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Abstract

In contrast to undirected width measures such as tree-width, which have pro-
vided many important algorithmic applications, analogous measures for di-
graphs such as directed tree-width or DAG-width do not seem so successful.
Several recent papers have given some evidence on the negative side. We confirm
and consolidate this overall picture by thoroughly and exhaustively studying the
complexity of a range of directed problems with respect to various parameters,
and by showing that they often remain NP-hard even on graph classes that
are restricted very beyond having small DAG-width. On the positive side, it
turns out that clique-width (of digraphs) performs much better on virtually all
considered problems, from the parameterized complexity point of view.

Keywords: digraph, parameterized complexity, tree-width, DAG-width,
DAG-depth, cycle rank, clique-width.

1. Introduction

The very successful concept of graph tree-width was introduced in the context
of the Graph Minors project by Robertson and Seymour [RS86, RS91], and
it turned out to be very useful for efficiently solving many graph problems
(including NP-hard ones). In a nutshell, tree-width measures tree-likeness of a
graph. Trees themselves, for example, have tree-width one and series-parallel
graphs have tree-width two. Many graphs occurring in practical applications
have small tree-width. This comes as no big surprise as one often deals with
hierarchical structures that are inherently similar to trees. Examples include
problems in VLSI design, evolution theory, interval routing, and the control-
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flow graphs of structured programs. See [Bod93, Bod98, BK08, HOSG08] for
surveys.

Tree-width is a property of undirected graphs. In this paper we will be in-
terested in digraphs (directed graphs). Naturally, a width measure specifically
tailored to digraphs with all the nice properties of tree-width would be tremen-
dously useful. We can, of course, apply the concept of tree-width to digraphs,
too, if we just forget the direction of all edges for the computation of the tree-
width and the resulting tree decomposition. With such an approach we, however,
seem to ignore too much: For example, in directed acyclic graphs (DAGs) it is
easy to find a longest path while the problem is NP-complete in general. Nev-
ertheless, DAGs have unbounded tree-width if we forget the directions.

On the search for a “trully directed” width measure inspired by tree-width,
several suggestions were made, starting with directed tree-width [JRST01],
and being complemented recently with several new approaches including
directed path-width [Bar06], entanglement [BG05], D-width [Saf05], DAG-
width [BDH+12] and Kelly-width [HK08].

Some positive results were encouraging: The Hamiltonian path problem can
be solved in polynomial time if the directed tree width, the DAG-width, or
the Kelly-width are bounded by a constant [JRST01]. More recently, it has
been shown that parity games (Section 4.9) can be solved in polynomial time
on digraphs of bounded entanglement [BG05], DAG-width [BDH+12] or Kelly-
width [HK08].

Unfortunately, as encouraging as the first positive results are, there is also
the negative side. For undirected graphs, the existence of a Hamiltonian path
can be tested in linear time if the tree-width is bounded by a constant; only the
constant hidden in the “big-O” increases with the tree-width. So this problem
is fixed-parameter tractable (captured in the complexity class FPT, Section 2.3)
for the parameter tree-width. While Hamiltonian path on digraphs is indeed
solvable in polynomial time for bounded DAG-width, the degree of the polyno-
mial in the running time increases with the DAG-width (in the complexity class
XP, Section 2.3). This likely cannot be improved (unless the Exponential-time
hypothesis fails) since Lampis, Kaouri, and Mitsou showed that Hamiltonian
path is W[2]-hard for the parameter DAG-width [LKM11].

Even worse, many other natural problems remain NP-hard on digraphs of
low widths [CD06, DGK09, KO11, LKM11] and some of them are already NP-
complete on DAGs – such as MaxDiCut [LKM11] or oriented colouring [CD06].
This particularly implies that for DAG-width there cannot be a result similar
to famous Courcelle’s MSO2 theorem. Therefore, one should perhaps look for
other new directed measures providing a “finer resolution” on DAGs.

We will add many more natural directed problems to the list, but will go
even further: One of the main goals of this paper is to show that not only
many problems are hard on DAGs, but rather that they remain hard even if we
very severely further restrict the digraphs’ structure. To this end, we introduce
two new digraph measures; K-width (Section 3.4) and DAG-depth (Section 3.3),
with the intention to complete the full (and rather negative) picture of structural
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digraph width parameters with some more restrictive ones.
On the other hand, one width measure that fares much better is clique-

width [CO00], an algebraic width measure that equally handles graphs and di-
graphs (and related bi-rank-width generalizing the rank-width of undirected
graphs [KR13]). Nearly all of our problems are fixed-parameter tractable or at
least in XP with respect to this parameter. Even better, unlike as for DAG-
width or Kelly-width, finding an optimal bi-rank-decomposition is known to be
in FPT [HO08, KR13].

2. Preliminaries

2.1. Digraphs

We assume that the readers are familiar with standard terms of undirected
graphs, for example in Diestel [Die05].

A directed graph (or digraph) is a pair (V,E) of disjoint sets of vertices and
arcs, together with two mappings tail : E → V and head : E → V assigning to
every arc e its starting vertex x = tail(e) and terminal vertex y = head(e) (e
is said to be directed from x to y). Note that a digraph may have several arcs
between the same two vertices x, y. If two of them have the same direction (say
from x to y), they are called parallel. If x = y, then e is called a loop. We will
sometimes refer an arc from x to y as to (x, y).

A directed path is a digraph of the form: V = {x0, x1, x2, . . . , xk}, E =
{(x0, x1), (x1, x2), . . . , (xk−1, xk)} where xi are all distinct; intuitively, x0 and
xk are called the endpoints of the directed path. The length of a directed path
is defined as the number of its arcs. Two directed paths P1 and P2 are internally
disjoint if they are vertex disjoint except for their endpoints. A directed cycle is
a directed path with an additional arc (xk, x0). A directed acyclic graph (DAG)
is a digraph with no directed cycles.

Many terms of undirected graphs are naturally extended to digraphs, like
those of subgraph/subdigraph and of isomorphism. Given two vertices x, y, we
say that y is an out-neighbour (in-neighbour) of x if there exists an arc (x, y)
((y, x), respectively). We say that y is reachable from x if there exists a directed
path from x to y. A digraph G is strongly connected if each of its vertices is
reachable from any other one. Strong components of G are the equivalence
classes defined by the relation x ∼ y meaning that x is reachable from y and y
is reachable from x.

2.2. SAT and its variants

We define the Boolean Satisfiability problem (abbreviated as SAT). A literal
is a positive propositional variable x or a negative variable ¬x. A clause is
a finite set of literals, e.g., C = x1 ∨ x2 ∨ ¬x3. A propositional formula φ in
conjunctive normal form, or CNF formula for short, is a set of clauses φ =
C1 ∧ · · · ∧ Cp. A CNF formula is a c-CNF formula if each clause contains at
most c literals. Let var(φ) denote the set of variables of φ.
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A CNF formula φ is satisfiable if there is a truth assignment of var(φ) for
which φ evaluates to true, otherwise F is unsatisfiable. SAT is the NP-complete
problem of deciding whether a given CNF formula is satisfiable [Coo71, Lev73].
Analogously, c-SAT is the problem of deciding whether a given c-CNF formula
is satisfiable. Based on the value of c we have the following distinction:

Theorem 2.1 ([Kro67]). 2-SAT can be solved in polynomial time.

Theorem 2.2 ([GJ79], folklore). The 3-SAT problem remains NP-complete
even if the input CNF formula satisfies all the following conditions

• every variable occurs in at most three clauses;

• no clause contains the same variable twice (not even positive and negative);

• no variable has all occurrences positive or all negative (and so it has at
most two positive and at most two negative occurrences).

Proof: 3-SAT is one of Karp’s basic NP-complete problems [GJ79]. If a
variable x ∈ var(φ) has k > 3 occurrences in the clauses of φ then, by a folklore
trick, we replace these occurrences each with new variables xi, i = 1, . . . , k, and
add new clauses (x1∨¬x2), (x2∨¬x3), . . . , (xk∨¬x1) forcing these variables to
have the same value in a satisfying assignment. If a variable x has all occurrences
positive (all negative), then clauses containing x may be safely removed from
the instance. Finally, if a clause contains x∨¬x, then again this clause may be
safely removed.

2.3. Parameterized complexity

Parameterized complexity (see [DF99, FG06]) is an approach to describe
the complexity of problems beyond the traditional methods as a function of
the input size. To this end, the additional notion of a parameter derived from
the input is used to provide a more fine-grained analysis of the time and space
requirements to solve the problem on this input.

Formally, a parameterized problem P is a subset of Σ×N0, where Σ is a finite
alphabet. A parameterized problem P is said to be fixed-parameter tractable if
there is an algorithm that given (x, k) ∈ Σ × N0 decides whether (x, k) is a
yes-instance of P in time f(k) · p(|x|) where f is some computable function of k
alone, p is a polynomial and |x| is the size measure of the input. The class
of such problems is denoted by FPT. The class XP is the class of parameter-
ized problems that admit algorithms with a run-time of O(|x|f(k)) for some
computable f , that is polynomial-time for every fixed value of k.

Let Pk := {(x, k) | (x, k) ∈ P} be the k-slice of P . Note that if a problem
P is in FPT or XP, then for each k ∈ N, the k-slice Pk can be solved in
polynomial time. For problems in FPT, the polynomial part of the running time
is fixed, while for problems in XP the degree of the polynomial may depend
on the parameter. In contrast, a problem P is para-NP-hard (para-NPH) or
para-NP-complete (para-NPC) [FG06, p. 39] if there are finitely many integers
k1, . . . , kl ∈ N such that Pk1

∪· · ·∪Pkl
is NP-hard or NP-complete, respectively.
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Yet finer resolution is given by the levels of the so-called W-hierarchy FPT ⊆
W[1] ⊆ W[2] ⊆ · · · ⊆ XP, formally defined in terms of Boolean circuits with
limited levels of unbounded fan-in (the weft) [DF99]. It is widely believed that
the inclusions are proper; problems that are W [1]-hard under fpt-reductions
are therefore presumably fixed-parameter intractable – meaning that XP-time
algorithms are the “best possible” for them.

3. Digraph Width Measures

We first present a short recapitulation of existing width measures for di-
graphs, which is a necessary prerequisite for our main results in Section 4. We
also introduce two new measures – DAG-depth and K-width, which (as noted
above) are intended to complete the overall picture of directed structural width
measures with some very restrictive ones.

3.1. A brief list

Perhaps the oldest example of a digraph measure was given in the 1960’s by
Eggan and Büchi [Egg63]:

Definition 3.1 (Cycle rank). The cycle rank cr(G) of a digraph G is defined
inductively as follows: For DAGs, cr(G) = 0. If G is strongly connected and
E(G) 6= ∅, then cr(G) = 1 + min{ cr(G − v) : v ∈ V (G) }. Otherwise, cr(G) is
the maximum over the cycle ranks of the strongly connected components of G.

We remark that one can, from this definition, compute cr(G) by an XP algorithm
when parameterized by cr(G).

A related measure can straightforwardly be derived from the long-time
known feedback vertex set problem as suggested, e.g., in [Nie10] for undirected
graphs.

Definition 3.2 (DFVS-number). The directed feedback vertex set number
dfn(G) of a digraph G is the minimum cardinality of a set S ⊆ V (G) such
that G− S is a DAG.

Proposition 3.3. For every digraph G it holds cr(G) ≤ dfn(G).

Proof: This follows from Definition 3.1 by simple induction on dfn(G).

Another example of a width measures (with an algebraic / logic flavor) is that
of clique-width by Courcelle and Olariu [CO00], better known over undirected
graphs but originally defined over digraphs as well as graphs:

Definition 3.4 (Clique-width). A k-expression is an algebraic expression
with the following four operations on vertex-labeled (di)graphs using k labels:
create a new vertex with label i; take the disjoint union of two labeled graphs;
add all edges/arcs between vertices of label i and label j; and relabel all ver-
tices with label i to have label j. The clique-width of a (di)graph G equals the
minimum k such that (some labeling of) G is the value of a k-expression.
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While there is no known exact parameterized algorithm for computing the
clique-width of a digraph, it can be approximated by so called bi-rank-width of
Kanté and Rao [KR13]. Bi-rank-width is computable, parameterized by itself,
by an FPT algorithm [HO08, KR13]. We, however, use clique-width in this
paper due to its easier definition.

Aside of the aforementioned three measures, a stream of new “structural”
digraph width measures occured in the past decade, influenced by the great
success of tree-width in undirected graphs. This started with directed tree-
width [JRST01], and has been then complemented with several other approaches
including entanglement [BG05], D-width [Saf05], directed path-width [Bar06],
DAG-width [BDH+12], and Kelly-width [HK08]. Due to restricted space in
this paper, we skip the mostly lengthy definitions which can be found in the
cited papers. For the purpose of our paper, it appears most useful to formulate
alternative game-theoretic characterizations of some of the measures in the next
section.

3.2. Cops-and-robber games on digraphs

The cops-and-robber game was defined by Seymour and Thomas [ST93] as
an useful alternative characterization of tree-width. In the directed version (as
well as the undirected) version of this game, there are k cops (controlled by
one player) and a robber (controlled by the other). Each cop can either move
around in a helicopter or land on and occupy a vertex of the graph, and the
robber occupies a vertex. The robber can, however, see the helicopter landing,
and can move at a great speed along a cop-free directed path to another vertex.
The objective of the cops is to capture the robber by landing on the vertex
currently occupied by him, the objective of the robber is to avoid capture. (The
point of the helicopters is that, unlike the robber, cops are not restricted to
move along the arcs of the graph.) Formally, the game is defined below, where
[X]≤k is the set of all subsets of X of size at most k.

Definition 3.5 (Cops and robber game). Given a digraph G := (V,E), the
k-cops-and-robber game on G is played between two players: the cop and the
robber. A position of this game is a pair (X, r), where X ∈ [V ]≤k are the vertices
occupied by the cops and r ∈ V is the vertex occupied by the robber. The game
is played in turns, as follows:

• At the beginning, the cop player chooses X0 ∈ [V ]≤k, and the robber
player chooses a vertex r0 ∈ V , giving position (X0, r0).

• From position (Xi, ri), if ri /∈ Xi then the cop player chooses Xi+1 ∈
[V ]≤k, and the robber player chooses a vertex ri+1 such that there is a
directed path from ri to ri+1 in the digraph G \ (Xi ∩Xi+1).

• A play in the game is a maximal (finite or infinite) sequence π :=
(X0, r0), (X1, r1), . . . of positions given by the rules above.
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• A play π is winning for the cop player if it is finite. (Note that, by the
rules above, this implies that rm ∈ Xm for the last position (Xm, rm) of
this play.) A play π is winning for the robber player if it is infinite.

• A (k-cop) strategy for the cop player is a function f from [V ]≤k × V
to [V ]≤k. A play (X0, r0), (X1, r1), . . . is consistent with a strategy f if
Xi+1 = f(Xi, ri) for all i. The strategy f is called a winning strategy if
every play consistent with f is winning for the cop player.

Variants of the game where the robber moves first, or only one cop can be
moved at a time, or the cops are lifted and placed in separate moves are all easily
seen to be equivalent in that the cop number of a digraph does not depend on
the variant.

In addition to ’vanilla’ cops-and-robber games we can consider variants which
change the descriptive power of these games. One alternative is to restrict the
cop strategy in such a way, that a cop is never placed on a vertex from which a
cop was previously removed. Such strategies are called to be (cop) monotone.
Another possibility is to make the robber invisible to cops. In that case they
have to exhaustively search the graph, and their strategy has to depend on the
history of the play so far. These and other alternatives mentioned below allow
us to capture many different digraph with measures.

We begin by showing a cops-and-robber game characterization of cycle rank.
We say that a cop strategy is lift-free if the cop player never moves a cop from
a vertex once he has landed. Formally, Xi ⊆ f(Xi, ri) for all i (note that this
trivially implies monotonicity).

Proposition 3.6. For any digraph G, the cycle rank of G is at most k if, and
only if, the cop player has a lift-free winning strategy in the (k + 1)-cops-and-
robber game on G against a visible robber who is bound to stay in the same
strong component of the cop-free induced subgraph.

Proof: We proceed by induction on |V (G)| along the definition of cr(G).
If G is a DAG (cr(G) = 0), then the robber cannot move at all, and so 1
cop simply lands on him and the game is over. Suppose that G is strongly
connected. Then, for some w ∈ V (G), it is cr(G) = 1 + cr(G − w) by the
definition. By inductive assumption, the cop player has a winning strategy with
cr(G − w) + 1 cops on G − w, and so he wins—landing first on w, on G with
1 + cr(G − w) + 1 = cr(G) + 1 cops. On the other hand, for any first move
u ∈ V (G) of the cop player, the robber may position himself (before actual cop
landing) and play his optimal strategy on G − u by induction, showing that
1 + cr(G − u) + 1 ≥ 1 + min{ cr(G − v) : v ∈ V (G) } + 1 = cr(G) + 1 cops are
needed.

Suppose that G has more than one strong components, denoted by
G1, . . . , Ga. The robber has to stay within one of them, say Gi. By induction,
the cop player has a winning strategy with 1+cr(Gi) ≤ 1+maxj=1,...,a cr(Gj) =
cr(G)+ 1 cops. Conversely, robber’s strategy is to initially choose any vertex of
Gj maximizing cr(Gj), showing that cr(G) + 1 cops are indeed necessary.
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We continue with some of the previously mentioned measures. For directed
tree-width (dtw) [JRST01], in the related cops-and-robber game the robber is
again bound to stay within the same strong component of the cop-free induced
subgraph, but the cop strategy need not be lift-free. However, the relationship
[JRST01] between the number of cops and the directed tree-width is not tight.

By [Bar06], directed path-width (dpw) of a digraph G is at most k if, and
only if, the cop player has a monotone winning strategy on G in the (k + 1)-
cops-and-robber game against an (unrestricted) invisible robber. Similarly, in
[HK08] it is proved that the Kelly-width (kellyw) of a digraph G is at most k if,
and only if, the cop player has a monotone winning strategy on G in the k-cops-
and-robber game against an invisible “lazy” robber which is allowed to move
only if a cop is about to land on his position. No analogous characterizations
of entanglement (ent) and D-width have been published so far.

In the perspective of our paper the prime position is given to DAG-width:

Theorem 3.7 (DAG-width [BDH+12]). For any digraph G, the DAG-
width of G is at most k if, and only if, the cop player has a monotone win-
ning strategy in the k-cops-and-robber game on G (against a visible unrestricted
robber).

We compare these measures in the following brief summary.

Theorem 3.8. Let G be a digraph. Then the following inequalities hold:

1/3 (dtw(G)− 1) ≤[BDH+12] dagw(G) ≤ dpw(G) + 1 ≤

≤[Gru08] cr(G) + 1 ≤ dfn(G) + 1

1/6 (dtw(G) + 2) ≤[HK08] kellyw(G) ≤ dpw(G) + 1

1/3 (dtw(G) + 2) ≤[JRST01] ent(G) ≤[Rab08] dpw(G)

Moreover, when DAG-width is bounded, so is Kelly-width [HO06].

Notice, in particular, that if a problem is hard for graphs of bounded cycle
rank, then it is hard for all the other measures in Theorem 3.8, except possi-
bly the DFVS-number which is even more restrictive. Conversely, a problem
is solvable for graphs which have any of these measures bounded in at most
the same complexity class as for graphs of bounded directed tree-width. In
view of this fact, and taking into an account the limited algorithmic usability
of entanglement and the many technical difficulties surrounding directed tree-
width [Adl07], we have chosen DAG-width, cycle rank, and DFVS-number as
the representatives of all the aforementioned measures in our survey.

In addition to that, we will consider also clique-width (Definition 3.4) which
has nearly no relation to the other measures, and two newly introduced mea-
sures DAG-depth (Definition 3.9) and K-width (Definition 3.13) aiming at finer
resolution even on DAGs.

3.3. DAG-depth

This new concept has been inspired by the tree-depth notion of Nešetřil and
Ossona de Mendez. In their paper, [NdM06, Lemma 2.2] gives an alternative
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inductive definition of the tree-depth td(G) of undirected G as follows (compare
to Def. 3.1). If |V (G)| = 1, then td(G) = 1. If G is connected, then td(G) =
1+min{ td(G−v) : v ∈ V (G) }. Otherwise, td(G) equals the maximum over the
tree-depth of the connected components of G. This definition easily corresponds
to a lift-free cop search strategy in the cops-and-robber game on an undirected
graph (see also another later game characterization in [GT11]).

We propose a new “directed” generalization of this definition. For a digraph
G and any v ∈ V (G), let G(v) denote the subdigraph of G induced by the
vertices reachable from v. We call reachable fragments of G the maximal ele-
ments of the poset {G(v) : v ∈ V (G)} which is ordered by inclusion (“being
subgraph of”). Notice that reachable fragments in the undirected case coincide
with connected components.

Definition 3.9 (DAG-depth). The DAG-depth ddp(G) of a digraph G is in-
ductively defined as follows: If |V (G)| = 1, then ddp(G) = 1. If G has a
single reachable fragment, then ddp(G) = 1 + min{ddp(G − v) : v ∈ V (G) }.
Otherwise, ddp(G) equals the maximum over the DAG-depth of the reachable
fragments of G.

Proposition 3.10. If G is a symmetric digraph, then ddp(G) = cr(G)+1. On
the other hand, there exist DAGs with arbitrarily high DAG-depth.

Proof: The first part simply follows by comparing Definitions 3.1 and 3.9,
while the second one is witnessed by a long directed path (see below).

The key to understanding and using DAG-depth, again, lies in a natural
game characterization:

Theorem 3.11. The DAG-depth of a digraph G is at most k if and only if the
cop player has a lift-free winning strategy in the k-cops-and-robber game on G.

Proof: We proceed by induction on |V (G)| along the definition of DAG-depth.
That is trivial if |V (G)| = 1. Otherwise, let R1, . . . , Rd be all the reachable
fragments of G. We first consider d > 1, and recall ddp(G) = max{ddp(Ri) :
i = 1, . . . , d} = ddp(Rj). Since the robber may start in a vertex reaching
whole Rj , the cop player cannot have a winning strategy with k < ddp(Rj) by
inductive assumption. Conversely, a winning strategy for the cop player with
k = ddp(G) is easy; if the robber is in a vertex of some Ri (and cannot reach
G− V (Rj) by the definition), the cop player uses his strategy for Ri.

Second, assume d = 1 and ddp(G) = 1 + min{ddp(G − v) : v ∈ V (G) } =
1+ ddp(G−w). In particular, there is u ∈ V (G) reaching all the vertices of G.
Robber’s strategy is to start in u and move according to his strategy in G − v
whenever a cop is about to land on v ∈ V (G), showing k ≥ 1 + ddp(G − v).
Conversely, a winning strategy for the cop player starts by landing on w and
thus uses k = 1 + ddp(G− w) = ddp(G) cops by inductive assumption.

Corollary 3.12. a) For any subdigraph G′ of G, it is ddp(G′) ≤ ddp(G).
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b) For any digraph G, the DAG-depth of G is greater than or equal to the DAG-
width and the cycle rank plus one of G.

c) If P is a directed path, then ddp(P ) = ⌊log2 |V (P )|⌋+ 1.

d) If ℓ is the number of vertices of a longest directed path in a digraph G, then
⌊log2 ℓ⌋+ 1 ≤ ddp(G) ≤ ℓ.

e) The DAG-depth of a given digraph G can be approximated within exponential
margins by an FPT algorithm, and computed exactly by an XP algorithm.

Proof: a) The cop player may use the restriction of his G-strategy to G′.
b) One simply compares the games from Theorems 3.7, 3.11 and Proposi-

tion 3.6: A lift-free strategy is monotone by the definition.
c) Let d(ℓ) = ddp(P ) where ℓ = |V (P )|, and d(0) = 0. Note that d is

a non-decreasing integer function by a). A directed path always consists of a
single reachable fragment, and P − v consists of one or two paths on, say, i
and ℓ − 1 − i vertices. Therefore, by Definition 3.9, it is d(1) = 1 and d(ℓ) =
1+mini=0...ℓ−1 max{d(i), d(ℓ− 1− i)} = 1+ d

(

⌈(ℓ− 1)/2⌉
)

. A routine solution
of this recursion gives d(ℓ) = ⌊log2 ℓ⌋+ 1.

d) The lower bound follows from a) and c). We describe a simple ℓ-move
lift-free winning strategy for the cop player on any such digraph G. The first
cop lands on the initial position s1 of the robber. In cop move i > 1, the cop
number i lands on a vertex si of G which is the out-neighbour of si−1 on some
directed path from si−1 to the current robber position. Since all directed paths
starting in s1 have ≤ ℓ vertices, the robber is finally caught after ≤ ℓ cop moves.

e) We first compute the longest directed path length ℓ in G, which can be
done by an FPT algorithm, e.g., [CKL+09]. This ℓ is already a sufficient estimate
of the DAG-depth of G by d). In the second part, we carry out a brute-force
recursive computation of the DAG-depth of G according to Definition 3.9 (the
depth of recursion is bounded by ℓ).

3.4. K-width

Another attempt to define a “finer” digraph width measure is the following:

Definition 3.13 (K-width). The K-width (a shortcut of “Kenny width”) of a
digraph G is the maximum number of distinct (not necessarily disjoint) directed
s–t paths in G over all pairs of distinct vertices s, t ∈ V (G).

Similarly to DAG-depth in Proposition 3.10, K-width can be arbitrarily large
on DAGs, and despite its seemingly different nature, K-width is also related to
previous game characterizations. K-width is, though, generally incomparable
with cycle rank and directed path-width which are both unbounded on sym-
metric orientations of trees.

Theorem 3.14. For any digraph G, the K-width of G is greater or equal to the
DAG-width of G minus one.
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Proof: We are going to use Theorem 3.7. Let T be any depth first search tree
of G. Based on T , we outline a monotone search strategy for the cop player on
G, in which the player is to use a cop number k + 1 only if there are at least k
paths between a pair of vertices.

(i) In the first move a cop is placed at the root of T .

(ii) In each subsequent cop-placing move, the cop player chooses the (unique)
vertex v of G such that v is an out-neighbour of a cop-occupied vertex,
and v reaches the robber along a cop-free path in T .

(iii) Whenever a cop-occupied vertex u is no longer reachable from the current
robber position, the cop from u is lifted back.

This strategy is clearly monotone. Consider the vertex v in rule (ii). If
there was a cop-occupied vertex w in G which is not an ancestor of v, then w
must no longer be reachable by the robber since T is a DFS tree. So (iii) for
u = w applies before (ii). Therefore, our strategy maintains an invariant that
all vertices occupied by cops belong to one directed path of T .

Consider now a situation when there is a set U of k cop-occupied vertices in
G, and rule (ii) applies again. Then there is a path P ⊆ T such that U ⊆ V (P ).
Let s be the last cop-occupied vertex of P . By (iii), each vertex w ∈ U is
reachable in G from the robber vertex r along a cop-free path Qw. So P ∪Qw

contains a path from r to s and these k paths are pairwise distinct for distinct w.

Proposition 3.15. Let G be a digraph and t equals the K-width of G.

a) For any u ∈ V (G), all (at most t · |V (G)|) directed paths starting at u can be
enumerated in time O(t · |E(G)|) without prior knowledge of t.

b) The value t of K-width can be computed in time O
(

t · |V (G)| · |E(G)|
)

.

Proof: a) We enumerate the paths in G starting at u by backtracking, and
prune the search whenever finding a vertex that is already on the current path.
The resulting search tree has at most t · |V (G)| nodes: Each node in the search
tree corresponds to a simple path in G starting at u. There can be at most t such
paths with the same terminal vertex. The time spent in each node of the search
tree is O(d), where d is the out-degree of the terminal vertex of the corresponding
simple path. Overall this amounts to a running time of O(t · |E(G)|).

b) For every vertex u ∈ V (G), we call the algorithm of a) and compute the
numbers of paths from u to each of the vertices in V (G) \ {u}. The maximum
number we encounter over all choices of u is exactly t.

3.5. Simple comparison and differences

Finally, we couple the many relations between considered measures claimed
in 3.8, 3.12, 3.14 with a simple series of examples demonstrating differences
between the measures in Table 1.

11



Graph family DAG-depth K-width DFVS-number cycle rank DAG-width

. . . ∞ 1 0 0 1

. . . 3 ∞ 0 0 1

. . . ∞ ∞ 0 0 1

. . . 3 1 ∞ 1 2

. . . ∞ 1 ∞ 1 2

. . . . . . 3 ∞ ∞ 1 2

. . . ∞ 1 ∞ ∞ 3

. . . ∞ ∞ ∞ ∞ 3

Table 1: Families of graphs demonstrating various possible combinations of the listed width
measures being bounded and unbounded.

4. Common Problems Parameterized by Digraph Measures

4.1. MSO1 model checking (φ-MSO1mc)

Before dealing with specific problems on digraphs, we first introduce a useful
general problem framework based on MSO (monadic second order) logic on
digraphs. Specifically, we consider the variant abbreviated as MSO1, which
uses propositional logic, variables for digraph vertices and vertex sets, predicate
arc(u, v) for arcs of the digraph, and quantification over vertices and their sets.
This is best illustrated with the following examples:

Example 4.1. The following properties are expressible in MSO1 on digraphs:

• a directed dominating set X as ∀z
(

z ∈ X ∨ ∃x ∈ X arc(x, z)
)

,

• the existence of a kernel S as ∃S ∀x
[

x 6∈ S ↔
(

∃y ∈ S arc(x, y)
)]

, and

• a feedback vertex set Z as ∀X
[

X∩Z = ∅ →
(

∃x ∈ X ∀y ∈ X ¬arc(x, y)
)]

.

On the other hand, MSO1 cannot express existence of Hamiltonian cycle, for
instance (cf. page 113 of [EF99]).

The MSO1 model checking problem (φ-MSO1mc) inputs a digraph G, and
the task is to decide whether G |= φ where the MSO1 sentence φ is a fixed part
of the problem definition.

12



We also briefly introduce the more general LinEMSO1 optimization problems
as given in [CMR00]. Consider any MSO1 formula ψ(X1, . . . , Xp) with free set
variables, and state the following problem on an input (di)graph G:

opt
{

flin(W1, . . . ,Wp) : W1, . . . ,Wp ⊆ V (G), G |= ψ(W1, . . . ,Wp)
}

,

where opt can be min or max, and flin is a linear evaluational function. It is

flin(W1, . . . ,Wp) =

p
∑

i=1

m
∑

j=1

(

ai,j ·
∑

x∈Wi

fj(x)

)

(1)

where m and ai,j are (integer) constants and fj are (integer) weight functions
on the vertices of G. Typically flin is just the cardinality function. Such as,

ψ(X) ≡ ∀v, w
(

v 6∈ X ∨ w 6∈ X ∨ ¬edge(v, w)
)

and “max |X|”

describes the maximum independent set problem, or

ψ(X) ≡ ∀z
(

z ∈ X ∨ ∃x ∈ X arc(x, z)
)

and “min |X|”

is the minimum directed dominating set problem.
In full generality one gets the following:

Theorem 4.2 ([CMR00] for the undirected case). For every integer t
and MSO1 formula ψ, every ψ-LinEMSO1 optimization problem is fixed-
parameter tractable on digraphs of clique-width t, with the parameters t and |ψ|.

The current standing of Theorem 4.2 is split; since, on the one hand,
the original proof of the undirected version by Courcelle, Makowsky, and
Rotics [CMR00] has been followed by at least two different published proofs
in [GH10, KLR11], while on the other hand, none of these published proofs
explicitly includes the directed case. Yet, a formal proof of the directed case
is a simple translation of any one of these previously published arguments into
digraph terms, and so it does not really constitute a new result. For the sake of
completeness we include a short alternative proof of Theorem 4.2 via a reduction
of the directed version into the undirected one with vertex labels [CMR00].

v w

 

v1

tailv2

headv′2

v′1

w1

tail w2

head w′
2

w′
1

Uv Uw

Figure 1: Reducing the directed version of Theorem 4.2 into an undirected one.

Proof: For an input digraph G of clique-width t, we construct an undirected
labeled graph H of clique-width ≤ 4t, with labels head, tail given to some of its
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vertices: For each v ∈ V (G) we create a new 4-set of vertices Uv = {v1, v2, v
′
2, v

′
1}

inducing a path of length three with the edges v1v2, v2v
′
2, v

′
2v

′
1; where v2 is given

the label tail and v′2 head. See Fig. 1. From the disjoint union of Uv for
v ∈ V (G), we form H by adding the edges v1w

′
1 whenever (v, w) ∈ E(G).

We accordingly translate a directed MSO1 formula ψ into an undirected one
σ as follows: Every vertex variable x in ψ is replaced with a set variable Zx in σ
(intended to describe the aforementioned set Ux of H), specified by single(Zx) ≡
‘|Zx| = 4 ’∧∃x1, x2, x

′
2, x

′
1 ∈ Zx

[

tail(x2)∧head(x
′
2)∧edge(x2, x

′
2)∧edge(x1, x2)∧

edge(x′2, x
′
1)
]

. Literally, ∃x[. . . ] is translated into ∃Zx

[

single(Zx) ∧ . . .
]

. Then
x ∈ X in σ is simply replaced with Zx ⊆ X (while set variables are literally
untouched), and arc(x, y) is replaced with t-arc(Zx, Zy) ≡ ∃x1, x2 ∈ Zx ∃y

′
1, y

′
2 ∈

Zy

[

tail(x2) ∧ head(y
′
2) ∧ edge(x1, y

′
1) ∧ edge(x1, x2) ∧ edge(y′1, y

′
2)
]

. In a result,
G |= ψ ⇐⇒ H |= σ.

Regarding the ψ-LinEMSO1 optimization framework (1), we set f ′j(v1) :=
fj(x) and f ′j(v2) = f ′j(v

′
2) = f ′j(v

′
1) = 0 for each Uv = {v1, v2, v

′
2, v

′
1} from the

construction of H. We moreover literally translate each set quantifier ∃X[. . . ] of
ψ into ∃X

[

∀x∈X∃Z ⊆ X
(

single(Z)∧x ∈ Z
)

∧. . .
]

(a “sanity” condition) for σ.
Then every solution of G |= ψ(W1, . . . ,Wp) is in a one-to-one correspondence
to the solution H |= σ(W ′

1, . . . ,W
′
p) such that W ′

i =
⋃

w∈Wi
Uw for i = 1, . . . , p

and flin(W1, . . . ,Wp) = f ′lin(W
′
1, . . . ,W

′
p).

We now solve the derived σ-LinEMSO1 optimization problem on undirected
H using the algorithms of [CMR00, HO08] since the size of H is linear in that
of G and H is of bounded clique-width as well.

Theorem 4.2 particularly implies that the problems listed in Example 4.1
(and many others) are in FPT on digraphs parameterized by clique-width. No
analogous result, however, seem possible for our other width measures in general:

Proposition 4.3. There exists an MSO1 sentence φ such that the φ-MSO1mc

problem is NP-hard even on DAGs that are of K-width 1 and DAG-depth 2.

Proof: We prove this by a reduction from the 3-colourability problem of
undirected graphs [GJ79] (however, many other NP-hard problems can be
used here as well). Given a graph H without isolated vertices, we con-
struct an acyclic digraph G of K-width 1 and DAG-depth 2: For every edge
e = uv of H, we add a new vertex xe and replace e with two arcs uxe, vxe.
Then we simply write edge(u, v) ≡ ∃x(arc(u, x) ∧ arc(v, x)) to “interpret”
the edges of H in G. 3-colourability of H is then expressed in G as follows:
∃X1, X2, X3

[

∀u
(
∨

i=1,2,3 u ∈ Xi

)

∧ ∀u, v
(

edge(u, v) → ¬
∨

i=1,2,3(u, v ∈ Xi)
)]

.

4.2. Hamiltonian Path (HAM) and Longest Path

Many problems on digraphs are concerned with finding paths with certain
properties. For start, the classical NP-hard Hamiltonian Path (HAM) problem
is to find a directed path that visits each vertex of a digraph exactly once. A
natural generalization of HAM is the Longest Path problem (Longest Path),
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where one is asked to find the longest directed path in a given digraph. Start
and end vertices are not specified in these problems.

Theorem 4.4. The HAM problem on digraphs

a) has an XP algorithm parameterized by directed tree-width and, consequently,
by DAG-width (Johnson, Robertson, Seymour, and Thomas [JRST01])—this
assumes the corresponding decomposition is given along with the input;

b) has an XP algorithm parameterized by clique-width ([GHO13]);

c) is W[2]-hard when parameterized by DAG-width and cycle rank (Lampis,
Kaouri, and Mitsou [LKM11]), and W[1]-hard when parameterized by clique-
width (Fomin, Golovach, Lokshtanov, and Saurabh [FGLS10b]).

We prove our simple new FPT results for the parameters K-width and DAG-
depth on more general Longest Path:

Theorem 4.5. There is a fixed-parameter tractable algorithm solving the
Longest Path and HAM problems on a digraph G

a) in time O
(

t · |V (G)| · |E(G)|
)

if G is of K-width at most t;

b) in time O
(

42
t+O(t3) · |V (G)| · |E(G)|

)

if G is of DAG-depth at most t.

This holds also if t is unknown to the algorithm.

Proof: a) For all u ∈ V (G) we enumerate all directed paths starting at u
according to Proposition 3.15 while keeping track of their lengths.

b) We know by Corollary 3.12 that ⌊log2 ℓ⌋ + 1 ≤ t, or in other words,
ℓ ≤ 2t − 1, where ℓ is the (unknown) number of vertices of the longest directed
path. We can hence use an arbitrary FPT-algorithm for the Longest Path
decision problem in the standard parameterization (e.g., [CKL+09] with running

time 4ℓ+O(log3 ℓ)|V (G)| · |E(G)|): We begin with ℓ = 1 and subsequently increase
ℓ until a “no”-instance is found.

In the HAM problem we ask for a directed path of length |V (G)| − 1.

4.3. Vertex-disjoint Paths Problem (k-Path, c-Path)

Another problem is Vertex-disjoint Paths (k-Path); given a digraph and k
pairs of nodes (si, ti), 1 ≤ i ≤ k, the task is to find pairwise disjoint directed
paths from each si to the respective ti. To distinguish between bounded and
unbounded values of k, we denote by c-Path the variant of the Vertex-disjoint
Paths problem in which c = k is a problem constant (rather than a part of the
input).

Theorem 4.6. The k-Path problem (with k as part of input)

a) is NP-complete on DAGs (implicit in the reduction of Even, Itai, and Shamir
[EIS76]);
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b) when parameterized by k on DAGs, it has an XP algorithm (Fortune,
Hopcroft, and Wyllie [FHW80]), but remains W[1]-hard (Slivkins [Sli10]);

c) is NP-complete on undirected graphs of clique-width 6 (Gurski and Wanke
[GW06]), and hence consequently on digraphs of clique-width 6.

The c-Path problem;

d) is NP-complete for any c ≥ 2 (Fortune, Hopcroft, and Wyllie [FHW80]);

e) has an XP algorithm with respect to the directed tree-width and DAG-width
([JRST01])—this assumes the decomposition given along with the input.

We, furthermore, informally remark that there exists a “mixed” generaliza-
tion of c-Path which remains NP-complete [BJK09] on DAGs.

Proposition 4.7. Let G be a digraph, and let c pairs of vertices si, ti ∈ V (G),
i = 1, . . . , c be given. There is an MSO1 formula (depending on c) expressing the
existence of c pairwise disjoint directed si– ti paths, i = 1, . . . , c, in G. Hence
the c-Path problem is in FPT when parameterized by clique-width.

Proof: We write

∃X1, . . . , Xc

[

∧

i6=j∈{1,...,c}

Xi ∩Xj = ∅ ∧
∧

i∈{1,...,c}

si, ti ∈ Xi ∧

∧

i∈{1,...,c}

∀Z ⊆ Xi

(

(si ∈ Z ∧ ti 6∈ Z) → ∃x ∈ Z, y ∈ Xi\Z (arc(x, y))
)

]

which means that there exist pairwise disjoint sets X1, . . . , Xc ⊆ V (G) such
that si, ti ∈ Xi, and each Xi induces a subdigraph of G in which ti is reachable
from si. Notice that si, ti are not variables, but constants in this sentence. The
rest follows from Theorem 4.2.

Our two new width parameters are of limited (yet nontrivial) help; as we
summarize in Theorems 4.8 and 4.9.

Theorem 4.8. The k-Path problem (with k as part of input)

a) can be solved in polynomial time on digraphs of K-width or DAG-depth 2;

b) is NP-complete on DAGs of K-width 3 and DAG-depth 4.

Proof: a) Given a digraph G with K-width ≤ 2 and k pairs of nodes (s1, t1),
. . . , (sk, tk), we first for every 1 ≤ i ≤ k compute by Proposition 3.15 the two
possible paths pi,1 and pi,2 from si to ti. Then we construct a 2-SAT formula as
follows: For each pair (si, ti), 1 ≤ i ≤ k, there is a clause over the two alternative
paths, Ci = (pi,1∨pi,2). Furthermore, for each pair of non-disjoint paths p1, p2 ∈
{ pi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ 2 }, such that p1 6= p2 and V (p1) ∩ V (p2) 6= ∅, there
is a clause excluding each other, Cp1,p2

= (¬p1 ∨ ¬p2). Then we solve the
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sxi txi

xi,1 xi,2

¬xi,1¬xi,2

· · ·

· · ·

...
...

sC1

tC1

sC2

tC2

sC3

tC3

sx0 tx0

sx1 tx1

sx2 tx2

Figure 2: Left: gadget for variable xi; right: schematic of the construction.

constructed 2-SAT instance in polynomial time (Theorem 2.1). We omit the
simple proof that the formula is satisfiable if and only if there is a solution to
the k-Path instance at hand.

On the other hand, given a digraph G with ddp(G) ≤ 2 and k pairs of nodes
(s1, t1), . . . , (sk, tk), we proceed as follows. By Corollary 3.12 d), every directed
path in G has length at most 2. In the first step, for each pair (si, ti) such that
si = ti or (si, ti) ∈ E(G), we simple remove both vertices si, ti from the instance.
Hence, for the second step of the algorithm, we may assume that every si–ti
path in G, 1 ≤ i ≤ k, is of length two, which means it is formed by a pair of arcs
(si, x), (x, ti) ∈ E(G). We denote by Xi = {x ∈ V (G) : (si, x), (x, ti) ∈ E(G)},
and define a bipartite graph B on the vertex set V (B) = V (G) ∪̇ {1, . . . , k} by
{x, i} ∈ E(B) if and only if x ∈ Xi. Then, clearly, the k-Path instance has
a solution if and only if B has a matching of size k, which can be decided in
polynomial time.

b) Membership in NP is trivial. For the hardness part, we reduce from
an NP-complete variant of the SAT problem described in Theorem 2.2. Our
reduction is conceptually very similar to the one used already in [EIS76], but
we pay specific attention to our new measures.

Let ϕ be a SAT-formula with m clauses C1, . . . , Cm over n variables
x0, . . . , xn−1, satisfying the conditions of Theorem 2.2. We create a digraph
Gϕ as follows. For every variable xi, we add a new 6-vertex gadget as de-
picted in Figure 2 (left), and we call (sxi

, xi,1, xi,2, txi
) the upper path of xi

and (sxi
,¬xi,1,¬xi,2, txi

) the lower path of xi in the gadget. For every clause
Cj , we add two new vertices sCj

and tCj
, and connect them with appropriate

variable-gadget vertices as follows.
For every literal ℓ ∈ Cj such that this is the k-th occurrence of ℓ within

the formula (k ∈ {1, 2}), we add the arcs (sCj
, ℓk) and (ℓk, tCj

). Note that the
vertex, named here as ℓk, is actually a vertex of the variable gadget correspond-
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ing to ℓ: if, for example, ℓ = ¬x5 and ¬x5 has already occurred in some Cj′

with j′ < j, then k = 2, ℓ2 = ¬x5,2 and so we add the edges (sCj
,¬x5,2) and

(¬x5,2, tCj
). See Figure 2 for a schematic overview. Briefly, choosing the upper

path of xi corresponds to assignment xi = false since it leaves the nodes ¬xi,1
and ¬xi,2 available to satisfy their clauses, while the lower path corresponds to
xi = true.

It is easy to see that the resulting digraph is a DAG, the longest path has
at most four vertices (which bounds the DAG-depth by Corollary 3.12), and
between any two vertices there are at most three paths.

It remains to formally argue that ϕ is satisfiable if and only if Gϕ is a “yes”-
instance to the k-Path problem with pairs (sxi

, txi
) for all 0 ≤ i < n and pairs

(sCj
, tCj

) for all 1 ≤ j ≤ m. Consider a satisfying assignment for ϕ: We use
the lower (upper) path for each pair (sxi

, txi
) if xi = true (false), which leaves

an available path (sCj
, ℓk, tCj

) for each clause Cj where ℓ is the (one of) literal
satisfying Cj . On the other hand, assume there is a solution to k-Path on the
constructed instance: There exist only two sxi

–txi
paths for each 0 ≤ i < n,

and these determine the truth assignment for xi as described above. Now, if a
disjoint sCj

–tCj
path in the solution uses a vertex ℓk (where ℓ ∈ Cj), then our

truth assignment is ℓ = true and consequently each Cj is satisfied.

Theorem 4.9. There is a fixed-parameter tractable algorithm solving the
c-Path problem (for fixed c) on a digraph G

a) in time O(tc · |E(G)|) if G is of K-width at most t;

b) in time O
(

(2c)ct4
t

· |E(G)|2) if G is of DAG-depth at most t.

This holds also if t is unknown to the algorithm.

Proof: Notice that we can, without loss of generality of the c-Path problem,
assume that G has no parallel arcs (while 2-cycles are permitted).

a) We, for each i = 1, . . . , c, apply Proposition 3.15 to list all ≤ t distinct
directed paths from si to ti. Then, using brute force over all tc possibilities, we
check whether there is a selection of pairwise disjoint ones.

b) This algorithm uses part (a) and recursive calls. By Corollary 3.12, the
longest directed path in G has length ℓ < 2t (which is the only extra information
we use about G). We are actually going to solve a more general constrained
c-Path problem: given G, the pairs (si, ti) and sets Ei ⊆ E(G), i = 1, . . . , c,
the task is to find a collection of c pairwise disjoint directed si– ti paths Qi in
G such that E(Qi) ⊆ Ei ⊆ E(G). Initially, E1 = · · · = Ec = E(G).

Let Pi be the collection of all si– ti paths with arcs from Ei. If |Pi| ≤ (cℓ)ℓ
2

for all i = 1, . . . , c, then we may actually use (a) to solve the problem in time

O
(

(cℓ)cℓ
2

· |E(G)|
)

. Otherwise, |Pi| > (cℓ)ℓ
2

for some i, and we may apply the
following for u = si, v = ti, and m = cℓ, k = ℓ:

Claim 1. Let H be a simple digraph, and u, v two vertices of H such that the
longest path starting in u has length k+1 and there exist 1+ (m− 1)k

2

distinct
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directed u–v paths in H. Then there exist vertices u′, v′ in H such that there
are m pairwise internally disjoint u′–v′ paths.

To prove the claim, we may assume that every arc of H is on some u–v path.
By the pigeon-hole principle, there exists a vertex u′ in H having outdegree
≥ 1 + (m − 1)k, and this u′ is not an in-neighbour of v (otherwise, we would

have only ≤
(

(m−1)k
)k

distinct u–v paths). Let u′i, i = 1, . . . , p ≥ 1+(m−1)k

be the out-neighbours of u′ in H, and let H ′ be an inclusion-wise minimal
subgraph of H such that H ′ contains a u′–v path passing through u′i for all
i = 1, . . . , p. By a symmetric application of the pigeon-hole principle, there
exists a vertex v′ having indegree ≥ m in H ′. Let v′j , j = 1, . . . , q ≥ m be the
in-neighbours of v′ in H ′. By minimality of H ′ there exists a u′–v′ path Rj

through each v′j ; we claim that these paths are pairwise internally disjoint. If,
say, X = (V (R1) ∩ V (R2)) \ {u

′, v′} 6= ∅, we could choose x ∈ X such that the
arcs f1 ∈ E(R1), f2 ∈ E(R2) leaving x are distinct, but then H ′ − f2 would
witness that H ′ was not minimal.

In other words, there exist vertices s′, t′ in G such that cℓ suitable fragments
of paths from Pi form pairwise internally disjoint s′– t′ paths R1, . . . , Rcℓ. These
paths can be found in time O

(

(cℓ)ℓ
2

· |E(G)|
)

using an approach similar to
Proposition 3.15 a). Now, we make a new arc set E′

i from Ei by removing all
arcs of R1 ∪ · · · ∪ Rcℓ, and adding a new arc f ′ = (s′, t′). We call the same
algorithm recursively with the constraints E1, . . . , E

′
i, . . . , Ec.

This algorithm clearly stops after O(c|E(G)|) recursive calls since each call

decreases |E1|+ · · ·+ |Ec|. Hence the overall run-time is O
(

(cℓ)cℓ
2

· |E(G)|2
)

. It
remains to prove that there is a solution with constraints to E1, . . . , Ei, . . . , Ec

if and only if there is a solution to E1, . . . , E
′
i, . . . , Ec. The “only if” direction

is trivial since we can simply use the arc f ′ = (s′, t′) when needed.
In the “if” direction, when f ′ is not used in the path, we are done. If f ′

is used in the si– ti path Q
′
i, then we notice the following: by the pigeon-hole

principle, some of the paths Rj ∈ {R1, . . . , Rcℓ} must be disjoint from all other
c − 1 paths of ≤ ℓ vertices in the solution, and hence we can use the path
(Qi − f ′) ∪Rj with all arcs in Ei instead.

4.4. Max-/Min-Leaf Outbranching (MaxLOB, MinLOB)

An outbranching in a digraph G is a spanning rooted tree T of G such that
all the arcs of T are oriented away from its root. An outbranching need not
always exist, but it is easy to check for its existence using the depth-first search
from each vertex of G.

The Max-leaf (Min-leaf) outbranching problem is to find an outbranching T
in a digraph G such that the number of leaves of T is maximized (minimized,
respectively). We denote the problems by MaxLOB and MinLOB, respec-
tively. We also consider the c-MinLOB problem asking for an existence of an
outbranching with at most c leaves, where c is a fixed problem constant.

Note that the two similarly defined problems may have very different algo-
rithmic behaviour. Already the problem 1-MinLOB (equivalent to a Hamil-
tonian path) is NP-complete. On the other hand, analogous “1-MaxLOB”
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problem is trivial (a nonempty outbranching always has a leaf), and the prob-
lem whether a given digraph G has an outbranching with at least k leaves
(“k-MaxLOB”) is FPT when parameterized by k [KLR08]. For more results
on the MaxLOB problem we therefore refer to Section 4.5 where a related
dominating set problem is studied, and here we stay with MinLOB variants.

Theorem 4.10. The MinLOB problem;

a) can be solved in polynomial time on DAGs (Gutin, Razgon, and Kim
[GRK09]), but is NP-hard on digraphs of directed path-width 1, cycle rank 1,
and DAG-width 2 (Dankelmann, Gutin, and Kim [DGK09] 1).

b) has an XP algorithm with respect to clique-width ([GHO11]).

The c-MinLOB problem has an XP algorithm with respect to DAG-width
([DGK09]) and clique-width ([GHO13]).

With the new width parameters we get a positive and a negative result.

Proposition 4.11. There is a fixed-parameter tractable algorithm solving the
c-MinLOB problem (for any fixed c) on a digraph G

a) in time 2O(c222k) if G is of DAG-depth at most k (k must be known to the
algorithm);

b) in time O(|V (G)|c+3 · ctc) if G is of K-width t (t not necessarily known).

Proof: a) Let G be of DAG-depth k. By Corollary 3.12, the longest path
length in G is at most 2k − 2, and so an outbranching with c leaves could cover
at most 1+ (2k − 2)c < 2kc vertices of G. If |V (G)| ≥ 2kc, then we immediately
answer No. Otherwise, we enumerate by brute force all possible arc subsets and
check whether one of them is an out-branching with at most c leaves.

b) We exhaustively loop through all O(|V (G)|c+1) selections of the root and
the c leaves in G. Using Proposition 3.15 we enumerate all the ≤ ct paths from
the chosen root to each leaf in time O(ct · |V (G)|2), and then we simply check
whether some of the tc possible selections of c of these paths covers the whole
graph G.

Theorem 4.12. The MinLOB problem is NP-hard on digraphs

a) that are of DAG-depth 5 and K-width 6;

b) having a directed feedback vertex set of size one.

1Note that [DGK09] use a different definition of DAG-width with the value by one lower
than ours.
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Especially part b) is noteworthy in comparison to the positive results in Theo-
rem 4.10.
Proof: a) We again use the variant of SAT described in Theorem 2.2: Let ϕ be
a SAT-formula with m clauses C1, . . . , Cm over n variables x1, . . . , xn, satisfying
the conditions of Theorem 2.2.

We construct a digraph Gϕ from a single source vertex s, a disjoint copy Hi

of the gadget from Fig. 3 for each variable xi, i = 1, . . . , n, and sink vertices
c′j for each clause Cj , j = 1, . . . ,m. The gadget Hi consists of five vertices
x′i, x

′′
i , hi,¬x

′′
i ,¬x

′
i, out of which x′i,¬x

′
i have arcs from s. For each clause Cj

containing the positive literal xi, there is an arc from either x′i or x
′′
i (depending

on whether this is its first or second occurrence within ϕ) to c′j . Likewise for
Cj′ containing negative ¬xi, there is an arc from either ¬x′i or ¬x

′′
i to c′j′ .

x′i ¬x′i
¬x′′ix′′i hi

s

c′1 c′2 c′k

Hi

Figure 3: The MinLOB reduction gadget for a variable xi (in the black vertices); with
schematic connections from the common source s and to gadget sinks c′j .

The claim is that ϕ is satisfiable iff Gϕ has a min-leaf outbranching with
exactly 2n leaves where n is the number of variables in ϕ. First assume that ϕ
is satisfiable. We cover the vertices of the gadget Hi with two directed paths
(s, x′i) and (s,¬x′i,¬x

′′
i , hi, x

′′
i ) if xi is true in the satisfying assignment of ϕ,

or with (s,¬x′i) and (s, x′i, x
′′
i , hi,¬x

′′
i ) otherwise. This sums up to 2n paths

starting in s. For each j = 1, . . . ,m, we choose a true literal ℓ ∈ Cj , and
prolong the path ending so far in ℓ′ or ℓ′′ to cover also the sink c′j .

Conversely, assume that Gϕ has a min-leaf outbranching T with exactly 2n
leaves. Since s is a unique source in the graph, s must be the root. Then the
2n out-neighbours of s form an independent set reachable only from s, and so
each one must be covered by a distinct path in T . Hence T consists of exactly
2n paths Pi, P

′
i starting in s and pairwise disjoint otherwise, such that Pi ∪ P

′
i

covers V (Hi) for i = 1, . . . , n. There are only two symmetrical possibilities for
Pi ∩ V (Hi) and P

′
i ∩ V (Hi), as described in the previous paragraph, since one

of the paths must pass through hi. We assign xi = true if both hi and ¬x′i
belong to the same path among Pi, P

′
i , and xi = false otherwise. Now, for each

j = 1, . . . ,m, the sink vertex c′j must end some of the paths Pi or P
′
i (since c′j

also belongs to T ), and then the corresponding literal xi or ¬xi in Cj has been
evaluated true in our assignment.

It remains to verify that Gϕ has DAG-depth 5 and K-width 6. Regarding the
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former, we show a lift-free search strategy for 5 cops (Theorem 3.11, which gives
a stronger conclusion than considering a longest directed path on 6 vertices)
in Gϕ: the first cop landing on s and the second one on respective hi, leave the
robber isolated at x′i, x

′′
i and the adjacent (at most two) sink vertices. Then the

remaining three cops catch the robber. It is similarly straightforward to verify
that no two vertices of Gϕ are connected by more than six distinct paths (an
equality occurring between s and a sink vertex).

b) We reduce from the same problem as in a), using similar ideas but different
gadgets for variables of ϕ – see Fig. 4 where the variable gadgets form a “chain
of hexagons”. Let the copies of the variable gadget in Gϕ be again denoted by
H1, H2, . . . , Hn where Hi and Hi+1 share a vertex.

s2

s

c′1 c′2

x′1

¬x′1

x′′1

¬x′′1

x′2

¬x′2

x′′2

¬x′′2

H1 H2

Figure 4: Alternative MinLOB reduction gadgets for variables x1, x2, . . . (black vertices).

Assuming a given satisfying assignment for ϕ, we again easily produce an
outbranching in Gϕ with 2n leaves: start with a single directed path Q from s to
s2 (taking the “upper” section of each Hi in Fig. 4 if xi is false, and the “lower”
section otherwise), then branch twice to each variable gadget, and finally use
an arbitrary true literal of each clause to cover the sink vertices c′1, c

′
2, . . . .

On the other hand, assume T is an outbranching in Gϕ with 2n leaves.
Then T must contain a directed s–s2 path Q. Since the 2n out-neighbours of
s are reachable from s only through s2, T has to branch to (at least, but also
at most) 2n paths starting from s2 which we denote by Pi, P

′
i , i = 1, . . . , n,

according to the gadgets Hi they meet. Since T has 2n leaves, it must be that
T = Q ∪

⋃

i(Pi ∪ P ′
i ). We assign xi = true if Q meets Hi in ¬x′i,¬x

′′
i , and

xi = false otherwise. Now, again, for each j = 1, . . . ,m, the sink vertex c′j
must end some of the paths Pi or P

′
i in T , and then the corresponding literal

xi or ¬xi in Cj has been evaluated true in our assignment.
To conclude the proof, note that Gϕ − s2 is a DAG.
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4.5. Directed Dominating Set (DiDS) and Directed Steiner Tree (DiST)

The Directed Dominating Set problem (DiDS) asks for a minimum cardi-
nality vertex set X in a digraph G such that every vertex of G not in X is an
out-neighbour of some vertex of X (in other words, X dominates all vertices
in G). The (unit-cost) Directed Steiner Tree problem (DiST) [HRW92], given
a digraph G and T ⊆ V (G), r ∈ V (G), asks for a minimum size tree in G
spanning {r} ∪ T with all arcs oriented away from r. While it is folklore that
both of these problems are NP-hard in general, we show with a simple reduction
that the same holds even on very restricted graph classes (and applies to the
aforementioned MaxLOB, too).

Theorem 4.13. The DiDS, DiST, and MaxLOB problems are NP-complete
on DAGs of K-width 2 and DAG-depth 3.

Proof: We use a reduction from the classical vertex cover (VC) problem to
show hardness. Let a graph G = (V,E) and k ∈ N be an input instance for VC.
Without loss of generality we can assume that |V | ≥ k + 2.

We construct G′ = (V ′, E′) as follows. Let V ′ = V ∪ E ∪ {v0} and

E′ = { (v0, v) : v ∈ V } ∪ { (v, e) ∈ V × E : v ∈ e }.

We show that G = (V,E) has a vertex cover of size k if and only if G′ = (V ′, E′)
has a directed dominating set of size k + 1: Assume that there is some vertex
cover C ⊆ V of size k in G. Then {v0} ∪ C is a directed dominating set in G′,
because v0 dominates itself as well as all v ∈ V , and since each e ∈ E is incident
to some v ∈ C, C dominates E in G′. Now let D be a directed dominating set in
G′ of size k+1. It is v0 ∈ D since otherwise some node in V , |V | ≥ k+2, would
not be dominated. Moreover, we can assume that D ∩ E = ∅, because each
e ∈ E can only dominate itself in G′. It is thus always safe to pick a predecessor
of e instead. But then, each e ∈ E is dominated by some v ∈ D ∩ V , and thus
D ∩ V is a vertex cover in G.

Finally, G′ is a DAG with K-width two, since there are only two paths from
v0 to each e ∈ E, only one path from v0 to each v ∈ V and only one path from
each v ∈ V to each e ∈ E. Likewise, the DAG-depth of G′ is at most three by
Corollary 3.12.

The same construction can also be used to prove hardness for the other two
problems. We claim that our G′ has a directed dominating set D of size k+1 if
and only if G′ has a Steiner tree S of size k + 1 + |E| with the root r = v0 and
the terminal set T = E. In the “if” direction, v0 ∈ V (S) dominates all vertices
in V and the k vertices of V (S) ∩ V dominate whole E by the definition of S.
Conversely, v0 must belong to any directed dominating set D of size k+ 1, and
so by adding ≤ |E| arcs with heads in E into G′[D] one gets a Steiner tree from
v0 to T = E.

Moreover, we show that G′ has a directed dominating set D of size k + 1 if
and only if G′ has an outbranching with ≥ |V |+ |E| − k leaves: Let D be such
a dominating set. As argued above, v0 ∈ D and it can be assumed D ∩ E = ∅.
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Hence, D induces a start rooted at v0 and all vertices of V (G′) \D thus can be
leaves of an outbranching from v0. Conversely, assume an outbranching U ⊆ G′

with ℓ ≥ |V |+ |E| − k leaves. Then all |V (G′)| − ℓ ≤ k + 1 non-leaf vertices of
U form a directed dominating set by the definition.

Proposition 4.14. The DiDS, DiST, and MaxLOB problems can be for-
mulated as LinEMSO1 optimization problems, and hence DiDS, DiST, and
MaxLOB are fixed-parameter tractable with respect to clique-width.

Proof: Let G be a digraph. From Example 4.1 we have a formula

δ(X) ≡ ∀z
(

z ∈ X ∨ ∃x ∈ X. arc(x, z)
)

recognizing a dominating set X in G, and hence an LinEMSO1 optimization
problem

min
{

|X| : X ⊆ V (G) and G |= δ(X)
}

.

Then DiDS is in FPT for the parameter clique-width by Theorem 4.2.
Second, let T ⊆ V (G) and r ∈ V (G)\T in a DiST instance. We reformulate

the problem as to minimize the cardinality of X ⊆ V (G) such that X induces
in G directed paths from r to all the vertices of T . We can thus write (with
constants r and T )

σ(r, T,X) ≡ r ∈ X ∧ T ⊆ X ∧

∀t ∈T ∀Z ⊆X
(

(r ∈Z ∧ t 6∈Z) → ∃x ∈Z, y ∈X\Z. arc(x, y)
)

and then
min

{

|X| : X ⊆ V (G) and G |= σ(r, T,X)
}

.

We finish by Theorem 4.2.
Third, we reformulate the MaxLOB problem as to minimize the set Y of

non-leaf vertices in an outbranching of G. Recycling the MaxLOB-related
argument in the proof of Theorem 4.13, we obtain a LinEMSO1 formulation

min
{

|Y | : Y ⊆ V (G) and G |= δ(Y ) ∧ ∃r ∈ Y. σ(r, Y, Y )
}

.

We again finish by Theorem 4.2.

4.6. Maximum cardinality Directed Cut (MaxDiCut)

The Maximum cardinality directed cut (MaxDiCut) problem is defined as
follows: given a digraph G, partition the vertex set V (G) into V0 and V1 such
that the cardinality of { (u, v) ∈ E(G) : u ∈ V0, v ∈ V1 } is maximized.

Theorem 4.15. The MaxDiCut problem

a) is NP-hard on DAGs (Lampis, Kaouri, and Mitsou [LKM11]);

b) has an XP algorithm ([GHO13]) but is W[1]-hard when parameterized by
clique-width (Fomin, Golovach, Lokshtanov, and Saurabh [FGLS10a]).
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A closer, yet nontrivial, look at the reduction in [LKM11] reveals that the
resulting graph also has bounded DAG-depth and K-width:

Theorem 4.16 (implicit in [LKM11]). The MaxDiCut problem is NP-
hard on DAGs of K-width at most 4608 and DAG-depth at most 5.

Proof: To show that the [LKM11, Theorem 3] reduction from so-called not-
all-equal 3-SAT has the required additional properties, we argue as follows.

Let a formula ϕ be an input CNF instance with variables x1, . . . , xn.
[LKM11] argue (and use) that the following assumption can be made about
ϕ, without loss of generality: each clause of ϕ has exactly 3 literals, and each
variable occurs as positive and negative literal the same number of times. Let
occ(x) stand for the total number of occurrences of a variable x in ϕ. We claim
that, in addition to the aforementioned assumptions, one can assume occ(x) ≤ 4
for each variable x in ϕ: If, say, occ(x) = 2k > 4, then we add 2k + 2 new vari-
ables y0, . . . , yk, y

′
0, . . . , y

′
k and the new clauses (y1∨¬y2∨¬y2)∧· · ·∧(yk∨¬y0∨

¬y0)∧(y0∨y0∨¬y′1)∧(y′1∨y
′
1∨¬y2)∧· · ·∧(y′k∨y

′
k∨¬y′0)∧(y′0∨¬y1∨¬y1), and

replace the k positive literals of x with y1, . . . , yk and the k negative ones with
¬y′1, . . . ,¬y

′
k. After finishing this construction for each violating x we arrive at

a formula satisfying all the assumption at once and equivalent to the former one
in not-all-equal 3-SAT.

ai

bj

xi

¬xi

cj,1,1

cj,1,2

cj,1,3

cj,2,1

cj,2,2

cj,2,3

cj,3,1

cj,3,2

cj,3,3

6 · occ(xi)

6 · occ(xi)
2

2

2

Figure 5: Weighted MaxDiCut reduction for Theorem 4.16; a clause-Cj gadget with the literal
‘¬xi’ occuring at the second position in Cj . Arc weights are 1 except the denoted arcs incident
with xi,¬xi.
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It remains to analyze the graph Gϕ that [LKM11] construct for such ϕ in
their reduction. We give a detail of the weighted construction [LKM11] featuring
one clause and one literal gadgets in Figure 5, which is enough for our purpose.
To obtain an unweighted graph Gϕ the construction from [LKM11, Theorem 4]
is subsequently used. This construction first replaces each arc of weight k by k
parallel arcs, and then replaces each parallel arc by a directed path of length 3
(two new vertices are added for each such arc).

Gϕ is of DAG-depth 5 by Theorem 3.11 and the following search strategy: At
any game position the (visible) robber can reach only one of the sets {ai, xi,¬xi},
i = 1, . . . , n, and so the cop player lands on the respective vertices xi and ¬xi
in his first two moves. If the robber does not escape through xi or ¬xi, then
he is easily caught in subsequent three moves. Otherwise, the third cop lands
on respective cj,k,k′ (through which the robber escaped), and at most two more
moves are enough for him to win as can be seen from Figure 5. To compute
K-width we notice that the highest number of paths occurs between some ai
and bj and can be at most 6 occ(xi) ·6 occ(xi) ·2 (1+2+1) ≤ (6 ·4)2 ·2 ·4 = 4608.
Hence the reduction of [LKM11] proves hardness even in the case of DAG-depth
≤ 5 and K-width ≤ 4608.

4.7. Oriented Colouring (c-OCN)

A possible directed generalization of the ordinary graph colouring problem
can be obtained as follows. A graph homomorphism is a mapping V (G) → V (H)
that maps edges (arcs) of G to edges (arcs) of H. The chromatic number χ(G)
of a graph G then equals the minimum c such that G has a homomorphism
into the (loopless) complete graph Kc. For digraphs G, then, the Oriented
Chromatic Number (OCN) χo(G) equals the minimum integer c such that G
has a homomorphism into some(!) orientation of Kc, where orientation of an
undirected graph H is a digraph having exactly one of the arcs (u, v) or (v, u)
for every edge uv of H.

In other words, χo(G) equals the minimum c such that the vertex set of G
can be partitioned into c independent (arc-free) sets such that, between each

pair of the sets, all arcs have the same direction. For instance, χo( ~C5) = 5. We
denote by c-OCN the problem to test whether χo(G) ≤ c where c is a problem
constant.

Theorem 4.17. a) There is a polynomial algorithm for 3-OCN on all digraphs
(Klostermeyer and MacGillivray [KM04]).

b) The problem 4-OCN is NP-complete on DAGs (Culus and Demange [CD06]).

A simpler and more powerful reduction than [CD06] strengthens the hard-
ness conclusion as follows:

Theorem 4.18. The problem 4-OCN is NP-complete on

a) DAGs of K-width 3 and DAG-depth 5;
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a1

t b

f

a2
m

x′

¬x′
s

ℓ1

ℓ2

s′

ℓ3 AB

T F

Figure 6: Gadgets L (left), S (middle), and K (right), for the proof of Theorem 4.18.

b) digraphs of DAG-width 2, K-width 1 and DAG-depth 3.

Proof: a) Let L, S and K be the three gadgets from Figure 6. We claim the
following properties:

i. There is a homomorphism of L to K such that the pair (x,¬x) is mapped
to (T, F ), and another one that maps (x,¬x) to (F, T ) (Figure 7).

ii. For each triple τ ∈ {T, F}3 except τ = (F, F, F ), there is a homomorphism
of S to K such that the triple (ℓ1, ℓ2, ℓ3) is mapped to τ (Figure 8).

A

T B

F

A
B

T

F

A

B

T

F

A

T B

F

A
B

F

A

T

F

A

T

Figure 7: Two interesting homomorphisms of L to K (cf. Figure 6)—the target vertices are
written in the picture.

(l1, l2, l3) →: s–l1 s–l2 s–s′–l3
(T,T,T) BFAT BFABT BFBTFABT
(T,T,F) BFAT BFABT BFBTFABF
(T,F,T) BFAT BFABF BFBTFABT
(T,F,F) BFAT BFABF BFBTFABF
(F,T,T) ABTF ABFAT ABABFABT
(F,T,F) ABTF ABFAT ABABFABF
(F,F,T) FABF FABTF FAFABFAT

B

F

A

T

A

B

T

F

BT

F

A

B

T

Figure 8: Seven interesting homomorphisms of the gadget S to K, where the table shows the
images of each of the three (undirected) paths s–ℓ1, s–ℓ2, s–ℓ3 of S. The picture to the right
features the mapping given in the first row.

Our reduction works as follows: Given a CNF formula ϕ satisfying the con-
ditions of Theorem 2.2, for every variable xi we construct a copy Li of the
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gadget L from Figure 6, and note its vertices x′i,¬x
′
i representing the literals

xi,¬xi. For every clause Cj we construct a copy Sj of the gadget S, where
its vertices ℓ1j , ℓ

2
j and ℓ3j are identified with the vertices we have created for the

literals appearing in Cj . Then (i),(ii) guarantee that the resulting digraph Gϕ

has a homomorphism to K (an orientation of K4) if ϕ is satisfiable.
On the other hand, assume we are given a homomorphism of Gϕ to some

orientation K ′ of K4. The vertices a1, t, b, f of the L gadget (each copy of it, as
follows from the coming argument) need to be pairwise distinct vertices of K ′,
and without loss of generality these colours are named A, T,B, F , respectively.
This determines the orientation of all edges of K ′ except AF , which then must
be (F,A) since otherwise there would be no room to map the arc (f, a2) of L.
Consequently, K ′ ≃ K and each Li is mapped to K ′ in the same way.

Notice that a2 and m must then be mapped to A and B, respectively, and
x′,¬x′ into {T, F}. However, the directed x′–¬x′ path of length 5 in L admits
neither a homomorphism with x′,¬x′ → T nor with x′,¬x′ → F , as can be
easily checked from the picture. The vertex pair (x′i,¬x

′
i) in each Li thus has

to be mapped to either (T, F ) or (F, T ), which we naturally use to assign the
logical value to xi. Finally, one can exhaustively verify that there exists no
homomorphism of S to K ′ that maps (ℓ1, ℓ2, ℓ3) to (F, F, F ), and hence ϕ is
satisfiable by our assignment.

p

q r

u c

¬x′′

x′′

Figure 9: Gadget L′

b) We proceed in the same manner as in a), but instead of the gadget L
we utilize L′ from Figure 9. For that we again argue that any homomorphism
of L′ to some orientation K ′ of K4 forces the images of p, q, r, u to be distinct
and so forming a directed 4-cycle in K ′. Already this fact certifies K ′ ≃ K,
and hence the images of x′′i ,¬x

′′
i are distinct. Then c → {A,B} and finally

(x′′i ,¬x
′′
i ) → (T, F ) or (x′′i ,¬x

′′
i ) → (F, T ). The rest follows as in a).

Proposition 4.19. For every integer c, the problem c-OCN is fixed-parameter
tractable with respect to clique-width.
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Proof: We write an MSO1 formula

∃X1, . . . , Xc





∧

i=1,...,c

∀x, y ∈ Xi

(

¬arc(x, y)
)

∧
∧

i,j=1,...,c

∀x, y ∈ Xi, z, t ∈ Xj

(

arc(x, z) → ¬arc(t, y)
)





which deals with the sets Xi of vertices of G that are mapped to the vertex i of
(an orientation of) Kc. Hence the result follows from Theorem 4.2.

4.8. Directed Feedback Vertex Set (DFVS) and Kernel (Kernel)

The directed feedback vertex set (DFVS) optimization problem (mentioned
already as a width parameter dfn(G) in Definition 3.2) is to find the minimum
cardinality of a set S of vertices of a digraph G whose removal leaves G \ S
acyclic. A kernel of a digraph G is defined as an independent set R ⊆ V (G)
such that for every x ∈ V (G) \ R there is an arc from x into R. Notice that a
kernel may not always exist, and the Kernel decision problem is to find out
whether an input digraph G has a kernel.

These two are again NP-hard problems, but they become trivial on DAGs.
Yet no complexity improvement seems possible on them when using width pa-
rameters other than clique-width:

Theorem 4.20. Let G be a digraph.

a) The Kernel problem is NP-complete even if G has DAG-width and K-width
2, cycle rank also 2, and DAG-depth 4 (van Leeuwen [vL76]).

b) The DFVS problem is NP-hard even if G has DAG-width 4 and cycle rank 4
(Kreutzer and Ordyniak [KO11]).

c) Computing dfn(G) is in FPT with the parameter dfn(G) (Chen, Liu, Lu,
O’Sullivan, and Razgon [CLL+08]).

d) The Kernel and DFVS problems can be formulated in the LinEMSO1

framework, and hence Kernel and DFVS are in FPT when parameterized
by clique-width (Example 4.1).

Note that the reduction in claim b) produces digraphs of arbitrarily high DAG-
depth and K-width, and so the parameterized complexity of DFVS parameter-
ized by DAG-depth and K-width remains open.

Theorem 4.21. If a digraph G is given with a directed feedback vertex set of
size k, then the Kernel problem can be solved in FPT time O

(

2k · (|V (G)| +

|E(G)|)
)

.

Proof: Recall a simple folklore fact; if H is a DAG, then H has a unique
kernel Z which can be easily computed as follows
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• add to Z all the sink vertices (with no out-neighbour) of H,

• denote by N = N−[Z] the set of all in-neighbours of Z in H, and continue
in the first step with the subdigraph H − (Z ∪N).

We now consider an arbitrary digraph G with a feedback set S ⊆ V (G) of
size k, and a (yet unknown) kernel Z ⊆ V (G). If we knew the intersection
Z ∩ S, then we would uniquely determine the remainder Z \ S by calling the
previous procedure on the DAG G − (S ∪N−[Z ∩ S]). This leads to a simple
FPT algorithm:

i. Enumerate all independent subsets Z0 ⊆ S in O(2k) rounds.

ii. For each Z0 from (i.), compute the unique kernel Z1 of G − (S ∪ N−[Z0])
in O(|V (G)|+ |E(G)|) time.

iii. Check whether Z0 ∪ Z1 is a kernel of whole G.

If G has a kernel Z then the iteration of Z0 = Z ∩ S succeeds, thanks to
uniqueness of the kernel of G− (S ∪N−[Z0]), while if G has no kernel then all
the rounds clearly fail.

4.9. Parity Games (Parity)

Parity games play an important role in the field of model-checking and formal
verification. The problem of solving, i.e., determining the winning player for
parity games is equivalent to model checking modal µ-calculus, an important
modal logic subsuming many other logics. However, the exact complexity of
solving parity games is a long-standing open problem. It is known to be in
NP∩ co-NP, and widely believed to be in P . (The problem is trivially in P for
DAGs.) The reason we include the Parity problem in our survey is that it was
the original motivation behind the development of some of the digraph width
measures in the past decade (e.g., entanglement or DAG-width). The current
standing of this problem with respect to digraph width measures is summarized
in Theorem 4.22.

Here we give only an informal description of the game, and refer the reader
to [GTW02] for a formal definition. Parity game is an infinite two-player game
played on a digraph G = (V,E), vertices of which are labeled by natural num-
bers. The players are called Odd and Even, and each vertex is “owned” by
exactly one of the players. The play proceeds as follows. At the beginning, a
token is placed on a special vertex of the graph (called the initial vertex). The
game is then played in rounds. Let v be the current location of the token. Then
the player who ’owns’ v moves the token along some arc (v, w) ∈ E to w (we
require that there must be at least one such arc for each vertex). The player
who owns w plays in the next round, in exactly the same way. This results in an
infinite sequence of vertices, and we look at the sequence of numbers assigned
to these vertices. The player Odd wins iff the least number in this sequence is
odd, otherwise the player Even wins.
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Theorem 4.22. The Parity problem is in XP for digraphs of

a) bounded tree-width ([Obd03]),

b) bounded entanglement (Berwanger and Grädel [BG05]),

c) bounded clique-width ([Obd07]),

d) bounded Kelly-width (Hunter and Kreutzer [HK08]),

e) bounded DAG-width (Berwanger et al. [BDH+12]).

5. Conclusion

The main contribution of our paper is to give a thorough overview of the
parameterized complexity status of many common digraph problems under dif-
ferent width measures as the parameters. The many existing and published
results in this area, and the several new ones from the paper, are summarized
in Table 2, completing it into an exhaustive reference guide to the field. Note
that, regarding the positive entries in Table 2, there is no issue of whether a
“decomposition” certifying low width is given along with the input or not; it
is either not directly used by an algorithm (often the case with K-width and
DAG-depth), or a suitable certificate can be itself computed in XP (parame-
terized by DAG-width [BDH+12] and cycle-rank) or in FPT (DFVS-number
[CLL+08] and clique-width [HO08, KR13]).

Besides surveying the existing width measures and results, we introduce
two new very restrictive measures (K-width and DAG-depth), which further
confirm the presented overall picture that traditional structural measures do
not fare well in parameterized algorithmics. For a closer explanation of the last
sentence, notice that the positive entries in the first five columns of Table 2 are
mostly incidental: These are concentrated in the rows of the HAM, c-Path, and
c-MinLOB problems, which are all three closely related to searching paths in
a digraph and hence also to the considered structural measures. Otherwise, the
only FPT entries in the first three columns of the table are the two remarkable
ones of DFVS and Kernel when parameterized by the DFVS-number itself.
Further nontrivial polynomial entries lie in the column of DAGs, but that does
not seem to extend to a useful parametrization.

The new K-width and DAG-depth are indeed very restrictive digraph mea-
sures, always at least as high as DAG-width and often much higher (see Table 1).
From their respective definitions it seems that problems that stay NP-hard for
digraphs with constant K-width and constant DAG-depth are likely far away
from being fixed-parameter tractable for any similar width parameter of di-
graphs, and we have shown that various problems from several different areas
are of this kind. This can be seen as a strong indication that DAG-width and
related structural measures (which are often connected to variants of the cops-
and-robber search game, Section 3.2) are not yet the right parameters for dealing
with usual digraph problems. (Considering the DFVS number as a width pa-
rameter does not seem to help either.) One reason might be that cops “give”
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Table 2: A summary of old and new (in boldface) parameterized complexity results on selected
digraph width measures. ‡-marked entries indicate unknown lower complexity bound.

Parameter K-width& DAG-width& DFVS-num. DAGs Clique-width

DAG-depth Cycle rank

HAM (§4.2) FPT XPa/W[2]-h.b XPa ‡ P XPc/W[1]-h.d

c-Path (§4.3) FPT XPa ‡ XPa ‡ Pa FPT

k-Path (§4.3) para-NPC NPCe NPCe NPCe para-NPCf

c-MinLOB (§4.4) FPT XPg/W[2]-h.b XPg ‡ Ph XPc/W[1]-h.d

MinLOB (§4.4) para-NPC para-NPCg para-NPC Ph XPj/W[1]-h.d

DiDS & DiST

& MaxLOB (§4.5) para-NPC NPC NPC NPC FPT

MaxDiCut (§4.6) para-NPCb NPCb NPCb NPCb XPc/W[1]-h.k

c-OCN (§4.7) para-NPC NPCl NPCl NPCl FPT

DFVS (§4.8) open para-NPCm FPTn P FPT

Kernel (§4.8) para-NPCp para-NPCm,p FPT P FPT

φ-MSO1mc (§4.1) para-NPH NPH NPH NPH FPTq

Parity (§4.9) XPr ‡ XPr ‡ XPr ‡ P XPs ‡

a[JRST01] b[LKM11] c[GHO13] d[FGLS10b] e[EIS76] f [GW06] g[DGK09] h[GRK09]

j[GHO11] k[FGLS10a] l[CD06] m[KO11] n[CLL+08] p[vL76] q[CMR00] r[BDH+12] s[Obd07]

good graph separators in the undirected case, but that does not work any more
for digraphs. We refer to [GHK+10, GHL+12] for further investigation.

On the other hand, the last column of clique-width exposes a very different
behavior: Not only that many tractable (FPT) cases follow directly from one
metaresult – Theorem 4.2 about MSO1 model checking, but there exist sepa-
rate nontrivial XP algorithms for the other cases (except k-Path), too. Among
them, especially those for Parity [Obd07] and MinLOB [GHO11] are remark-
ably involved, and show the algorithmic potential of the (mutually equivalent)
clique-width and bi-rank-width measures on digraphs.

We conclude the paper with three noteworthy questions related to the sum-
mary:

• (Theorem 4.8) What is the complexity status of the k-Path problem on
digraphs of DAG-depth exactly 3?

• (Theorem 4.20) What is the parameterized complexity status of the
DFVS problem with respect to DAG-depth and K-width?

• (Proposition 4.19) What is the parameterized complexity status of the
OCN problem with respect to clique-width?
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The DAG-width of directed graphs. J. Comb. Theory, Ser. B,
102(4):900–923, 2012.
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[HO06] P. Hliněný and J. Obdržálek. Escape-width: Measuring ”width”
of digraphs. Presented at Sixth Czech-Slovak International Sym-
posium on Combinatorics, Graph Theory, Algorithms and Applica-
tions, 2006.
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