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Abstract. We show that the tree-width of a graph can be defined with-
out reference to graph vertices, and hence the notion of tree-width can
be naturally extended to matroids. (This extension was inspired by an
original unpublished idea of Jim Geelen.) We prove that the tree-width
of a graphic matroid is equal to that of its underlying graph. Further-
more, we extend the well-known relation between the branch-width and
the tree-width of a graph to all matroids.
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1 Introduction

In their fundamental work on graph minors [13], Robertson and Seymour in-
troduced two notions of width for graphs, namely tree-width and branch-width.
While the two are qualitatively the same in that a class of graphs has bounded
tree-width if and only if it has bounded branch-width, it is undoubtedly tree-
width that has proved to be a more popular notion, with many important appli-
cations in both graph theory and theoretical computer science. For an overview
of these applications see for example [1, 2].

On the other hand, for matroid theorists, it is branch-width that has proved
to be the more useful. This is because, unlike tree-width, branch-width extends
directly to matroids. Moreover, in recent years a number of interesting matroid-
structure results analogous to parts of the graph-minors project [13] have been
found, for example [3, 6]. Also the great success of applying graph tree-width
in algorithm design has been extended to algorithmic results on representable
matroids. See for example [9, 7, 10]. All of those results make essential use of
matroid branch-width.

Given this, it is natural to ask if tree-width can also be extended to matroids.
It is by no means immediately obvious that this can be done as the definition of

⋆ The research of both authors was originally supported by a New Zealand Marsden
Fund research grant at the Victoria University.



graph tree-width makes considerable use of the vertices of a graph. However, Jim
Geelen [private communication] observed that it is possible to define a notion
of tree-width without explicit reference to the vertices, and via this, it is also
possible to extend the definition of graph tree-width to matroids.

In this paper we set forth a (somewhat modified) version of Geelen’s ideas.
The main result of the paper, Theorem 3.2 proves that graph tree-width and
matroid tree-width are the same in that, if G is a graph, then the tree-width of
G is equal to that of its cycle matroid M(G). In particular, this result imme-
diately provides a “vertex-free” definition for the (classical) graph tree-width,
cf. Theorem 2.1. It is interesting to note that the analogous question for branch-
width is still open in that it is not known whether the branch-width of a graph
and its cycle matroid are the same. That appears to be quite a difficult problem.

We also present some basic results connecting matroid tree-width and branch-
width. We prove in Theorem 4.2, that if M is a matroid of tree-width k and
branch-width b, then b − 1 ≤ k ≤ max(2b − 1, 1). This means that a class of
matroids has bounded branch-width if and only if it has bounded tree-width,
and it follows that the main results of [3, 6, 9, 7, 10] hold with tree-width replacing
branch-width.

2 Definitions of Tree-Width

We begin by recalling the traditional definition of graph tree-width.

Let G be a graph. A tree-decomposition of G is a pair (T, β), where T is a
tree and β : V (T ) → 2V (G) is a mapping that satisfies the following:

– For each edge e = uv ∈ E(G), there is x ∈ V (T ) such that {u, v} ⊆ β(x).

– (IP) If x ∈ V (T ), and if y, z ∈ V (T ) are two nodes in distinct components
of T − x, then β(y) ∩ β(z) ⊆ β(x).

–
⋃

x∈V (T ) β(x) = V (G).

The width of the decomposition (T, β) of G equals the maximal value of |β(x)|−1
over all x ∈ V (T ). The smallest width over all tree-decompositions of the graph G
is the tree-width of G.

The vertex subsets β(x) ⊆ V (G) for x ∈ V (T ) are called bags. The condition
(IP) is called an interpolation property. We say that a decomposition is optimal

if its width equals the tree-width. Note that the third condition is implied by
the first two, unless G has isolated vertices. An example of a tree-decomposition
is given in Figure 1.

It is obvious that in the above definition of tree-width, vertex sets (the bags)
play an important role. To find a definition that extends to matroids, i.e. avoids
a direct reference to vertices at all, we proceed as follows.

A VF-tree-decomposition of a graph G is a pair (T, τ), where T is a tree,
and τ : E(G) → V (T ) is an arbitrary mapping of edges to the tree nodes. (The
shortcut VF refers to “vertex-free”.) For a node x of T , denote the connected
components of T − x by T1, . . . , Td and set Fi = τ−1

(

V (Ti)
)

. (See in Fig. 2.)
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Fig. 1. An example of a tree-decomposition of the cube graph of width 3, where the
vertex bags are listed at the tree nodes.

The node-width of x is defined by

|V (G)| + (d − 1) · c(G) −

d
∑

i=1

c(G − Fi) ,

where c(H) denotes the number of components of a graph H. The width of the
decomposition (T, τ) is the maximal width over all the nodes of T , and the
smallest width over all tree-decompositions of G is the VF-tree-width of G. (The
width of an empty tree T is 0.)

T1

T2

T3

x
τ : E →

FxF1

F2

F3

Fig. 2. An illustration to the definition of a VF-tree-decomposition.

At first glance, it may seem surprising that this definition has anything in
common with the above traditional definition. It is important to note that the
mapping τ is not an analogue of the bag mapping β above. Instead, τ replaces
the first condition of a tree-decomposition, and the second condition (IP) is
“embedded” inside the formula for node-width. (Notice that some edges Fx of G
may be mapped to the node x, Fig. 2, and so they appear in the above formula
for node-width only implicitly.)

A VF-tree-decomposition is illustrated in Figure 3. Simply speaking, in order
to obtain a VF-tree-decomposition of small width, the edges in each single branch
of every node should cut off as many new components of the graph as possible.

We now formulate our main result, which is then restated in a matroidal
formulation as Theorem 3.2 and proved in Section 5.
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Fig. 3. An example of a VF-tree-decomposition of the cube graph of width 3, where
the images of edges under τ are listed at the tree nodes.

Theorem 2.1. The tree-width of a graph G equals the VF-tree-width of G.

3 Tree-Width in Matroids

We assume that the reader is familiar with the basics of matroid theory. Our no-
tation follows Oxley [12]. For convenience we briefly recall that the rank rM (X)
of a set X of elements of a matroid equals the maximal cardinality of an inde-
pendent subset of X, and r(M) denotes the rank of E(M), the ground set of M .
Our matroidal definition of tree-width follows.

Let M be a matroid on the ground set E = E(M). A pair (T, τ), where T is
a tree and τ : E → V (T ) is an arbitrary mapping, is called a tree-decomposition

of M . For a node x of T , denote the connected components of T −x by T1, . . . , Td

and set Fi = τ−1
(

V (Ti)
)

⊆ E (Fig. 2). We define the node-width of x by

(MW)

d
∑

i=1

rM (E − Fi) − (d − 1) · r(M) ,

and the width of the decomposition (T, τ) as the maximal width over all the
nodes of T . The smallest width over all tree-decompositions of M is the tree-

width of M .
Some matroid tree-decompositions are illustrated in Figure 4. To assist the

reader’s understanding of matroid tree-width, we note the following view of our
definition. The node-width of x in the above definition can be rewritten as

(MW′) r(M) −

d
∑

i=1

[

r(M) − rM (E − Fi)
]

.

For a set F of elements of M , the rank defect of F is given by r(M)−rM (E−F ).
The width of a node x is smaller than the rank of M by the sum of rank
defects of the sets consisting of the elements in each of the branches of x in the
decomposition. So when looking for an optimal tree-decomposition, we want to
“maximize rank defects of the branches” at each node.

The following is an easy exercise with the definition of a tree-width.
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Fig. 4. An example of three optimal tree-decompositions of width 3 of the depicted
9-element matroid, where the elements mapped by τ are listed at the tree nodes. (The
solid lines in the matroid picture show dependencies between matroid elements.)

Proposition 3.1. Let N be a minor of a matroid M . Then the tree-width of N
is not larger than that of M .

Proof. Suppose that N = M \e where e is not a coloop. Then r(N) = r(M)
and hence the value of node-width (MW) cannot increase after deleting e. Sup-
pose that N = M/e where e is not a loop. Assuming e 6∈ F2, . . . , Fd, we rewrite

the node-width formula (MW) as rM (E − F1) −
∑d

i=2

[

r(M) − rM (E − Fi)
]

.
Since r(M) − rM (E − Fi) = r(N) − rN (E − {e} − Fi), the node-width cannot
increase after contracting e in M , too.

Recall that the cycle matroid M(G) of a graph G has the edges of G as
the ground set, and the independent subsets are those inducing no cycle in G.
Hence the rank rM(G)(X) equals the size of a spanning forest in the subgraph
HX ↾X induced by the edges X, i.e. rM(G)(X) = |V (HX)|−c(HX ). (Notice that
it does not matter whether HX includes also vertices of G which are isolated
wrt. X.) Our main theorem states that the definition of matroid tree-width
directly extends the graph tree-width notion.

Theorem 3.2. Let G be a graph with at least one edge, and let M = M(G) be

the cycle matroid of G. Then the tree-width of G equals the tree-width of M .

The proof is not easy, and so we postpone it till Section 5. However, the rela-
tion of matroid tree-width to VF-tree-width, and an equivalence of Theorem 3.2
with Theorem 2.1, are straightforward:
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Proposition 3.3. Let G be a graph with at least one edge, and let M be the

cycle matroid of G. Then the VF-tree-width of G equals the tree-width of M .

Proof. Let M = M(G), and E = E(G) = E(M). We use exactly the same
tree-decomposition for the both graphic and matroidal variants of tree-width,
and we equivalently rewrite the formula for node-width:

d
∑

i=1

rM (E − Fi)−(d−1)·r(M) =

d
∑

i=1

(

|V (G)|−c(G−Fi)
)

−(d−1)·
(

|V (G)|−c(G)
)

=

= |V (G)| + (d − 1) · c(G) −

d
∑

i=1

c(G − Fi)

4 Comparing to Branch-Width

Branch-width is far less known than tree-width despite the fact that branch-
width has the attractive property that it can be extended to all structures pos-
sessing a reasonable measure of connectivity. We make this idea precise now. Let
E be a finite set and λ be an integer-valued function defined on subsets of E.
Then, following [5] we say that λ is a connectivity function if

1. λ(X) = λ(E − X) for each X ⊆ E (symmetric), and
2. λ(X) + λ(Y ) ≥ λ(X ∩ Y ) + λ(X ∪ Y ) (submodular).

We note that both graphs and matroids have natural connectivity functions.
For a graph G, we define the function λG on subsets of the edges of G as λG(F ) =
|U |, where U ⊆ V (G) is the subset of vertices incident both with edges in F and
edges in E(G) − F . It is easily seen that λG is a connectivity function in the
sense defined above and we say that λG is the connectivity function of G. For a
matroid M , the connectivity function λM of M is defined by

λM (X) = rM (X) + rM

(

E(M) − X
)

− r(M) + 1

for all X ⊆ E(M). Again, it is easily seen that λM is a connectivity function.
If M is represented as a set of vectors in a vector space, then the geometric
meaning of matroid connectivity is as follows: A subset X ⊆ E(M) spans a
subspace 〈X〉. The subspace 〈X〉 ∩ 〈E(M) − X〉 has rank λM (X) − 1.

The connectivity functions of a graph and its associated cycle matroid are
related in the sense that λG(F ) = λM(G)(F ) provided that both subgraphs of G
induced by the edge sets F and E(G) − F are connected.

A tree is cubic if every node has degree 1 or 3. Let λ be a connectivity function
on ground set E. A branch-decomposition of λ is a pair (U,ω) where U is a cubic
tree, and ω is a bijection of E onto the leaves of U . For an edge e of the tree U ,
denote by Ue one of the connected components of U − e, and by Le the set of
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leaves of Ue. We define the width of e as λ
(

ω−1(Le)
)

(note symmetry of λ), and
the width of the decomposition (U,ω) as the largest width over all edges of U .
The smallest width over all branch-decompositions of λ is the branch-width of λ.

The branch-width of a graph G equals the branch-width of its connectivity
function λG, and the branch-width of a matroid M equals the branch-width of
its connectivity function λM . See an illustration in Figure 5.
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Fig. 5. An example of a branch-decomposition of width 3 of the depicted 8-element
matroid (the binary affine cube).

As noted already, the tree-width and branch-width of a graph are closely
related to each other. The following basic result is proved in [14]:

Theorem 4.1. Let G be a graph of tree-width k and branch-width b > 1. Then

b − 1 ≤ k ≤

⌊

3

2
b

⌋

− 1 .

In order to justify our definition of matroid tree-width, we extend this result to
all matroids. (Another reason to present the following straightforward proof is
to demonstrate the new concept of tree-width in depth, before moving on with
more difficult proofs in the next section.) Let us remark that it is not difficult
to construct examples showing that the bounds in Theorem 4.2 are both sharp.

Theorem 4.2. Let M be a matroid of tree-width k and branch-width b. Then

b − 1 ≤ k ≤ max (2b − 2, 1) .

Proof. One direction is quite easy, since a branch-decomposition (U,ω) may
be viewed as a tree-decomposition as well. Then the width of a leaf node of U is 1.
For a non-leaf node x ∈ V (U), we denote by U1, U2, U3 the connected components
of U −x, and by Fi = ω−1

(

V (Ui)
)

, i = 1, 2, 3. Notice that F1 ∪F2 ∪F3 = E(M)
in this case. By definition the width of a node x equals

rM (F1 ∪ F2) + rM (F1 ∪ F3) + rM (F2 ∪ F3) − 2 r(M) ≤

≤ rM (F2) + rM (F1 ∪ F3) − r(M) + rM (F1) + rM (F2 ∪ F3) − r(M) ≤
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≤ λM (F2) − 1 + λM (F1) − 1 ≤ 2(b − 1) .

To prove the other direction, we have to modify the tree of an optimal tree-
decomposition (T, τ) of M , so that elements of M are mapped to leaves of the
new tree. Let T ′ be obtained from T by subdividing each edge with a new node.
We construct a branch-decomposition (W,ω) of M from T ′ using the following
local modifications at each node x ∈ V (T ) of degree d.

Let y1, . . . , yd be the neighbours of x in T ′ (yes, not in T ), let Y =
{y1, . . . , yd}, and let F0 = τ−1(x). We define Ux to be a cubic tree with a set L
of d + |F0| leaves, such that Y ⊆ L and Ux − Y is disjoint from all other Uy for
y ∈ V (T ). Moreover, we define a restriction of a mapping ω on F0 as an arbitrary
bijection from F0 to L − Y . Altogether, we define the tree W ′ =

⋃

y∈V (T ) Uy,

and denote by W the cubic tree obtained from W ′ by contracting the degree-2
vertices created in T ′ above.

Claim 4.3. The pair (W,ω) defined above is a branch-decomposition of M of
width at most k + 1.

Proof. Let f be an edge of W incident with a subtree Ux for some x ∈ V (T ),
and let W 1,W 2 be the connected components of W −f . Moreover, let T1, . . . , Td

be the connected components of T − x, and denote by Wi =
⋃

y∈V (Ti)
Uy for

i = 1, . . . d. (Hence Wi, i = 1, . . . d are the connected components of W ′−V (Ux).)
Notice that neither of W 1,W 2 intersects all of the subtrees W1, . . . ,Wd. So
it follows that there are distinct j1, j2 ∈ {1, . . . , d} such that W i is disjoint
from Wji

for i = 1, 2. We denote by F i = ω−1
(

V (W i)
)

for i = 1, 2, and by

Fi = ω−1
(

V (Wi)
)

for i = 1, . . . , d. Then the width of the edge f in (U,ω) can
be estimated from above as follows

λM

(

F 1
)

= rM (F 1) + rM (F 2) − r(M) + 1 ≤

≤ rM (E(M) − Fj1) + rM (E(M) − Fj2) − r(M) + 1 ≤

≤

d
∑

i=1

rM (E(M) − Fi) − (d − 2) r(M) − r(M) + 1 ≤ k + 1 . 2

5 Equivalence of the Tree-Widths

We now present an important geometric link that enables us to connect the
traditional graph and new matroid tree-width definitions. Let q be a prime or
a prime power. Recall that a representation of a matroid M is a matrix A

over GF (q) whose columns are labelled by elements of E(M) with the property
that a set of columns is linearly independent if and only if their labels form an
independent set in M . Note that the matrix is really unnecessary — it is just
a convenient device. It is really the set of column vectors that represents M . In
this spirit we define a point configuration to be a labelled multiset of vectors in
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V (r, q). Then a point configuration P represents a matroid M if it is labelled by
E(M) and a subset X of P is linearly independent if and only if the labels of X
are independent in M .

The following example, which is classical, illustrates the connection between
graphic matroids and certain point configurations. Let J(G) denote the vertex-
edge incidence matrix of an arbitrary simple graph G. Then the rank of J(G)
over GF (2) is |V (G)|− c(G), where c(G) denotes the number of connected com-
ponents. It is well known that the columns of J(G) over GF (2) represent the
cycle matroid M(G). This simple construction is illustrated in Figure 6.

K4:

e1 e2

e3

e4

e5e6

→

e1 e2

e3

e4

e5

e6

1
1
0
0

1
0
1
0

1
0
0
1

0
0
1
1

0
1
0
1

0
1
1
0

Fig. 6. An example of a point configuration constructed from the vertex-edge incidence
matrix of the graph K4.

With this example in mind it is easy to see how the definition of graph tree-
width may be extended to a definition of tree-width for point configurations. In
a graph, a set of edges “span” a set of vertices; in a point configuration, a set
of points span a subspace. The idea is to replace a bag consisting of a subset of
vertices of a given cardinality by a bag consisting of a subspace of a given rank.

Definition. Let P ⊆ PG(r, q) be a point configuration over GF (q). A tree-

decomposition of P is a pair (T,Σ), where T is a tree, and Σ is a mapping from
V (T ) to subspaces of PG(r, q), satisfying the following:

– For each p ∈ P there is x ∈ V (T ) such that p ∈ Σ(x).
– (IP′) If v ∈ V (T ), e ∈ E(T ) is an edge incident with v, and T1, T2 are

connected components of T − e, then 〈Φ1〉 ∩ 〈Φ2〉 ⊆ Σ(v) where Φi =
⋃

x∈V (Ti)
Σ(x) for i = 1, 2.

The width of the decomposition (T,Σ) of P equals the maximal rank of a sub-
space Σ(x) for x ∈ V (T ). The smallest width over all tree-decompositions of the
point configuration P is the tree-width of P .

The relation of this definition to the traditional definition of graph tree-width
is almost straightforward: The points of P are the edges of a graph, and the
subspaces Σ(x) correspond to the bags of graph vertices. The second condition
(IP′) is a version of the interpolation property. The third condition is meaningless
in a geometric setting. (Notice that, unlike for graphs, there is no “| · | − 1” in
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the previous definition of tree-width. That is natural since the “rank” of an n-
vertex set is actually n−1.) Yet, surprisingly, it seems that a natural short proof
relating these two definitions works only in one of the directions:

Lemma 5.1. Let G be a simple connected graph on at least 2 vertices, and let P
be the point configuration given by the columns of the matrix J(G) over GF (2).
Then the tree-width of P is not larger than the tree-width of G.

Proof. Notice that the sum of all rows of the matrix J(G) is the zero vector
over GF (2), and so all points of P belong to the hyperplane Ψ of PG(n, 2) which
is orthogonal to the vector 1 of all ones. Let (T, β) be a tree-decomposition
of the graph G, and let uv, for a vertex v ∈ V (G), denote the unit vector
with 1 as the entry in the row of v in the incidence matrix J(G). We define
Σ(x) =

〈

{uv : v ∈ β(x)}
〉

∩ Ψ for each node x ∈ V (T ). Then the rank of Σ(x)
equals |β(x)| − 1 since none of uv belongs to Ψ . It is now straightforward to
verify that (T,Σ) is, indeed, a tree-decomposition of the point configuration P .

As we see later, it is not an essential restriction that we consider only simple
connected graphs. Next, we prove equality between the tree-widths of a point
configuration and of the represented matroid in Lemma 5.2, and then we “get
back” from a tree-decomposition of a graphic matroid to a tree-decomposition
of the underlying graph in Lemma 5.4.

Lemma 5.2. Let M be a simple GF (q)-representable matroid, and let P be a

point configuration representing M over GF (q). Then the tree-width of M is

equal to the tree-width of P .

Proof. Let (T, τ) be a tree-decomposition of M . For a node x ∈ V (T ), let
T1, . . . , Td be the connected components of T − x. We denote by P0 ⊆ P the
points representing the elements of F0 = τ−1(x), and by Pi ⊆ P , i = 1, . . . , d,
the points representing the elements of Fi = τ−1

(

V (Ti)
)

. We set

(BS) Σ(x) = Ψ =

〈

P0 ∪
⋃d

i=1
(〈Pi〉 ∩ 〈P − Pi〉)

〉

.

Notice that the space Σ(x) is spanned by points of P . It is now easy to see that
(T,Σ) is a tree-decomposition of P .

Claim 5.3. For an arbitrary partition (F0, F1, . . . , Fd) of E(M), the correspond-
ing partition (P0, P1, . . . , Pd) of P , and the subspace Ψ defined as in (BS), the
rank of Ψ equals

ηM (F1, . . . , Fd;F0) =

d
∑

i=1

rM (E(M) − Fi) − (d − 1) r(M) .

Proof. We prove the claim by induction on d. For d = 1, Ψ = 〈P0〉 and the
rank of P0 equals ηM (F1;F0) = rM (F0). For d > 1, we contract the set Fd in
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M , which corresponds to contracting the subspace 〈Pd〉 in P . Then the rank of
Ψ/ 〈Pd〉 equals ηM/Fd

(F1, . . . , Fd−1;F0) by the inductive assumption for d − 1.
So, for E = E(M) and E′ = E − Fd, the rank of Ψ equals

d−1
∑

i=1

rM/Fd
(E′ − Fi) − (d − 2) r(M/Fd) + r

(

〈Pd〉 ∩ 〈P − Pd〉
)

=

=

d−1
∑

i=1

(

rM (E − Fi) − rM (Fd)
)

− (d − 2)
(

r(M) − rM (Fd)
)

+

+ rM (Fd) + rM (E − Fd) − r(M) =

=

d−1
∑

i=1

(

rM (E − Fi) − rM (Fd)
)

− (d − 1) r(M) + (d − 1) rM (Fd) + rM (E − Fd) =

= ηM (F1, . . . , Fd;F0) . 2

We see that the width of (T,Σ) is the same as the width of (T, τ). Hence the
tree-width of P is not larger than the tree-width of M .

Conversely, let (T,Σ′) be a tree-decomposition of P . We define a function τ
by letting τ(e) = x for e ∈ E(M) and x ∈ V (T ), where x is chosen such that the
point representing e in P belongs to Σ′(x). Then (T, τ) is a tree-decomposition
of M . We use (T, τ) and the above construction (BS) to define (another) tree-
decomposition (T,Σ) of P . Clearly, Σ(x) ⊆ Σ′(x) for all x ∈ V (T ), and hence
the tree-width of M is not larger than the tree-width of P .

Lemma 5.4. Let G be a graph with at least one edge, and let M = M(G) be the

cycle matroid of G. Then the tree-width of G is not larger than the tree-width

of M .

Proof. Without loss of generality, we may assume that G is a connected sim-
ple graph. If G is not 2-connected, then we may compose its tree-decomposition
from the tree-decompositions of its 2-connected components. So we may assume
that G is 2-connected, and that M is connected. Moreover, E(M) = E(G). The
main problem is that we need a tree-decomposition of M in which the subtrees
induce connected matroid restrictions. In some ideas this proof is similar to the
proof of Lemma 5.2.

Let (T, τ) be a width-k tree-decomposition of the matroid M . We denote by
ni, i ∈ [0, k] the number of vertices in T of width exactly i. For another width-k
tree-decomposition (T ′, τ ′) of M , we analogously define n′

i, i ∈ [0, k]. We say
that (T, τ) is lexicographically smaller than (T ′, τ ′) if there is j ∈ [0, k] such that
ni = n′

i for i ∈ [j + 1, k] and nj < n′
j . Let e = xy ∈ E(T ) be an edge of the

decomposition (T, τ), and let us denote by T1 the connected component of T − e
containing the node y. We say that the edge e = xy in (T, τ) is disconnected at y if
the restriction M ↾τ−1(V (T1)) is not connected. We say that the decomposition
(T, τ) is connected if no edge e = xy ∈ E(T ) is disconnected at x or y.
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Claim 5.5. Let (T, τ) be the lexicographically smallest optimal tree-
decomposition of the matroid M . Then (T, τ) is connected.

Proof. Suppose not. So there is an edge e = xy ∈ E(T ) which is disconnected
at y. We denote by T1 the connected component of T − e containing y, by
M1 = M ↾ τ−1(V (T1)) the restriction of M , and by (F1, F2) a 1-separation of
M1 witnessing that M1 is not connected. We define a new tree-decomposition
(T ′, τ ′) as follows: Let T ′

1, T ′′
1 be two disjoint copies of T1, and let T ′ =

(

T −

V (T1)
)

∪T ′
1∪T ′′

1 ∪{xy′, xy′′} where y′, y′′ are the corresponding copies of y in T ′
1,

T ′′
1 . For an element f ∈ F1, we set τ ′(f) = z′ where z′ is the node corresponding

to z = τ(f) in T ′
1. For an element f ∈ F2, we set τ ′(f) = z′′ where z′′ is the

node corresponding to z = τ(f) in T ′′
1 . We set τ ′(f) = τ(f) for the remaining

elements.
Informally speaking, we have split the branch T1 in T into two branches

according to the 1-separation (F1, F2). It is clear that the width of (T ′, τ ′) is not
larger than the width of (T, τ). Moreover, (T ′, τ ′) is lexicographically smaller
than (T, τ), which contradicts the assumption of Claim 5.5. 2

For a tree-decomposition (T, τ) of M , we define a tree-decomposition (T, β)
of the underlying graph G as follows: Let β′(x) ⊆ V (G) for x ∈ V (T ) be the set
of all endvertices of the edges from τ−1(x). Let β′′(x) ⊆ V (G) be the minimal set
containing all intersections β′(z)∩β′(z′) where z, z′ belong to distinct connected
components of T −x (cf. the interpolation property (IP) ). We set β(x) = β′(x)∪
β′′(x) for x ∈ V (T ).

Claim 5.6. (T, β) is a tree-decomposition of G. If (T, τ) is a connected tree-
decomposition of M , then the width of (T, β) equals the width of (T, τ).

Proof. The decomposition (T, β) clearly satisfies the tree-decomposition con-
ditions from page 2. If F ⊆ E(M) is a subset of M such that M ↾F is connected,
then the edges of F in G induce a 2-connected subgraph on a vertex subset
X ⊆ V (G), and rM (F ) = |X| − 1 since the matroid rank equals the size of a
spanning forest.

For a node x of T , denote by T1, . . . , Td the connected components of T − x.
(See the definition of matroid tree-width on page 4.) Let X0 = β(x), and Fi =
τ−1(V (Ti)), Xi =

⋃

z∈V (Ti)
β(z) for i ∈ [1, d]. By the definition of β and the

connectivity assumption for (T, τ), we see that the edge set E(G)−Fi for i ∈ [1, d]
induces a 2-connected subgraph of G on the vertex subset X0 ∪

⋃

j∈[1,d]−{i} Xj .
Therefore

d
∑

i=1

rM

(

E(M) − Fi

)

− (d − 1) · r(M) =

=

d
∑

i=1

(

∣

∣X0 ∪
⋃

j∈[1,d]−{i}
Xj

∣

∣ − 1

)

− (d − 1) ·
(

|V (G)| − 1
)

= |X0| − 1 ,

since the sets X0 and Xi − X0 for i = 1, . . . , d form a partition of V (G). Hence
the width of x in the graph decomposition (T, β) equals the width of x in the
matroid decomposition (T, τ). 2
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The whole proof is now finished.

We are ready to conclude the proof of our main result.

Proof of Theorem 3.2. If G is not simple, then any tree-decomposition
of the simplification of G is also a tree-decomposition of G itself. If G is not
connected, then the tree-width of G equals the largest tree-width over the con-
nected components of G. Thus, without loss of generality, we may consider only
simple connected graphs.

So, for a graph G, the point configuration P given by the incidence matrix
J(G) over GF (2), and the cycle matroid M(G) represented by P , we get from
Lemmas 5.1, 5.2, and 5.4

tw(G) ≥ tw(P ) = tw(M) ≥ tw(G) ,

where tw() denotes the tree-width in the respective definition. Hence an equality
holds here. In particular, the statement is true even when the only edges in G
are loops, in which case the tree-width of G is zero.

6 Concluding Remarks

The main contribution of our paper lies in a novel way of defining tree-width
which readily extends from graphs to matroids, and more generally to all struc-
tures where a “geometric” notion of rank can be found or defined. Namely, our
new definition eliminates the need (often uncomfortable, but so far necessary) to
refer to graph vertices when dealing with tree-width. Such an extension paral-
lels the situation with branch-width which extends from graphs to all structures
where a connectivity function can be defined.

In particular, we are able to define a robust notion of matrix tree-width that
is invariant on standard matrix row operations, or in other words, invariant on
the projective equivalence of point configurations. The hope is that matrices of
small “width” are much easier to handle than general matrices, and that fast
algorithms may exist for problems involving these matrices. The tree-width of a
matrix A equals the tree-width of the matroid M(A) represented by the columns
of A. Moreover, since matroid representations are in one-to-one correspondence
with linear codes, we can also give a definition of tree-width for linear codes.

Let us mention that some authors have already used another “matrix tree-
width” parameter defined as follows. For a matrix A = [ai,j ]

n
i,j=1, let GA be

the graph on the vertex set {1, . . . , n} and the edge set consisting of all {i, j}
such that ai,j 6= 0 or aj,i 6= 0. Then the graph tree-width of the matrix A is
given by the tree-width of GA. This definition was, perhaps, inspired by Choleski
factorization of sparse symmetric matrices which is related to the graph tree-
width of the matrix. (See [1] for more details.) However, such a notion of a
matrix width is not robust in the above sense — applying a row operation to a
matrix A may dramatically change the tree-width of GA, while the geometric
configuration represented by A is still the same.
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Another remark and question concerns so called excluded-minor character-
izations. It is proved in [4] that a matroid M of branch-width k, but with all
proper minors of M of branch-width less than k (called an excluded minor for
branch-width < k ), has size at most

(

6k+1 − 1
)

/5. Hence there is a finte num-
ber of them for each k. In future research it would be interesting to investigate
whether an analogous statement holds also for matroid tree-width. A positive
answer to that would imply, together with Theorem 4.2, a uniform FPT algo-
rithm for finding the tree-width of a matroid represented by a matrix over a
finite field [8].

We conclude the paper with a note on an interesting question of Seymour;
whether tree-widths of a planar graph and of its dual differ by at most one.
(An easy example that tree-width is not self-dual is given by the cube and
the octahedron graphs.) This has been recently proved true by Lapoire [11]. A
natural generalization would be to ask the following:

Problem 6.1. What is the maximal value of the tree-width difference | tw(M)−
tw(M∗)| among all matroid-dual pairs M,M∗?

It follows from Theorem 4.2 and self-duality of branch-width that the tree-
widths of M and M∗ are within a multiplicative constant of each other. So far,
we have found no matroid-dual pair with tree-width difference greater than 1,
but we have not tried hard yet.
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