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Abstract

The structure of all known infinite families of crossing–critical graphs has led to the conjec-
ture that crossing–critical graphs have bounded bandwidth. If true, this would imply that
crossing–critical graphs have bounded degree, that is, that they cannot contain subdivisions
of K1,n for arbitrarily large n. In this paper we prove two results that revolve around this
conjecture. On the positive side, we show that crossing–critical graphs cannot contain sub-
divisions of K2,n for arbitrarily large n. On the negative side, we show that there are graphs
with arbitrarily large maximum degree that are 2-crossing–critical in the projective plane.
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1 Crossing Numbers and Crossing–Critical Graphs

Unless otherwise stated, throughout this paper our notation and terminology follows Diestel [5].
The crossing number crΣ(G) of a graph G in a surface Σ the minimum number of pairwise

crossings of edges in a drawing of G in Σ. Whenever the reference to Σ is omitted, it is assumed
that Σ is the plane (or, equivalently in the realm of crossing numbers, the sphere).

Calculating the exact crossing number of a graph is a computationally hard problem, and
for many years most crossing number papers focused on calculating or estimating the crossing
number of interesting families of graphs. This trend has been reversed in the last few years, as
questions of a more structural character have been successfully tackled (see for instance [2, 3,
9, 12, 15, 18].

As with other classical graph theoretical parameters, we gain a great insight into crossing
numbers by looking at graphs that are minimal with respect to having a certain crossing number.
A graph G is k–critical in Σ if crΣ(G) ≥ k but crΣ(G − e) < k for each edge e of G. Many
interesting questions and results in crossing–critical graphs in the plane are related to the work
of Richter and Thomassen [15].

A little over two decades ago, Širáň [17] and Kochol [11] gave nice constructions of crossing–
critical graphs. Kochol’s family of critical graphs has inspired a good deal of research. These
constructions have been generalized by several authors [16, 13, 1]. All such generalizations share
one key feature from Kochol’s original construction; the infinite families consist of “long and
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thin” graphs. This led Salazar and Thomas to conjecture that crossing–critical graphs have
bounded path–width (see [6]). This conjecture has been proved in [9].

Thomassen observed that all constructions known, including the slightly different flavoured
constructions by Hliněný [8, 10], satisfy the stronger property of having bounded bandwidth.
A graph G has bandwidth at most k if there is a bijection β : V (G) → {1, . . . , |V (G)|} such that
|β(u) − β(v)| ≤ k for each edge e = uv in G. This observation has been recorded as a (still
open) conjecture by Richter and Salazar in [14].

Conjecture 1.1 For each integer k > 0 there is a number B(k) such that if G is k–crossing–
critical, then the bandwidth of G is at most B(k).

The following weaker form of Conjecture 1.1 remains also open:

Conjecture 1.2 For each integer k > 0 there is a number D(k) such that if G is k–crossing–
critical, then the maximum degree of G is at most D(k).

In this paper we present two results inspired by Conjecture 1.2. In the direction supporting
this conjecture, we show the following.

Theorem 1.3 For each integer k > 0, there is a f(k) such that if G is k–crossing–critical,
then G does not contain a subdivision of K2,f(k). In particular, f(k) ≤ 30k2 + 200k.

Supporting the viewpoint that Conjecture 1.2 is false, we show that its projective plane
version (and consequently the projective plane version of Conjecture 1.1) is false.

Theorem 1.4 There is an infinite family of simple 3-connected graphs Hk, k ≥ 3, such that
each Hk is 2-crossing-critical in the projective plane and has a vertex of degree 6k.

The rest of this paper is organized as follows. In Section 2 we study the structure of {u, v}–
bridges in crossing–critical graphs, where u, v are distinct vertices. This is used in Section 3 to
prove Theorem 1.3. In Section 4, we give the construction to prove Theorem 1.4. We close with
some concluding remarks and open questions in Section 5.

2 2–cuts and {u, v}–bridges in crossing-critical graphs

Recall that a drawing D of a graph G is a mapping of G into the plane (or the surface Σ),
such that the vertices of G are points and the edges are simple curves joining their endvertices.
Moreover, it is required that no edge passes through a vertex (except at its ends), and no
three edges cross in a common point. Throughout this section, we consider graphs drawn in
the plane R2 (equivalently, the sphere). We are mostly interested in optimal drawings of a
k–crossing–critical graph G, i.e. in drawings D of G such that cr(D) = cr(G).

To show that no large K2,n subdivisions exist in a k–crossing–critical graph (k is fixed), we
first take any two vertices u, v, thinking of them as the degree-n vertices in a K2,n subdivision
in G. We wish to analyze the {u, v}–bridges in G. We use “bridge” in the sense of Tutte: a
{u, v}–bridge in G is either a single edge with endpoints u and v, including u and v (a trivial
bridge), or a subgraph of G obtained by adding to a component H of G − u − v the vertices u
and v and all edges attaching H to u and v.

Our major aim in this section is to prove Lemma 2.4, which claims that if u, v are the
degree-n vertices of a large K2,n subdivision in G, then a large number of u–v paths are drawn
(in every optimal drawing of G) inside a closed disc ∆ bounded by two u–v paths, in such a way
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that the chunk of G drawn in ∆ is crossing-free and remains connected even after the removal
of u and v. This is a central prerequisite in the proof of Theorem 1.3.

To prove Lemma 2.4 we need two preliminary results. First we study the implications of
a large enough number of {u, v}–bridges: in an optimal drawing of such a (not necessarily
crossing–critical) graph, distinct {u, v}–bridges are disjointedly drawn, and a single face of the
drawing is incident with both u and v. This is the content of Lemma 2.2. Then we show, in
Lemma 2.3, that the number of {u, v}–bridges is bounded as a function of k.

We make essential use of a fundamental result by Richter and Thomassen [15], which
proves an intuitively appealing yet elusive fact: t–crossing–critical graphs have crossing number
bounded by a function of t.

Theorem 2.1 (Richter and Thomassen) Every t–crossing-critical graph has crossing num-
ber at most 2.5t + 16.

Our subsequent proofs rely on this upper bound. Any improvement on this bound would
immediately imply (marginally, though) sharper bounds in our results.

We start by analyzing drawings with a large number of {u, v}–bridges. Having a drawing D
of a graph G, and a subgraph H ⊆ G, we shortly denote by D(H) the corresponding subdrawing
of H. We call a face of D a component of R2 \ D.

Lemma 2.2 Let G be a 2–connected graph, and let u, v be different vertices of G. Let t > 0 be
an integer. Suppose that cr(G) ≤ t, and that G has at least t + 2 {u, v}–bridges. Then every
optimal drawing D of G satisfies the following:

(i) No two edges of different {u, v}–bridges cross each other in D.

(ii) There is a face of D that is incident with both D(u) and D(v).

Proof. Let G, u, v, and t be as in the statement of the claim, and let D be any optimal
drawing of G. Let C1, C2, . . . , Cs be all the (u, v)–bridges of G, where, by hypothesis, s ≥ t+2.

First we note that, for each Ci, the drawing Di = D(Ci) of Ci induced by D has a face
incident with both Di(u) and Di(v). For suppose that some Cj does not satisfy this property.
Since every Ci contains a u–v path, then every Ci with i 6= j has at least one edge that crosses
(in D) an edge of Cj . But then D has at least t + 1 crossings, a contradiction. We remark that
this observation also implies that if D satisfies (i), then it must satisfy (ii) as well.

A straightforward corollary of the previous paragraph then implies that, for each i =
1, 2, . . . , s, there is a drawing D′

i of Ci such that: (a) cr(D′
i) = cr(Di); (b) D′

i(u) = (0, 1) and
D′

i(v) = (0,−1); and (c) D′
i \ {D

′
i(u),D′

i(v)} is contained in the interior of the region bounded
by the parabolas x = i(1 − y2) and x = (i + 1)(1 − y2).

The drawings D′
i can then be combined to yield a drawing D′ of G that clearly satisfies (i)

and (ii). Now (a) in the previous paragraph implies that cr(D′) ≤ cr(D). Moreover, (a) also
implies that no edges in different {u, v}–bridges cross each other in D, as otherwise D would
have more crossings than D′, contradicting the optimality of D. Thus D itself satisfies (i). As
observed above, this implies that D also satisfies (ii).

Lemma 2.3 Let t > 0 be an integer. Suppose that G is a 2–connected t–crossing-critical graph,
and let u, v be any two distinct vertices of G. Then G has at most 2.5t + 18 {u, v}–bridges.

Proof. Let Cu,v := {C1, C2, . . . , Cs} denote the collection of all {u, v}–bridges of G. We
suppose s ≥ 2.5t + 19, and will show this implies that cr(G − e) = cr(G) for some edge e of G,
thus contradicting the criticality of G.
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Figure 1: Proof of Lemma 2.4. A collection Q1, Q2, . . . , Qp′
i

of u–v paths in a {u, v}–bridge Ci

of G; its bad indices j − 1, j + m (Type I) and p′i (Type II), depicted with shaded strips, and
consecutive m good indices j, j + 1, . . . , j + m − 1 whose strips form ∆.

Let D be an optimal drawing of G. Since cr(G) ≤ 2.5t + 16 by Theorem 2.1, then s ≥
2.5t + 19 ≥ cr(G) + 3 and Lemma 2.2 applies. Then it follows from (i) that the number of
{u, v}–bridges that contain an edge crossed in D is at most cr(G). So there is a {u, v}–bridge,
say C1 without any loss of generality, such that no edge of C1 is crossed in D.

Let D1 be any optimal drawing of G1 = G − V (C1 − {u, v}) (or G1 = G − e in the case
C1 is a single edge e). Note that Cu,v \ {C1} is exactly the set of {u, v}–bridges in G1. Since
cr(G − C1) ≤ cr(G), and so |Cu,v \ {C1}| ≥ 2.5t + 18 ≥ cr(G1)+2, then Lemma 2.2 also applies
to G1. Moreover, for each i = 2, 3, . . . , s, cr(D(Ci)) = cr(D1(Ci)) since any strict inequality
would imply that D or D1 is not optimal. By Lemma 2.2 (i), as applied to both G and G1, we
get cr(D) = cr(D1). Thus cr(G) = cr(G1), and hence cr(G − e) = cr(G) for each e ∈ E(C1).

Lemma 2.4 Let t, m > 0 be integers. Let G be a 2–connected t–crossing-critical graph, and
let D be an optimal drawing of G. Suppose that for some vertices u, v of G, there are at least
(7.5t + 50)m pairwise internally-disjoint u–v paths in G. Then there are m + 1 such u–v paths,
say P0, P1, . . . , Pm, such that:

(i) D(P0 ∪ Pm) bounds a closed disc ∆ containing no crossings of D.

(ii) D(Pi) ⊆ ∆ for i = 1, . . . , m− 1, and the subgraph of G− {u, v} drawn on ∆ is connected.

Note that (i),(ii) then imply that P0, . . . , Pm all belong to the same {u, v}–bridge of G.

Proof. Let Cu,v := {C1, C2, . . . , Cs} denote the collection of all {u, v}–bridges of G, and let
pi be the cardinality of a maximal set of pairwise internally-disjoint u–v paths in Ci. Let ri be
the number of crossings in D involving edges of Ci, with a crossing counting twice if both edges
involved are in Ci.
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We first prove that there exists i ∈ {1, . . . , s} such that pi ≥ m(ri + 1). Indeed, seeking a
contradiction, suppose that pi ≤ m(ri+1)−1 for each i. Then, since

∑s
i=1 ri = 2cr(G) ≤ 5t+32

by Theorem 2.1, and s ≤ 2.5t + 18 by Lemma 2.3, we can upper bound the total number of
pairwise internally-disjoint u–v paths in G by

s∑

i=1

pi ≤
s∑

i=1

(m(ri + 1) − 1) < m
s∑

i=1

ri + ms ≤ m(5t + 32 + 2.5t + 18) ,

contrary to our assumption.
So there is an i such that pi ≥ m(ri+1). Consider a maximum-size collection Q1, Q2, . . . , Qp′

i

of pairwise internally-disjoint u–v paths in G belonging to Ci and not involved in a crossing
in D, labeled in agreement with the clockwise cyclic order in which they appear in D around u.
See Figure 1. Note that p′i ≥ pi − ri. We say that an index j ∈ {1, . . . , p′i} is bad if either; (Type
I) the closed disc ∆j bounded by D(Qj ∪ Qj+1) in the sphere and disjoint from the interior of
Qj+2 contains a crossing of D, or (Type II) ∆j contains a face of D(Ci) incident both with u
and v (indices are modulo p′i).

We argue that the number of bad indices is at most ri + 1. Indeed, as at most ri of the
disks ∆j contain a crossing of D involving an edge of Ci, there are at most ri bad indices of
Type I. If ∆j contains a crossing of D, but no one involving Ci, then ∆j contains the drawing
of another {u, v}–bridge not crossing Ci and so there is a face of D(Ci) incident both with u
and v in ∆j . Finally, there is at most one such face, as otherwise Ci would not be a single
{u, v}–bridge. Thus there is at most one bad index of Type II, and therefore at most ri +1 bad
indices in total.

Now p′i ≥ pi − ri ≥ (m − 1)(ri + 1) + 1, and hence there exist m consecutive good (i.e.,
not bad) indices j, j + 1, . . . , j + m − 1 in the cyclic ordering modulo p′i. Let (P0, . . . , Pm) :=
(Qj , . . . , Qj+m). It is now straightforward to verify validity of (i) and (ii) from the definition of
a bad index.

3 Large bonds in crossing-critical graphs:

proof of Theorem 1.3

In this section we prove Theorem 1.3. We start with a technical dealing with face distance
in graph drawings (Lemma 3.1). We then prove Theorem 1.3 for 2–connected graphs (Theo-
rem 3.2), and we finish the section with a proof for the general case.

Let x, y be vertices of a graph H, and let D be a drawing of H. A face chain is a sequence
of (different) faces of D such that each consecutive pair of them shares (a segment of) an edge.
A face chain joins x and y if it starts from a face incident with x and ends in a face incident
with y. The face distance fdD(x, y) in D between x and y is the length (i.e. cardinality) of a
shortest face chain that joins x and y.

Lemma 3.1 Let H be a planar graph, x, y ∈ V (H), and Q1, Q2, Q3 be three internally disjoint
paths connecting x to y in H. Suppose D1 is a planar drawing (i.e. without crossings) of H,
and D2 is an arbitrary drawing of H such that Q := Q1 ∪Q2 ∪Q3 is drawn crossing-free in D2.
Then fdD2

(x, y) ≥ fdD1
(x, y).

Proof. A standard network-flow duality argument gives that the face distance fdD1
(x, y) is at

least ℓ + 1 if, and only if, there exist ℓ pairwise edge-disjoint cycles C1, . . . , Cℓ in H such that
each D1(Ci), i ∈ {1, . . . , ℓ}, separates D1(x) from D1(y). Note that Q1∪Q2∪Q3 is a subdivision
of the 3–bond, and thus it is embedded (drawn with no crossings) in the same way under D1
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∆
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Rx

Px+1
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Py−1
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P4k

u

v

Fe:

∆1

P0

Rx

Px+1

P2k

Py−1

Ry

C

P4k

Figure 2: Proof of Theorem 3.2, Claim 1. The drawings F and Fe, and the discs ∆1 and ∆2

bounded by Fe(C) and F(C), respectively.

and D2. Fix any i ∈ {1, . . . ℓ}. If in D2 there was an arc from D2(x) to D2(y) that crossed no
edge of Ci, then clearly there would be a a subpath P of Ci, with one endpoint in Qj and the
other in Qj+1 (for some j ∈ {1, 2, 3}, reading the indices of Qj ’s modulo 3), internally disjoint
from Q, such that P crosses Qj+2, contradicting that Q is drawn crossing-free under D2. It
thus follows that for each i ∈ {1, 2, . . . , ℓ}, D2(Ci) also separates D2(x) from D2(y). This is, in
turn, a certificate that fdD2

(x, y) ≥ ℓ + 1.

Theorem 3.2 Let k > 0 be an integer and G be a 2–connected graph. Suppose that G contains
a subdivision of K2, 30k2+200k. Then G is not k–crossing-critical.

Proof. Let D be any optimal drawing of G. By hypothesis, there are distinct vertices u, v
such that there are at least 30k2 + 200k pairwise internally disjoint u–v paths in G. Setting
m = 4k, we obtain using Lemma 2.4 a family P0, . . . , Pm of u–v paths satisfying (i) and (ii) in
Lemma 2.4. Let F denote the {u, v}–bridge of G containing all these paths (see remark after
Lemma 2.4), and F := D(F ) be the drawing of F induced by D. Without any loss of generality,
the Pi’s are labeled according to the clockwise cyclic order in which they appear around u in F .

Let e be the edge of P2k that is incident with u. Note that e cannot be the only edge of P2k,
as otherwise P2k would be a {u, v}–bridge (of G) by itself. Let Ge := G−e and Fe := F −e. Let
De be any optimal drawing of Ge, and let Fe := De(Fe) be the drawing of Fe induced by De.

To complete the proof, we assume G is k–crossing-critical, and derive a contradiction. First
note that k–crossing-criticality of G implies that cr(Fe) ≤ cr(De) ≤ k − 1 < cr(G).

Claim 1. To prove the theorem, it suffices to construct a drawing F of F such that

(a) cr(F) ≤ cr(Fe),

(b) fd
F

(u, v) ≤ fdFe
(u, v).

Indeed, having such F at hand, we simply replace the subdrawing Fe in De with F , iden-
tifying F(u) with De(u) and F(v) with De(v). This yields a drawing D′ of G. By (a), there
are no more crossings involving two edges of F in D′ than in De, and by (b) the replacement
operation F 7→ F may be performed so that there are no more crossings involving one edge
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of F and one edge of other {u, v}–bridge of G (indeed, in any optimal drawing of G every
{u, v}–bridge distinct from F gets drawn along a shortest u–v face chain of the drawing of F ).
Hence cr(De) ≥ cr(D′) ≥ cr(G), providing the required contradiction.

It remains to construct F with properties (a) and (b) in Claim 1. We start with the drawing
F of F , cf. Figure 2 left, and recall from Lemma 2.4 the closed disc ∆ bounded by F(P0 ∪Pm)
and containing no crossings of F .

For j ∈ {1, . . . , 2k − 1, 2k + 1, . . . , 4k − 1}, let Bj denote the set of the bridges of Pj −{u, v}
that do not intersect Pj−1 ∪ Pj+1, and let Rj denote the subgraph of F induced by Pj ∪ (

⋃
Bj)

(informally, we think of Rj as Pj together with its “local bridges”). Note that F(Rj) is contained
in the disc bounded by (F(Pj−1) ∪ F(Pj+1)) ⊆ ∆. Clearly, V (Rj) ∩ V (Rj′) = {u, v} and
E(Rj) ∩ E(Rj′) = ∅ whenever j 6= j′. We take the minimum index x ∈ {1, . . . , 2k − 1} and the
maximum index y ∈ {2k+1, . . . , 4k−1} such that neither Rx, Ry are crossed in Fe. Such indices
exist since at most 2cr(Fe) ≤ 2k − 2 of the Rj ’s may be involved in a crossing. Furthermore,
there exist z ∈ {x+1, . . . , y−1}\{2k} such that also Pz is uncrossed in Fe, for the same reason.

As neither Rx nor Ry is crossed in Fe, the subdrawing Fe(Rx ∪ Ry) has a (single) face ∆1

containing Fe(Pj) for all j = x + 1, . . . , y − 1, j 6= 2k (recall that e /∈ Fe), and ∆1 containing
Fe(P2k − e). By invoking a Riemann stereographic projection argument if necessary, we may
assume ∆1 is a closed disc bounded in Fe by a cycle C ⊆ Rx ∪ Ry (this last follows from 2-
connectivity). Now F(C) bounds a closed disc ∆2 in the original drawing F , and the subgraph
F2 of F drawn under ∆2 contains Pj for all j = x + 1, . . . , y − 1 (in particular, e ∈ F2).

It follows from the connectivity property (ii) of Lemma 2.4 that F contains at most two
bridges of F2—one with P0, and possible other one with P4k. Moreover, if B 6= B′ are two such
bridges of F2, then B is attached only to vertices of C ∩Rx and B′ is attached only to vertices
of C ∩Ry. Hence, denoting F1 the graph induced by (F \ F2)∪C, the subdrawing Fe(F1) may
be (Whitney) flipped, if necessary, so that ∆1 (bounded by C) becomes also a face of F1. See
in Figure 2. By removing ∆1 from Fe(F1), and replacing it with a suitable homeomorphic copy
of ∆2, we obtain a drawing F of F that clearly satisfies (a).

We finish the proof by showing that F also satisfies (b). By the construction, Fe and F are
identical in the boundary of and outside ∆1. Transforming for both drawings each crossing in
this coinciding region into a degree 4 vertex, F becomes planar, and modified Fe maintains the
property that Px ∪ Py ∪ Pz is not crossed. Thus an application of Lemma 3.1 shows (b) that
fdFe

(u, v) ≥ fd
F−e(u, v) = fd

F
(u, v).

It is hardly surprising that Theorem 1.3 follows easily from the 2–connected case:

Proof of Theorem 1.3.

Suppose G is k–crossing-critical and contains a subdivision of K2,30k2+200k. Let
C1, C2, . . . , Cr be the components of G, labeled so that, without any loss of generality, C1

contains a subdivision of K2,30k2+200k. A routine argument shows that each Ci is ri–crossing-
critical for some ri (moreover,

∑
i ri = k). Let H1, H2, . . . , Hs be the blocks of C1, labeled

so that, without any loss of generality, H1 contains a subdivision of K2,30k2+200k. Again, a
routine argument shows that each Hi is si–crossing-critical for some sj (moreover,

∑
i sj = r1).

In particular, H1 is s1–crossing-critical for some s1 ≤ r1 ≤ k, and contains a subdivision of
K2,30k2+200k, and consequently a subdivision of K2,30s1

2+200s1
. This contradicts Theorem 3.2.
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4 Projective critical graphs with large maximum degree:

proof of Theorem 1.4

We now describe the construction of the graph family Hk, k = 3, 4, . . ., claimed in Theorem 1.4.
Our construction and its corresponding analysis have been inspired by the fruitful concept of
planar tiles [13]. We, however, turn this classical construction “inside out” to produce a planar
belt of planar tiles which we consequently force to “twist” in the projective plane by adding
an additional high-degree vertex, connected to both sides of the belt. We refer the reader to
Figure 3 for a taste of our construction. This is a projective drawing of H3, obtained from three
copies of the tile T 2 (see Figure 4).

h

h

H ′
3

H3:

Figure 3: The graph H3 drawn in the projective plane (the pairs of opposite points on the
dashed ellipse get identified). If vertex h is removed, we obtain H ′

3.

The rest of this section is structured as follows. First we give the formal definition of Hk.
Then we show that the crossing number of Hk minus any edge is at most 1 (Lemma 4.1).
Then comes the hardest part—proving that the projective crossing number of Hk is at least 2
(Lemma 4.3). The main tool for the latter part is a structural analysis: we examine each edge
e of Hk and show that, for most choices of e, the subgraph Hk − e still contains one of the
forbidden minors for the projective plane (Figure 7)—and hence the crossing number must be
≥ 1 + 1. For the remaining few edges of Hk, we show that if any two of them cross each other,
then the resulting drawing must contain yet another crossing.

Construction of Hk

We let T (the tile) denote the graph on 11 vertices and 15 edges depicted in Figure 4 in solid
lines, and we distinguish its “boundary” vertices a, b, c, and d. Let T ′ be a disjoint copy of T ,
and denote by T 2 the graph obtained from T ∪ T ′ by identifying the vertex c of T with vertex
a′ of T ′, and vertex d of T with vertex b′ of T ′.

p

r

q

p′

r′

q′

s

d′

c′a

b c

d

T

Figure 4: One tile T used in our construction (in solid lines); and another attached copy of T
(a scheme in dashed lines), together forming T 2.
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Let T 2
1 , . . . , T 2

k be k disjoint copies of the graph T 2, where the boundary vertices of T 2
i are

labeled ai, bi, c
′
i, d

′
i. Identify the vertex pair ai+1, c

′
i and the pair bi+1, d

′
i, for each i, 1 ≤ i ≤ k.

Denote the resulting graph by H ′

k. Thus, k copies of T 2 are sticked together in a circular fashion
to make H ′

k. Notice that, unlike in classical crossing-critical constructions, the resulting graph
is untwisted (H ′

k is a planar graph). Now H ′

k is made of 2k copies of the tile T . Denote by
pi, qi, ri, and p′i, q

′
i, r

′
i, for i = 1, . . . , k, the copies of the vertices p, q, r (cf. Figure 4) in each T .

Finally, let Hk denote the graph that results by adding a new vertex h to H ′

k, and joining h to
pi, qi, ri, p

′
i, q

′
i, and r′i for every i = 1, . . . , k. Figure 3 illustrates H3.

It is clear that every Hk, k ≥ 3, satisfies the connectivity and degree properties claimed in
Theorem 1.4. If we aim to show that our graph Hk is 2-crossing-critical in the projective plane,
we need to show that (i) Hk has a projective crossing number equal to 2, and that (ii) if we
remove any edge from Hk, then the resulting graph has projective crossing number at most 1.
The following statement takes care of (ii) and of the upper–bound part of (i), while subsequent
Lemma 4.3 finishes the more difficult direction of (i).

Lemma 4.1 For every k ≥ 2, Hk can be drawn in the projective plane with at most two
crossings. Moreover, for each edge e ∈ E(Hk), the graph Hk − e can be drawn in the projective
plane with at most one crossing.

Proof. Figure 3 shows how to draw H3 in the projective plane with two crossings. This gets
easily extended to a projective drawing of Hk with two crossings, for any k ≥ 2. We wish to
formalize this idea, since this will give us the opportunity to introduce concepts that will be
used in the second part of this proof.

Let T+ denote the graph obtained from the tile T by adding a new vertex b+ adjacent
only to b. (Then, if T0 is a copy of T in H ′

k, the vertex b+
0 of T+

0 coincides with the s-vertex
of the adjacent T -copy in H ′

k.) We say that a drawing of a spanning subgraph G ⊆ T+ is
twisted if the vertices a, b+, d, c appear on the outer face in this cyclic order. Figure 3 contains
a twisted drawing of some copy of T+ with two crossings, and all other T+–copies are there
drawn untwisted and crossing free.

We need to show that Hk − e, for any edge e of Hk, can be drawn in the projective plane
with at most one crossing.

Suppose first that e ∈ E(H ′

k) (recall that H ′

k = Hk − h), Let T0 be the T–copy in H ′

k that
contains e. We say that a vertex x ∈ {p0, q0, r0} of T0 is accessible in a twisted drawing of
T+

0 − e in the plane if x lies on the outer face between a0, c0 or between b+
0 , d0. (The practical

meaning of this notion is that such a twisted drawing can be extended to a drawing of the whole
H ′

k without additional crossings around a Möbius band, in which the accessible vertices are on
the boundary. A small arrow is used in our pictures to indicate accessibility). In particular, a
twisted drawing of T+

0 − e with just one crossing and accessible p0, q0, and r0, easily extends to
a drawing of the whole Hk − e with one crossing in the projective plane.

b c

d

bb+

a

c

da

b+
p q

Figure 5: Proof of Lemma 4.1. Some twisted drawings of T+− e.
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So the task is to find a twisted drawing of the graph T+
0 − e with at most one crossing such

that all three vertices p0, q0, r0 are accessible. That is a matter of an elementary, straightforward
case checking. Say, if e = pq, then (even) a planar twisted drawing of T+

0 − e clearly exists.
For the other two cases of e incident with p, the required twisted drawings of T+

0 − e are as
illustrated in Figure 5 on the left hand side; while the right hand side of this figure illustrates
one of the two cases of e incident with q. The rest of cases of e in T0 are dealt with analogously.

b r c

b+

a
d

c

a

b+ b

d
p

q

Figure 6: Proof of Lemma 4.1. Twisted drawings of T+ with inaccessible p or q, resp.

Finally, we assume that e is incident with the vertex h, and denote by T0 the copy of T in
H ′

k incident with the other end of e. Up to symmetry, there are now three cases to consider:
e = hq0, e = hp0, and e = hr0, where the latter two are analogous with each other. We show
in Figure 6 that there always is a twisted drawing of T+

0 with one crossing such that the two
vertices of p0, q0, r0 that are not incident with e are accessible. As observed above, such a
drawing easily extends to a drawing of Hk − e with no additional crossings.

Projective crossing number of Hk

Our final task to prove the criticality of the graphs Hk is to show that the projective crossing
number of Hk is at least (and, in view of Lemma 4.1, equal to) 2.

Recall that an embedding is a drawing with no edge crossings, and that a minor of a graph
is obtained from a subgraph by means of contracting edges. We need a result that follows
from [7] plus the observation that being embeddable in the projective plane is closed under
taking minors.

Lemma 4.2 [7] A graph that contains as a minor either R1 and R2 (Figure 7) is not embeddable
in the projective plane.

C1 C ′

1

C2 C ′

2

z1 z2

z

R1 R2

Figure 7: The graphs R1 (≃ K7 − C4) and R2 (≃ K4,5 − M4), two of the “forbidden minors”
for the projective plane.

Lemma 4.3 For each k ≥ 3, the graph Hk has projective crossing number at least 2.

Proof. Let F ⊂ E(Hk) consist of those edges that are not copies of the edges (in T ) ep = pq,
er = br, or es = sd (cf. Figure 4).
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First we show that (Claim 1) if e ∈ F , then Hk − e contains R2 as a minor. Hence, by
Lemma 4.2, the projective crossing number of Hk − e is at least 1, and so such e cannot bear
the only crossing of a projective drawing of Hk. Then we finish the proof with showing that
(Claim 2), if a crossing in a projective drawing of Hk involves two edges not from F , then
neither this one can be the only crossing in the drawing.

Claim 1. If e ∈ F , then Hk − e contains an R2 minor.

First, as a warm-up, let us show that Hk has a minor isomorphic to R2, for all k ≥ 2. Let
Cb denote the cycle in H ′

k which results as the union of all copies of the path brcp′q′s′d′ ⊂ T 2.
Let Ca similarly denote the union of all copies of the path apqsdr′c′ ⊂ T 2 in H ′

k. Then Ca, Cb

are disjoint cycles in Hk, and parts of each of them can be contracted to form the cycles C2, C
′
2

of R2 (emphasized by thick dots in Figure 7). The vertex h of Hk then becomes z in R2, and
the rest follows easily (see also Figure 3).

A more careful consideration of the arguments in the previous paragraph reveals that even
the graph Hk − e has a minor isomorphic to R2: this is easy if e 6∈ E(Ca) ∪ E(Cb). Otherwise,
say for e ∈ E(Ca), the edge e may be “bypassed” in the cycle by another two edges in H ′

k not
incident with Cb, unless e is a copy of ep, er or es above (that is, unless e /∈ F ). Thus Hk − e
contains R2 as a minor, as claimed.

Claim 2. If there is a crossing in a projective drawing D of Hk involving two edges not from F ,
then D must contain at least another one crossing.

Consider an edge crossing X in D that involves two edges e1, e2 6∈ F , i.e. both e1, e2 are
copies of ep, er or es in Hk. Let H◦

k denote the graph obtained from Hk by subdividing e1 and
e2 with new vertices x, x′, respectively, and let H•

k result from H◦

k by identifying x with x′. In
other words, we obtain H•

k from Hk by turning the crossing X into a new degree-4 vertex.
Suppose, for a contradiction, that X is the only crossing in D. Hence the corresponding

drawing D• of H•

k is crossing-free, and H•

k is embeddable in the projective plane. We, however,
are going to show that any H•

k obtained in the described way must have a minor isomorphic to
R1 or R2 which completes the proof by Lemma 4.2.

Recall the notation from the proof of Claim 1. If, say, e1, e2 ∈ E(Ca), then H•

k contains a
(shorter) circuit C ′

a ⊂ Ca, which can be used together with Cb to argue that H•

k has a minor
isomorphic to R2 for k ≥ 3, as above. So we may assume that e1 ∈ E(Ca) and e2 ∈ E(Cb), or
vice versa. We divide our analysis into three cases up to symmetry:

(a) e1 is a copy of ep;

(b) e1 is a copy of er and e2 is a copy of er or es;

(c) both e1, e2 are copies of es.

e1

x

e1

x

h h

x′

x′

y y

Figure 8: An illustration of Claim 2, case (a). R1-minors result in both situations.

To deal with (a), we focus on a fragment of the graph H◦

k close to vertex x, which is drawn
in solid lines in Figure 8. Actually, this case has two similar subcases as in the picture, and in
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at least one of them none of the solid edges in the picture is incident with the vertex x′.
Now, in the graph H•

k , we contract the three solid edges incident with the vertex y, and
denote by G0 the subgraph consisting of the two shaded triangles after the contraction (see
Figure 8). Notice that G0 together with h and the remaining solid edges form a subgraph
isomorphic to a subdivision of the graph R1 − z2, where h corresponds to z1 and the shaded
triangles to the cycles C1, C

′
1 in R1. Moreover, there is a collection of paths (in dashed edges

of H•

k) joining the vertex x = x′ to all vertices of G0, and so x = x′ is “good for” z2 in the
graph R1. Hence the graph H•

k has a minor isomorphic to R1.

e1

x

x′

h

x′ e1

x

h

f

Figure 9: How to get R1-minors in the cases (b)–left and (c)-right of Claim 2.

We do similarly in the other two cases (b),(c): e1, e2 are again chosen without loss of
generality such that the subgraphs drawn in solid lines as fragments of H◦

k in Figure 9 are not
incident with the vertex x′. In case (c), if e2 = f happens (where f is as in the picture), then
we interchange e1 and e2. Those “solid-line” subgraphs in both cases evidently contain minors
isomorphic to the graph R1 − z2, such that the shaded triangles correspond to C1, C

′
1 in R1.

Moreover, the vertex x = x′ in H•

k is connected to vertices of the shaded triangles by five paths,
and hence the desired R1-minor follows in both cases.

5 Concluding Remarks

We note that our Theorem 1.3 cannot be strengthened to claim the nonexistence of a K2,f(k)–
minor: Kochol’s 2-crossing-critical family [11] contains arbitrarily large K2,m-minors.

Theorem 1.4 gets generalized to other nonorientable surfaces as follows.

Theorem 5.1 For any integers k ≥ 3 and m ≥ 1, there exists a graph Gm,k that is 2-crossing-
critical in the nonorientable surface Nm of genus m, and has a vertex of degree 6k.

Proof. Let F denote a graph embeddable into the projective plane such that F is 2-crossing-
critical in the ordinary plane, and such that F − e is nonplanar for every edge e of F (K6 minus
an edge is an example of such an F ). We construct the graph Gm,k for m > 1 as the disjoint
union of Hk (any Hk satisfying Theorem 1.4) and m − 1 copies of F .

We claim that Gm,k − e has crossing number at most one in Nm, for any edge e of Gm,k.
For if e is in Hk, then one crosscap may be used to draw Hk − e with ≤ 1 crossing, and the
remaining crosscaps allow us to embed the m − 1 copies of G. On the other hand, if e is in a
copy F1 of F , then one can draw planarly F1− e, use m−2 crosscaps to embed the other copies
of F , and use the remaining two crosscaps to embed Hk (Figure 3). Thus, in any case, Gm,k − e
has crossing number at most one in Nm, as claimed.

It remains to show that Gm,k cannot be drawn into Nm with only one crossing. By way of
contradiction, suppose that such a drawing D exists. We need to analyze two cases separately.

First, suppose that the only crossing in D involves two edges in Hk. Then each copy of F
is embedded in Nm, and therefore contains a noncontractible cycle. Cutting along these m − 1
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disjoint noncontractible cycles leaves a (projective–planar) drawing that contains a (projective-
planar) drawing of Hk with exactly 1 crossing, contradicting that Hk is 2–crossing–critical in
the projective plane.

Second, suppose that the only crossing in D involves at least an edge e in a copy F1 of
F . Thus removing e leaves an embedding of the disjoint union of the other copies of F , and
of F1 − e and Hk. Analogously to the previous paragraph, each of the other copies of F , as
well as (nonplanar) F1 − e, contain a noncontractible cycle, and cutting along these m − 1
disjoint cycles yields an embedding of Hk in the projective plane, again contradicting that Hk

is 2–crossing–critical in the projective plane.

The proof above illustrates the issues involved in a related open problem posed by DeVos,
Mohar, and Šámal [4]: if G is the disjoint union of the (say blue) graph G1 and the (say red)
graph G2, is it true that an optimal drawing of G always exist that has no red–blue crossing?

Our construction of Hk in Section 4 makes essential use of the nonorientability of the host
surface (precisely, it requires the embeddability of a one–sided loop). It is thus interesting to
ask whether Conjecture 1.2 generalizes to orientable surfaces.

Question 5.2 Are there h > 0 and k = k(h) such that there exist k–crossing–critical graphs in
the orientable surface Sh of genus h with arbitrarily large maximum degree?

Although the results in this paper do not constitute a direct step towards the final resolution
of Conjecture 1.1, our results shed some new light on the structure of crossing-critical graphs,
and they also further illustrate the nontriviality of the conjecture. On the one hand, a positive
answer to Conjecture 1.2 could bring closer a possible “nice” structural characterization of k-
crossing-critical graphs (k fixed). However, a counterexample like the one in Theorem 1.4 would
make such a characterization much harder, if possible at all.
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