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1 TREE-WIDTH - an Overview1 TREE-WIDTH - an Overview

• Introduced [Robertson & Seymour, 80’s] — the Graph minors project.
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1 TREE-WIDTH - an Overview1 TREE-WIDTH - an Overview

• Introduced [Robertson & Seymour, 80’s] — the Graph minors project.

Definition: A tree-decomposition of a graph G is a tree with

– “bags” (subsets) of vertices at the tree nodes,

– each edge of G belongs to some bag, and

– the bags containing some vertex form a subtree (interpolation).
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1 TREE-WIDTH - an Overview1 TREE-WIDTH - an Overview

• Introduced [Robertson & Seymour, 80’s] — the Graph minors project.

Definition: A tree-decomposition of a graph G is a tree with

– “bags” (subsets) of vertices at the tree nodes,

– each edge of G belongs to some bag, and

– the bags containing some vertex form a subtree (interpolation).

Tree-width = mindecompositions of G max {|B| − 1 : B bag in decomp.}

1 2
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{1368}

{1236}

{3678}{1348}
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Alternative traditional definitionAlternative traditional definition

• The tree-width of G equals the smallest possible clique number minus
one of a chordal supergraph of G.
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Alternative traditional definitionAlternative traditional definition

• The tree-width of G equals the smallest possible clique number minus
one of a chordal supergraph of G.

• This can be much easier understood via k-trees, see e.g. a 2-tree:

[Beineke & Pippert, 68 – 69], [Rose 74], [Arnborg & Proskurowski, 86].

• A graph G has tree-width ≤ k iff G is a partial (subgraph of a) k-tree.
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Where is tree-width useful?Where is tree-width useful?

• Already the fact that independent approaches to tree-width evolved in
time, suggests that it likely is an interesting and useful notion. . .
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• Already the fact that independent approaches to tree-width evolved in
time, suggests that it likely is an interesting and useful notion. . .

• The profound Graph minors project makes an essential use of tree-width.
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Where is tree-width useful?Where is tree-width useful?

• Already the fact that independent approaches to tree-width evolved in
time, suggests that it likely is an interesting and useful notion. . .

• The profound Graph minors project makes an essential use of tree-width.

• Parameterized algorithmics:

– Initial algorithmic attempts [Arnborg & Proskurowski, 86], [Arnborg,
Corneil & Proskurowski, 87], [Bodlaender 88].
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Where is tree-width useful?Where is tree-width useful?

• Already the fact that independent approaches to tree-width evolved in
time, suggests that it likely is an interesting and useful notion. . .

• The profound Graph minors project makes an essential use of tree-width.

• Parameterized algorithmics:

– Initial algorithmic attempts [Arnborg & Proskurowski, 86], [Arnborg,
Corneil & Proskurowski, 87], [Bodlaender 88].

– All graph properties expressible in MSO logic are efficiently solvable
on the graphs of bounded tree-width (incl. many NP-hard ones).
[Courcelle 88], [Arnborg, Lagergren & Seese, 88]
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Where is tree-width useful?Where is tree-width useful?

• Already the fact that independent approaches to tree-width evolved in
time, suggests that it likely is an interesting and useful notion. . .

• The profound Graph minors project makes an essential use of tree-width.

• Parameterized algorithmics:

– Initial algorithmic attempts [Arnborg & Proskurowski, 86], [Arnborg,
Corneil & Proskurowski, 87], [Bodlaender 88].

– All graph properties expressible in MSO logic are efficiently solvable
on the graphs of bounded tree-width (incl. many NP-hard ones).
[Courcelle 88], [Arnborg, Lagergren & Seese, 88]

– Linear-time parameterized algorithm for a tree-decomposition by
[Bodlaender 96].
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Where is tree-width useful?Where is tree-width useful?

• Already the fact that independent approaches to tree-width evolved in
time, suggests that it likely is an interesting and useful notion. . .

• The profound Graph minors project makes an essential use of tree-width.

• Parameterized algorithmics:

– Initial algorithmic attempts [Arnborg & Proskurowski, 86], [Arnborg,
Corneil & Proskurowski, 87], [Bodlaender 88].

– All graph properties expressible in MSO logic are efficiently solvable
on the graphs of bounded tree-width (incl. many NP-hard ones).
[Courcelle 88], [Arnborg, Lagergren & Seese, 88]

– Linear-time parameterized algorithm for a tree-decomposition by
[Bodlaender 96].

• Logic side:

Decidability of MSO theories of the graphs of bounded tree-width
[Courcelle 88]; a converse by [Seese 91].
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2 “Vertex-free” Tree-Decompositions2 “Vertex-free” Tree-Decompositions

Motivation: All the “traditional” definitions of tree-width make an essential use
of graph vertices. Is this necessary?
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2 “Vertex-free” Tree-Decompositions2 “Vertex-free” Tree-Decompositions

Motivation: All the “traditional” definitions of tree-width make an essential use
of graph vertices. Is this necessary?

• A new (matroidal) approach, proposed by [PH & Whittle, 03].

Definition: A VF tree-decomposition of a graph G is a tree T with

– an arbitrary τ : E(G)→ V (T ), without further restrictions.
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2 “Vertex-free” Tree-Decompositions2 “Vertex-free” Tree-Decompositions

Motivation: All the “traditional” definitions of tree-width make an essential use
of graph vertices. Is this necessary?

• A new (matroidal) approach, proposed by [PH & Whittle, 03].

Definition: A VF tree-decomposition of a graph G is a tree T with

– an arbitrary τ : E(G)→ V (T ), without further restrictions.

T1

T2

T3
x: E →

FxF1

F2

F3

– Node with of x = |V (G)|+ (d− 1) · c(G)− ∑d
i=1 c(G− Fi),

where Fi are the edges mapped to the subtrees T − x,

and c() denotes the number of components.
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2 “Vertex-free” Tree-Decompositions2 “Vertex-free” Tree-Decompositions

Motivation: All the “traditional” definitions of tree-width make an essential use
of graph vertices. Is this necessary?

• A new (matroidal) approach, proposed by [PH & Whittle, 03].

Definition: A VF tree-decomposition of a graph G is a tree T with

– an arbitrary τ : E(G)→ V (T ), without further restrictions.

T1

T2

T3
x: E →

FxF1

F2

F3

– Node with of x = |V (G)|+ (d− 1) · c(G)− ∑d
i=1 c(G− Fi),

where Fi are the edges mapped to the subtrees T − x,

and c() denotes the number of components.

VF Tree-width = min decompositions of G max { node-width in decomp.}.
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Are these two parameters really the same?
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Are these two parameters really the same?

Check the following examples for an illustration. . .
a

c g h f

e

d

j

b

i

l

k

{}

{deh}

{fkl}{gij}

{abc}

node-with of x = |V (G)|+ (d− 1) · c(G)−
d∑

i=1

c(G− Fi)

1 2

65

8

4

7

3

{1368}

{1236}

{3678}{1348}

{1568}
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Where this idea comes from?

• A general definition of matroid tree-width proposed by [PH & Whittle, 03],
following unpublished [Geelen].
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Where this idea comes from?

• A general definition of matroid tree-width proposed by [PH & Whittle, 03],
following unpublished [Geelen].

Definition: A tree-decomposition of a matroid M is a tree T with

– an arbitrary τ : E(M)→ V (T ), without further restrictions.

T1

T2

T3
x: E →

FxF1

F2

F3

– Node with of x =
d∑

i=1

r(M \ Fi)− (d− 1) · r(M),

where r() denotes the matroid rank (“dimension”).
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Where this idea comes from?

• A general definition of matroid tree-width proposed by [PH & Whittle, 03],
following unpublished [Geelen].

Definition: A tree-decomposition of a matroid M is a tree T with

– an arbitrary τ : E(M)→ V (T ), without further restrictions.

T1

T2

T3
x: E →

FxF1

F2

F3

– Node with of x =
d∑

i=1

r(M \ Fi)− (d− 1) · r(M),

where r() denotes the matroid rank (“dimension”).

(M) Tree-width = min decomps. of M max { node-width in decomp.}.
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Where this idea comes from?

• A general definition of matroid tree-width proposed by [PH & Whittle, 03],
following unpublished [Geelen].

Definition: A tree-decomposition of a matroid M is a tree T with

– an arbitrary τ : E(M)→ V (T ), without further restrictions.

T1

T2

T3
x: E →

FxF1

F2

F3

– Node with of x =
d∑

i=1

r(M \ Fi)− (d− 1) · r(M),

where r() denotes the matroid rank (“dimension”).

(M) Tree-width = min decomps. of M max { node-width in decomp.}.

• BTW, if a matroid M has tree-width k and branch-width b (which readily
extends to matroids), then b− 1 ≤ k ≤ max(2b− 1, 1) — that is nice. . .
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Comparing the tree-width parametersComparing the tree-width parameters

Theorem [PH & Whittle, 03]. Let a graph G has an edge, and M be the
cycle matroid of G. Then the tree-width of G equals the tree-width of M .
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Comparing the tree-width parametersComparing the tree-width parameters

Theorem [PH & Whittle, 03]. Let a graph G has an edge, and M be the
cycle matroid of G. Then the tree-width of G equals the tree-width of M .

Equivalently:

Theorem [PH & Whittle, 03]. Let a graph G has an edge. Then the VF
tree-width of G equals the (ordinary) tree-width of G.
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Comparing the tree-width parametersComparing the tree-width parameters

Theorem [PH & Whittle, 03]. Let a graph G has an edge, and M be the
cycle matroid of G. Then the tree-width of G equals the tree-width of M .

Equivalently:

Theorem [PH & Whittle, 03]. Let a graph G has an edge. Then the VF
tree-width of G equals the (ordinary) tree-width of G.

Some thoughts on these parameters. . .

• An equality between the above node-width formulas for graphs and ma-
troids is easy to show.
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Comparing the tree-width parametersComparing the tree-width parameters

Theorem [PH & Whittle, 03]. Let a graph G has an edge, and M be the
cycle matroid of G. Then the tree-width of G equals the tree-width of M .

Equivalently:

Theorem [PH & Whittle, 03]. Let a graph G has an edge. Then the VF
tree-width of G equals the (ordinary) tree-width of G.

Some thoughts on these parameters. . .

• An equality between the above node-width formulas for graphs and ma-
troids is easy to show.

• For vector matroids, a tree-decomposition has a nice “visualization” with

– affine subspaces modelling the traditional “bags”,

– with dimension in place of bag size, and an interpolation property.
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Comparing the tree-width parametersComparing the tree-width parameters

Theorem [PH & Whittle, 03]. Let a graph G has an edge, and M be the
cycle matroid of G. Then the tree-width of G equals the tree-width of M .

Equivalently:

Theorem [PH & Whittle, 03]. Let a graph G has an edge. Then the VF
tree-width of G equals the (ordinary) tree-width of G.

Some thoughts on these parameters. . .

• An equality between the above node-width formulas for graphs and ma-
troids is easy to show.

• For vector matroids, a tree-decomposition has a nice “visualization” with

– affine subspaces modelling the traditional “bags”,

– with dimension in place of bag size, and an interpolation property.

• An ordinary tree-decomposition can be readily translated into a VF tree-
decomposition; just find a bag hosting each edge of G.
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3 From one Decomposition to Another3 From one Decomposition to Another

• Where we stand?

– The VF tree-width is at most the ordinary tree-width;
since an ordinary tree-decomposition naturally translates to a VF
tree-decomposition of at most the same width.
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3 From one Decomposition to Another3 From one Decomposition to Another

• Where we stand?

– The VF tree-width is at most the ordinary tree-width;
since an ordinary tree-decomposition naturally translates to a VF
tree-decomposition of at most the same width.

• What happens in the converse direction?

– Again, any VF tree-decomposition naturally translates into an or-
dinary decomposition (just apply the interpolation property to the
ends of mapped edges).



'

&

$

%

'

&

$
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3 From one Decomposition to Another3 From one Decomposition to Another

• Where we stand?

– The VF tree-width is at most the ordinary tree-width;
since an ordinary tree-decomposition naturally translates to a VF
tree-decomposition of at most the same width.

• What happens in the converse direction?

– Again, any VF tree-decomposition naturally translates into an or-
dinary decomposition (just apply the interpolation property to the
ends of mapped edges).

– However, the width may increase (dramatically)!

The problem is that edges mapped to a branch in the decomposition may induce a
disconnected subgraph, hence further decreasing the node-width in the VF setting. . .

F1

F2

F3
x node-with of x =

|V (G)|+ (d− 1) · c(G)− ∑d
i=1 c(G− Fi)
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An example of a “disconnected” decomposition

ss
ss
ss
ss
s

s

s
s s

s

s

a

b

c

d

e

f

m n p

h

j

k

{h, j, k}

{m,n, p}

{a, c, f}

{b, d, e}

node-with formula = |V (G)|+ (d− 1) · c(G)− ∑d
i=1 c(G− Fi)

Easy to check that all six nodes in this VF tree-decomposition have width 4.



'

&

$

%

'

&

$
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An example of a “disconnected” decomposition

ss
ss
ss
ss
s

s

s
s s

s

s

a

b

c

d

e

f

m n p

h

j

k

{h, j, k}

{m,n, p}

{a, c, f}

{b, d, e}

node-with formula = |V (G)|+ (d− 1) · c(G)− ∑d
i=1 c(G− Fi)

Easy to check that all six nodes in this VF tree-decomposition have width 4.

However, the central two nodes induce bags of size 9 in an ordinary tree-
decomposition! (tree-width up to 8)
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Handling a “disconnected” decompositionHandling a “disconnected” decomposition

• If we want to get an ordinary tree-decomposition of the same width, we
have to alter “disconnected” spots of a VF tree-decomposition. . .

• Actually, the proof complications appear similar to those emerging
when proving equality of matroid branch-width to graph branch-width
[Hicks & McMurray, 07], [Mazoit & Thomassé].
(No short proof of this statement is known so far.)
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Handling a “disconnected” decompositionHandling a “disconnected” decomposition

• If we want to get an ordinary tree-decomposition of the same width, we
have to alter “disconnected” spots of a VF tree-decomposition. . .

• Actually, the proof complications appear similar to those emerging
when proving equality of matroid branch-width to graph branch-width
[Hicks & McMurray, 07], [Mazoit & Thomassé].
(No short proof of this statement is known so far.)

• The “easy” altering method published as a proof in [PH & Whittle,
EJC 06] was, unfortunately, not correct (it did not cover all the cases);

as pointed out by [Adler 07].
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Handling a “disconnected” decompositionHandling a “disconnected” decomposition

• If we want to get an ordinary tree-decomposition of the same width, we
have to alter “disconnected” spots of a VF tree-decomposition. . .

• Actually, the proof complications appear similar to those emerging
when proving equality of matroid branch-width to graph branch-width
[Hicks & McMurray, 07], [Mazoit & Thomassé].
(No short proof of this statement is known so far.)

• The “easy” altering method published as a proof in [PH & Whittle,
EJC 06] was, unfortunately, not correct (it did not cover all the cases);

as pointed out by [Adler 07].

• In response to that, [PH & Whittle, 08] have got an updated, though
longer proof.

We sketch its idea next. . .
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Proof (altering a “disconnected” edge of a VF tree-decomposition T of G).

• We assume an edge e = uv of T such that the G-edges mapped to the u-branch
of T form a disconnected subgraph of G, and that the edges mapped to the
branches of u-neighbours (not v) stay connected in G.

F 1
u

F 2
u

F d−2
u

F d−1
u

u2

u

F 1
u

F 2
u

F d−2
u

F d−1
u

u1u2

ud−2 ud−1

v
F 2

e

u1

ud−1

ud−2

v′

vw1

w2

wd−2

wd−1

F3

F4
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Proof (altering a “disconnected” edge of a VF tree-decomposition T of G).

• We assume an edge e = uv of T such that the G-edges mapped to the u-branch
of T form a disconnected subgraph of G, and that the edges mapped to the
branches of u-neighbours (not v) stay connected in G.

F 1
u

F 2
u

F d−2
u

F d−1
u

u2

u

F 1
u

F 2
u

F d−2
u

F d−1
u

u1u2

ud−2 ud−1

v
F 2

e

u1

ud−1

ud−2

v′

vw1

w2

wd−2

wd−1

F3

F4

F 1
u

F 2
u

F d−2
u

F d−1
u

u2

u

F 1
u

F 2
u

F d−2
u

F d−1
u

u1u2

ud−2 ud−1

v
F 2

e

u1

ud−1

ud−2

v′

vw1

w2

wd−2

wd−1

F3

F4

• If we find a disconnected partitioning (of the G-edges mapped to the v-branch)
F 2

e = F3 ∪ F4, then we “split” T as above.
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Proof (altering a “disconnected” edge of a VF tree-decomposition T of G).

• We assume an edge e = uv of T such that the G-edges mapped to the u-branch
of T form a disconnected subgraph of G, and that the edges mapped to the
branches of u-neighbours (not v) stay connected in G.

F 1
u

F 2
u

F d−2
u

F d−1
u

u2

u

F 1
u

F 2
u

F d−2
u

F d−1
u

u1u2

ud−2 ud−1

v
F 2

e

u1

ud−1

ud−2

v′

vw1

w2

wd−2

wd−1

F3

F4

F 1
u

F 2
u

F d−2
u

F d−1
u

u2

u

F 1
u

F 2
u

F d−2
u

F d−1
u

u1u2

ud−2 ud−1

v
F 2

e

u1

ud−1

ud−2

v′

vw1

w2

wd−2

wd−1

F3

F4

• If we find a disconnected partitioning (of the G-edges mapped to the v-branch)
F 2

e = F3 ∪ F4, then we “split” T as above.
The hard part is to prove that width does not increase (two subcases).
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Proof (altering a “disconnected” edge of a VF tree-decomposition T of G).

• We assume an edge e = uv of T such that the G-edges mapped to the u-branch
of T form a disconnected subgraph of G, and that the edges mapped to the
branches of u-neighbours (not v) stay connected in G.

F 1
u

F 2
u

F d−2
u

F d−1
u

u2

u

F 1
u

F 2
u

F d−2
u

F d−1
u

u1u2

ud−2 ud−1

v
F 2

e

u1

ud−1

ud−2

v′

vw1

w2

wd−2

wd−1

F3

F4

F 1
u

F 2
u

F d−2
u

F d−1
u

u2

u

F 1
u

F 2
u

F d−2
u

F d−1
u

u1u2

ud−2 ud−1

v
F 2

e

u1

ud−1

ud−2

v′

vw1

w2

wd−2

wd−1

F3

F4

• If we find a disconnected partitioning (of the G-edges mapped to the v-branch)
F 2

e = F3 ∪ F4, then we “split” T as above.
The hard part is to prove that width does not increase (two subcases).

• If F 2
e is connected in G, then we simply contract e in T (an easy case).
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Proof (altering a “disconnected” edge of a VF tree-decomposition T of G).

• We assume an edge e = uv of T such that the G-edges mapped to the u-branch
of T form a disconnected subgraph of G, and that the edges mapped to the
branches of u-neighbours (not v) stay connected in G.
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• If we find a disconnected partitioning (of the G-edges mapped to the v-branch)
F 2

e = F3 ∪ F4, then we “split” T as above.
The hard part is to prove that width does not increase (two subcases).

• If F 2
e is connected in G, then we simply contract e in T (an easy case).

• After all, there is a “strictly decreasing” sequence of alterations, leading to the
connected case in which both tree-width measures are equal.
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4 Conclusions4 Conclusions

• Showing that a matroidal (geometric) view can bring new and interesting
notions and properties of ordinary graphs – cf. the VF tree-width.

– The proof is now complete. . .
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