. Otherwise, there is a main circuit C in S, but no such
C with |C \B| < q by Claim 3.4. Hence S is not F-representable by Lemma 3.3,
and we answer YES in stage 2.

4 Swirls: The Case of Prime Fields

Analogously to Theorem 3.1 we now finish the remaining, slightly more involved
case of (2.3).

Theorem 4.1. Let F = GF (p) be a finite prime field, p ≥ 5. Suppose A is
a matrix given over Q, and let M = M(A) be its vector matroid. Then it is
NP -hard to recognize that M has no vector representation over F. The same
conclusion remains true even if M is restricted to have branch-width 3.

For proving the statement we define another very interesting class of
matroids called “swirls”, which have been implicitly introduced in [13]. Let
rank-r whirl Wr be the unique matroid obtained from the cycle matroid of the
wheel graph Wr with spokes e1, . . . , er and rim edges f1, . . . , fr, by relaxing (i.e.
declaring independent) the rim circuit {f1, . . . , fr}. A simple 3n-element matroid
R is a rank-n swirl if R is obtained from the whirl Wn by adding a new element
(denoted by gi) on each dependent line (triangle {ei, fi, ei+1}) of Wr. (Fig. 3.)

The pairs {fi, gi}, i ∈ [1, n] are called here feet of the swirl R. Let main
circuits / bases be those circuits / bases of R which intersect each foot of R in
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Fig. 3. An illustration of the definition of a rank-n swirl.

exactly one element. For instance, {f1, . . . , fn} is a main basis of S. The basis
{e1, . . . , en} of R, formed by the spokes, is called the central basis. Notice that the
central basis of a swirl is uniquely determined (unlike main bases). Swirls seem
to be less known that spikes, and their structure is more complex. Fortunately,
all the swirl properties we need in our proof have been implicitly proved in [13,
Section 5], and we summarize them in the next proposition.

Let D
2(x1, . . . , xn) = [di,j ]

n
i=1 denote an n × n matrix such that di,j = 0,

i, j ∈ [1, n] if i 6= j, j + 1, di,i = xi, and di+1,i = 1 (indices are take modulo n).
Let the free swirl be a swirl having no main circuits. There is just one free swirl
of each rank up to isomorphism, see also Proposition 4.2(a).

Proposition 4.2. Let R be a rank-n swirl where n ≥ 4. Then

a) the only non-spanning circuits that possibly depend on a choice of elements
gi in the definition of a swirl are main circuits of R,

b) R is 3-connected and the branch-width of R is 3,
c) R has a vector representation, if and only if it has a representation of the

form [ In | D2(x1, . . . , xn) | D2(y1, . . . , yn) ] where x1, . . . , xn, y1, . . . , yn 6= 0,
xi 6= yi and x1x2 · · ·xn 6= (−1)n, In displays the central basis and
{f1, . . . , fn} displays any main basis of R, see e.g.















e1 e2 . . . en−1 en f1 g1 f2 g2 . . . gn−1 fn gn

1 0 · · · 0 0 x1 y1 0 0 · · · 0 1 1
0 1 0 0 0 1 1 x2 y2 0 0 0 0

...
. . .

0 0 0 0 1 1 0 0 0

0
...

... 0
... 0

. . .
0

... 0
0 0 0 1 0 0 0 0 0 0 yn−1 0 0
0 0 · · · 0 1 0 0 0 0 · · · 1 xn yn















,

d) if R has a representation, as in (c), and X ⊆ E(R) is such that X intersects
each foot of R in exactly one element, then X is a circuit of R if and only if

∏

j∈[1,n]; gj 6∈X
xj ·

∏

j∈[1,n]; gj∈X
yj = (−1)n ,

e) the free swirl is F-representable if {1,−1} is a proper 2-element subgroup of
the multiplicative group F∗ (in particular if F = GF (p) where p ≥ 5).

Remark. Notice that, if two matroids agree on all non-spanning circuits, then
they are isomorphic.



Looking at Proposition 4.2(d), one might get an easy idea: How about solving
this case in direct analogy with Section 3, relating the main circuits of a swirl
with solutions to a kind of a “product-partition” problem? This idea is generally
good, but an immediate approach—to “lift” the PARTITION problem to expo-
nents, fails since such a reduction produces exponentially large instances. We
use the following intermediate step (reduced from the 3-dim matching problem):

Definition. The PRODSELECT problem over the integers is:

Input. A multiset of k positive integers T , and an integer c.
Question. Is there a subset P ⊆ T such that

∏

t∈P t = c?

Lemma 4.3. PRODSELECT is an NP -complete problem.

Due to space restrictions, we skip some supplementary proofs. LetF = GF (p)
be a prime field. Analogously to Lemma 3.3 one may prove:

Lemma 4.4. If R is an F-representable swirl that is not the free swirl, and
B ⊂ E(R) is any main basis of R, then there is a main circuit C ⊂ E(R) such
that |C \ B| < p (independently of R).

Proof of Theorem 4.1. Let T = {t1, t2, . . . , tn−1} and c, positive
integers, form an input to PRODSELECT (NP -complete by Lemma 4.3). We
may clearly assume min(T ) > 1, c > 1 and c 6∈ T . Let a matrix A =
[

In | D2
(

1, . . . , 1, (−1)nc−1
)

| D2
(

t1, . . . , tn−1, (−1)n−1
) ]

over Q be the input
in the theorem. The vector matroid R = M(A) is actually a swirl by Propo-
sition 4.2(c). Denote by B = {f1, . . . , fn} the main basis of R formed by the
columns of D

2(1, . . . , 1, (−1)nc−1), cf. 4.2(d).
Assume J ⊆ [1, n − 1] is such that the multiset P = {ti : i ∈ J} is a

solution to PRODSELECT. That is equivalent to (−1)nc−1 ·
∏

i∈J ti = (−1)n. So by
Proposition 4.2(d) the set X = B∆ {fi, gi : i ∈ J} is a main circuit. Notice also
that our assumption min(T ), c > 1 implies that all main circuits X – solutions
to the equation of 4.2(d), must involve term c−1, in other words gn 6∈ X . Hence:

Claim 4.5. Solutions to the PRODSELECT problem on T , c are in a one-to-one
correspondence with main circuits in the associated swirl R.

Our polynomial reduction from PRODSELECT to F-representability follows:

1. In the first stage we check by brute force all subsets of T smaller than p. If
we succeed, we answer YES to PRODSELECT.

2. In the second stage we ask about F-representability of the matroid R =
M(A) defined above. If the outcome is negative, we again answer YES to
PRODSELECT. Otherwise, our answer is NO.

It remains to prove that our reduction is correct. Assume the PRODSELECT prob-
lem on T has no solution (R is the free swirl). Then we answer NO by Proposi-
tion 4.2(e). Conversely, assume the PRODSELECT problem on T has a solution P .
If |P | < p, then we answer YES in stage 1. Otherwise, there is a main circuit C in
R, but no such C with |C \B| < p by Claim 4.5. Hence R is not F-representable
by Lemma 4.4, and we answer YES in stage 2.

The proof of (2.3) is now complete by Theorems 2.4, 3.1 and 4.1.



5 Matroid Minors

The Graph Minor project [14, 15] of Robertson and Seymour is commonly con-
sidered a milestone in structural graph theory. Moreover, the project has had
a great impact into theoretical computer science: We mention in particular an
O(n3)-time algorithm for testing whether an input graph contains a minor iso-
morphic to a fixed graph, implying efficient algorithmic solutions to all minor-
closed graph properties.

In the more general setting of structural matroid theory, direct extensions of
the great Graph Minors results are often false, but a stream of new theoretical
results of Geelen, Gerards and Whittle, e.g. [4, 5] in past several years extended
significant portion of the Graph Minors theory to matroids representable over
finite fields. Questions of matroid representability, and the notion of branch-
width, turned out to be the key ingredients in that research. On the algorithmic
side, that effort has been contributed by a sequence of results of the author deal-
ing with FPT computation of matroid branch-width and recognition of MSO-
definable matroid properties, e.g. [7, 8, 10].

Formally, a minor N of a matroid M is obtained by a sequence of deletions
and contractions of elements, the order of which does not matter. The meaning of
deletion is standard, and contraction is the dual operation to deletion, analogous
to contraction of a graph edge. In geometric terms, a contraction M/e means a
linear projection from the point representing e. We write N = M \ D/C where
D are the deleted and C the contracted elements.

Definition. The N -minor problem for represented matroids is such:

Input. A matrix A over a field F′.
Question. Does the vector matroid M(A) contain a minor isomorphic to a fixed

matroid N?

Note that N may be arbitrary in the problem, but fixed; N is not considered a
part of the input to the problem. The problem easily belongs to NP :

Lemma 5.1. Let a matroid N be fixed. One needs only bounded number of rank
evaluations to prove that a matroid M has a minor isomorphic to N .

Proof. Let M ′ = M \ D/C be a minor of M . The formula rM ′(X) =
rM (X ∪ C) − rM (C) determines the rank function of M ′ relatively to M (for
example, [12, Chapter 3]). The minor M ′ is isomorphic to N if and only if
|E(M ′)| = |E(N)| and the rank functions equal for some bijection between
E(M ′) and E(N). That can be verified, after guessing C and D, using only
bounded number of rank evaluations in M .

Obviously, for some very simple N such as the circuits Uk,k+1 the matroid N -
minor problem is polynomial. We remark that Ur,n denotes the matroid made
of n points (vectors) in general position in rank r. It is a kind of a miracle
that for Q-represented matroids the U2,4-minor problem is also polynomial. See
(2.1) and Seymour [16]; the claim follows from the fact that U2,4 is the only



forbidden minor for binary matroids. On the other hand, since we know the
seven forbidden minors [3] for matroid representability over the field GF (4), it
follows from Theorem 3.1 that the matroid N -minor problem is hard for at least
some N . Such an argument, however, does not apply to minors N that are cycle
matroids of graphs (graphic N), and hence representable over all fields.

It is proved in [7, 8] that for every finite field F′ one can solve the N -minor
problem for F′-represented matroids in polynomial time when restricted to in-
puts of bounded branch-width. Moreover using the matroid version of the “ex-
cluded grid” theorem [5], one can solve the N -minor problem for F′-represented
matroids in polynomial time, when N is a planar graphic matroid, regardless
of branch-width. Therefore it is particularly interesting how difficult is the N -
minor problem for Q-represented matroids when N is a planar graphic matroid.
We provide the answer in the rest of this section.

Summary. If the input (matrix A) is represented over F′, complexity cases of
the N -minor problem follow:

(5.2) If F′ is a finite field and the branch-width of M(A) is bounded, then the
problem is solvable in cubic time [7].

(5.3) If F′ is a finite field and N is the cycle matroid of a planar graph, then
the problem is solvable in cubic time [5, 7], too.

(5.4) If F′ is a finite field and N is arbitrary, then complexity of the N -minor
problem is a very interesting open question in structural matroid theory.

(5.5) For F′ = Q, the N -minor problem is NP -complete, even when the
branch-width of M(A) is three and N is the cycle matroid of a planar graph.

Fig. 4. The planar graph G6, and its cycle matroid M(G6) on the right.

Let G6 denote the planar graph on 6 vertices formed by a 3-cycle and a
4-cycle sharing an edge, see Fig. 4. Our main result reads:

Theorem 5.6. Let the planar graph G6 be as in Fig. 4. Suppose A is a given
matrix over Q, and let M = M(A) be its vector matroid. Then it is NP -complete
to decide whether M has a minor isomorphic to the matroid M(G6). The same
conclusion remains true even if M is restricted to have branch-width 3.

We build on the following result of [9], which follows also from Claim 3.4.

Proposition 5.7. Let S be the vector matroid of [ In | D
1(x1, . . . , xn) ] over Q

where n ≥ 5. It is NP -hard to recognize that S is not the rank-n free spike.



In order to use this statement in making a reduction for the matroid minor
problem, we have to find a forbidden minor characterization of the free spikes.
This is, after all, not so difficult.

Lemma 5.8. Let S be the rank-n free spike. Then S has no M(G6)-minor.

Proof. Let G6 = C3 ∪ C4, where the two cycles C3, C4 share one edge.
We use the same notation C3, C4 for the corresponding two circuits in the cycle
matroid M6 = M(G6) of G6. Assume that M6 = S \D/C is a minor of the free
spike S, where C is the independent set of contracted elements of S. Let us call
leg circuits in S the 4-element circuits formed by pairs of legs. Recall that main
circuits are those circuits of S which intersect each leg in exactly one element. So
S is the free spike, i.e. having no main circuits, if and only if all non-leg circuits
in S are spanning (Proposition 3.2(b)). By the definition of a minor, a set X is
a circuit in M6 if and only if there is a circuit Y in S such that X ⊆ Y and
Y \ X ⊆ C.

Firstly, we claim that not both of the circuits C3, C4 of the minor M6 result
by contracting leg circuits in S. If that was not true, then there would be two leg
circuits L1 ⊇ C3 and L2 ⊇ C4 in S. Since, actually, |L2| = 4 = |C4|, no element
of L2 was contracted or deleted when making M6, and so C3 ∩ C4 = L1 ∩ L2.
However, |L1 ∩ L2| ∈ {0, 2} for any two distinct leg circuits, but |C3 ∩ C4| = 1,
a contradiction.

Secondly, we consider that C4 ⊂ K, where K is a spanning circuit in S,
and K \ C4 ⊆ C (C are the contracted elements of S). So it is |C| ≥ |K| −
|C4| = n + 1 − 4 = n − 3, and the rank r(M) = r(S) − |C| ≤ n − (n − 3) =
3. However, r(M(G6)) = 4 > 3. The same contradiction turns out when the
remaining possibility C3 ⊂ K is considered. Hence S cannot be the free spike,
and the statement follows by means of contradiction.

Lemma 5.9. Let S be a rank-n spike for n ≥ 5 that is not the free spike. Then
S has an M(G6)-minor.

Proof. If S is not the free spike, then there is a main circuit D ⊂ E(S),
cf. Proposition 3.2(b). Let us use the notation from the definition of a spike. We
form a minor N of S by contracting the elements of {ei, fi : i = 5, 6, . . . , n} ∩D
and deleting the elements of {ei, fi : i = 2, 3, . . . , n − 1} \ D. Without loss
of generality we assume e1, en ∈ D. Then {e1, f1, fn} is a triangle in N and
{ei, fi : i = 1, 2, 3, 4} ∩ D is a 4-element circuit in N , which intersect each
other in e1. Since there are no other non-spanning circuits in N , the minor N is
isomorphic to M(G6).

Proof of Theorem 5.6. If we could decide an M(G6)-minor in the matroid
M = M(A) efficiently, then for a specific matrix A = [ In | D

1(x1, . . . , xn) ], we
would be able to decide whether M(A), a spike by Proposition 3.2, is the free
spike by Lemmas 5.8 and 5.9. Hence the statement and (5.5) are concluded by
Proposition 5.7.
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