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Abstract. A graph H is a cover of a graph G if there exists a mapping
ϕ from V (H) onto V (G) such that for every vertex v of G, ϕ maps
the neighbours of v in H bijectively onto the neighbours of ϕ(v) in G.
Negami conjectured in 1987 that a connected graph has a finite planar
cover if and only if it embeds in the projective plane. This conjecture is
not completely solved yet, but partial results due to Archdeacon, Fellows,
Negami and the author are known.
This paper suggests another formulation of this conjecture that has a
straightforward generalization to higher nonorientable surfaces, and pro-
vides some support for the generalized version.

1 Introduction
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Fig. 1. A double planar cover of K5, constructed by lifting its projective drawing

We consider only finite simple graphs in this paper. A surface is a compact
2-manifold without boundary. We say that a graph H is a cover of a graph G if
there exists a surjective mapping ϕ from V (H) onto V (G) such that for every
vertex v of G, ϕ maps the neighbours of v in H bijectively to the neighbours
of ϕ(v) in G. If S is a surface, and the graph G has a cover that embeds on
S, then G has an S-cover. We use the terms of planar cover (projective cover,
Klein cover) in the obvious sense. Every planar graph has a planar cover by an
identity mapping. As a non-trivial example, we mention a planar cover of the
non-planar graph K5 (see Fig. 1), obtained by lifting a projective drawing into
the universal covering space.



The previous construction of a double planar cover can be easily generalized
for each projective planar graph; thus all projective planar graphs have finite
planar covers. Negami proved in [8] that a connected graph has a double planar
cover iff it embeds in the projective plane. He [9] also conjectured in general:

Conjecture 1. (S. Negami, 1987, “the 12∞-conjecture”) A connected graph has
a finite planar cover if and only if it embeds in the projective plane.

K3,5 B3 K4,4 − e

K7 − C4
E22 K1,2,2,2

Fig. 2. Examples – 6 of the forbidden minors for the projective plane.

Note that the property of having a planar cover is hereditary under the minor
ordering. So to prove the above stated conjecture, it is sufficient to prove that
none of the minor-minimal nonprojective graphs [2] has a planar cover. The list
contains 35 graphs, but it follows from work of Archdeacon (unpublished) that
the problem can be reduced by Y ∆-transformations to 11 graphs, see Fig. 2 for
examples.

Soon after the conjecture was stated, Archdeacon [3], Fellows, and
Negami [10] proved that 9 of these graphs have no planar cover. However, the
other two graphs K4,4−e and K1,2,2,2 remained unsolved for several years. The
author [5] published last year a proof for the first one of the two remaining cases;
so in order to prove the conjecture, it remains to show that the graph K1,2,2,2

has no finite planar cover. Recently, R. Thomas and the author [6] proved that,
up to obvious constructions, there are at most 16 possible counterexamples to
Negami’s conjecture.

2 A generalization of the conjecture

The aim of this paper is to suggest another formulation of Conjecture 1 that has
a straightforward generalization to other nonorientable surfaces.

Conjecture 2. A connected graph embeds in the projective plane if and only if
it has a projective cover.

Proof of equivalence with Conjecture 1. It is enough to prove that a graph
has a finite planar cover if and only if it has a finite projective cover. Indeed, a
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planar cover is a projective cover, too. On the other hand, let H be a projective
cover of a graph G, then H has a double planar cover F (obtained by lifting
as in Fig. 1). One can check that the property of having a cover is a transitive
relation, thus F is a planar cover of G.

The advantage of the latter formulation is that we speak about one surface
only, and we directly relate to each other the properties of having a cover and
of having an embedding in the surface. Surprisingly, nobody considered that
formulation before. Conjecture 2 holds for no orientable surface, since there exist
projective graphs (hence having planar covers) of arbitrarily high orientable
genera [1]. However, for nonorientable surfaces we conjecture:

Conjecture 3. A connected graph embeds in the Klein bottle if and only if it
has a Klein cover.

Fig. 3. The graphs K7, K8 − M4, and H14.

As far as we know, it is possible that Conjecture 3 holds for all nonorientable
surfaces, but at the moment we have no evidence in favor of that. To provide
support for the conjecture, we shall show that three minor-minimal graphs not
embeddable in the Klein bottle do not have Klein covers: The complete graph
K7, the graph K8−M4 (a complete graph on 8 vertices minus a perfect match-
ing), and the Heawood graph H14 (the only cubic graph of girth 6 on 14 vertices,
also the geometrical dual of any toroidal embedding of K7). The author is in-
debted to H. Glover and B. Richter for providing these graphs.

Theorem 1. The graphs K7, K8 − M4, and H14 have no Klein covers.

Proof. (K7) Suppose that G is a cover of K7 embedded in the Klein bottle.
By Euler’s formula, G is a 6-regular triangulation of the surface. We represent
the covering projection as a labelling of the vertices by labels 1, 2, . . . , 7, where
each label is connected with all six other labels. In particular, two vertices of the
same label are at distance at least 3.

A straight-ahead walk is a walk in which each internal vertex is left through
an edge opposite to the edge through which it was entered. This is well-defined,
because every vertex of G has even degree. A key observation is that two ver-
tices of the same label cannot be connected by a straight-ahead walk of length
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Fig. 4. A straight-ahead walk between two vertices of the same label.

three. To prove it, see Fig 4—the seven vertices a, b, c, d, e, f, g must have mu-
tually distinct labels, but none of them may have label 1, a contradiction. (The
pictures presented here should be regarded as a lifting of the graph into the uni-
versal covering surface. It could happen, for example, that in the Klein bottle
embedding of G the two vertices labelled 1 are actually equal.)
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Fig. 5. A fragment of a Klein cover of K7

Let us now look at the components of the graph obtained from G by deleting
all edges not contained in any closed neighbourhood of a vertex of label 7. These
components are wheels with central label 7; and we will show that the rim
vertices of each wheel are labelled in the same cyclic order, which contradicts
the nonorientability of the Klein bottle.

We may assume, without loss of generality, that one of the wheels W is la-
belled 1, 2, 3, 4, 5, 6 in order. Let another wheel labelled a, b, c, d, e, f be connected
to W by at least one edge, say b5 (see Fig. 5). The edge b5 is not the only edge
between these two wheels, for otherwise the central vertices would be connected
by a straight-ahead walk of length three. Thus the wheels are connected by a
triangle, say ab5. Since the vertex 5 has only one more edge, there must be an-
other edge, say b4, between the wheels. Let x, y denote the other two neighbours
of the vertex 4, as in the figure.

The label b cannot be 3, 4, 5, 6 since these labels already occur at distance at
most two from it; similarly a cannot be 4, 5, 6; and c cannot be 4, 5, and 6 since c

is connected with 6 by a straight-ahead walk of length three. Then one of a, b, c

is 2, so the vertex y is at distance at most two from labels 2, 3, 4, 5, 7, and y is
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connected with 1 by a straight-ahead walk of length three. Hence y = 6, and
consequently x = 1, which already implies b = 2, c = 3, a = 1. By symmetry
between the two wheels, 4 = d, 5 = e, 6 = f , and the claim follows by induction.

(H14) The Heawood graph H14 is a bipartite cubic graph of girth 6. It is
easy to check that if we replace each vertex of one colour class by a triangle on
its three neighbours (a Y ∆-trasformation), we get the complete graph K7. The
same transformation is applicable to any cover of H14; thus a Klein cover of
H14 could be transformed to a Klein cover of K7, which we have already shown
is impossible.
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Fig. 6. A fragment of a Klein cover of K8 − M4

(K8 − M4) Finally, we look at the case of K8 − M4. The idea of a proof
is quite similar to that of K7, so we only sketch it here. Let the vertices be
1, 2, . . . , 8, so that the four missing edges are 12, 34, 56, 78. Again, two vertices
of the same label cannot be connected by a straight-ahead walk of length 3, for
otherwise (see Fig. 4), the vertices a, b, c, d, e, f, g would get seven distinct labels
other than 1, so g which is connected with all of them, should be labelled 2. By
mirror symmetry, another vertex labelled 2 should be at distance two from g, a
contradiction.

We partition the supposed Klein cover of K8 − M 4 into wheels centered at
labels 7, and into the remaining vertices of labels 8. We argue in the same way
that two neighbouring wheels are connected by at least three edges, as in Fig. 6.
Then the positions of labels 8 are determined, since each vertex other than 7
must have a neighbour labelled by 8. The labels 1, . . . , 6 cannot be specified
since they are not mutually equivalent in this case, so we denote them (in some
order) by a, b, c, d, e, f for the first wheel, and by a′, b′, c′, d′, e′, f ′ for the second
wheel. The label b′ can only be a or b, and the label a′ can only be a or c

(there is a straight-ahead a′, b -walk of length three). If b′ = a, then a′ = c, and
the cover would contain seven edges with labels a7, a8, ab, af, ad, ae, ac, which
is impossible. Thus b′ = b, and we see that the cover contains edges labelled
b7, b8, ba, bc, be, bd, so bf is one of the missing edges of the graph. Since 78 is a
missing edge too, and cd, de are present in the cover, the remaining two missing
edges are ce, ad. Consequently, a′ = a since there is an edge labelled a′e, and
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c′ = c; and finally, d = d′, e = e′, f = f ′ by symmetry.

Unfortunately, there is little hope to prove the conjecture by examining all
forbidden minors for the Klein bottle or for higher nonorientable surfaces. Those
lists are not known, and even if they are eventually found, they will probably be
too numerous to be useful. However, it is worthwhile to mention that the lists
are finite by [11].

3 Planar emulators

Fellows generalized Negami’s conjecture to planar emulators [4] by dropping the
assumption of unique neighbours. A graph G has an emulator H if there is a
surjective mapping ϕ : V (H) → V (G) that maps the neighbours of each vertex
v in H onto the neighbours of ϕ(v) in G.

Conjecture 4. (M. Fellows, 1988) A graph has a planar emulator if and only if
it has a planar cover.

Fellows [4] gave partial evidence for the conjecture, but much less is known
about planar emulators than about planar covers. The same problem, under the
name of a branched cover, was also considered later by Kitakubo [7], who proved
the equivalence for regular covers. (A cover or a branched cover H → G is said
to be regular if G can be obtained as the quotient of H by a group action.)

One might speculate that Conjecture 4 could hold for other surfaces as well.
Unfortunately it does not, as we now show.

Proposition 2. There exists a connected graph G that has an emulator embed-
dable in the triple-torus, but G has no finite cover (and hence no embedding)
there.

p

p

t PT

Fig. 7. An emulator of the graph G.

Proof. Let T be any triangulation of the double-torus, and let P be any
projective graph that does not embed in the triple-torus [1]. We construct a
graph G by connecting some vertex t of T with some vertex p of P . This graph
obviously does not embed in the triple-torus. A possible emulator is obtained
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by drawing T on two of the handles of the triple-torus, putting a double-cover
of P on the third handle, and connecting the vertex t with both of the vertices
covering p, as shown in Fig. 7.

Suppose that there is a cover of the graph G that embeds in the triple-torus.
Euler’s formula applied to T shows that it may be at most a double-cover, and
then the subcover of T triangulates the whole triple-torus. But in such case, it
is impossible to connect both of the vertices covering p with the subcover of P ,
a contradiction.
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