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Purpose of the talk

To outline and promote some tools for topologically-restricted graphs which
turned out very useful in our crossing-number-related research. . .
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• M. Chimani, P. Hliněný and G. Salazar. Toroidal Grid Minors and Stretch
in Embedded Graphs. Submitted (2014), 32 p.



page.14
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the cartesian product Cp2Cq:
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the cartesian product Cp2Cq:

• Motivation:

Theorem. [Robertson and Seymour] For any graph H embedded on a
surface Σ, there exists a constant c := c(H) such that every graph G that
embeds in Σ with face-width at least c contains H as a minor.
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1 Toroidal Grids1 Toroidal Grids

• The toroidal p× q -grid =

the cartesian product Cp2Cq:

• Motivation:

Theorem. [Robertson and Seymour] For any graph H embedded on a
surface Σ, there exists a constant c := c(H) such that every graph G that
embeds in Σ with face-width at least c contains H as a minor.

Theorem. [de Graaf and Schrijver] Let G be a graph embedded in the torus
with face-width fw(G) = r ≥ 5. Then G contains the toroidal

b2r/3c × b2r/3c -grid

as a minor (and this is tight).
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• What is the size of a largest tor. grid minor we find in our graph?
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• What is the size of a largest tor. grid minor we find in our graph?

While [de Graaf and Schrijver] give a tight answer (for torus) for the
smaller grid dimension, there is a diff. between 5× 1000 and 50× 50. . .
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• Toroidal expanse of G defined as

Tex(G) := max {p · q : p, q ≥ 3 and G has a Cp2Cq-minor}.
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smaller grid dimension, there is a diff. between 5× 1000 and 50× 50. . .

• Toroidal expanse of G defined as

Tex(G) := max {p · q : p, q ≥ 3 and G has a Cp2Cq-minor}.

• Relation to the crossing number:

– Known cr(Cp2Cq) ≥ 1
2(p− 2)q for p ≤ q, and

conjectured cr(Cp2Cq) = (p− 2)q which is known for p = 3, 4, 5.
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• What is the size of a largest tor. grid minor we find in our graph?

While [de Graaf and Schrijver] give a tight answer (for torus) for the
smaller grid dimension, there is a diff. between 5× 1000 and 50× 50. . .

• Toroidal expanse of G defined as

Tex(G) := max {p · q : p, q ≥ 3 and G has a Cp2Cq-minor}.

• Relation to the crossing number:

– Known cr(Cp2Cq) ≥ 1
2(p− 2)q for p ≤ q, and

conjectured cr(Cp2Cq) = (p− 2)q which is known for p = 3, 4, 5.

– Consequently, cr(Cp2Cq) ≥ 1
3pq, and hence in general

cr(G) ≥ 1
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How large grid we haveHow large grid we have

• What is the size of a largest tor. grid minor we find in our graph?

While [de Graaf and Schrijver] give a tight answer (for torus) for the
smaller grid dimension, there is a diff. between 5× 1000 and 50× 50. . .

• Toroidal expanse of G defined as

Tex(G) := max {p · q : p, q ≥ 3 and G has a Cp2Cq-minor}.

• Relation to the crossing number:

– Known cr(Cp2Cq) ≥ 1
2(p− 2)q for p ≤ q, and

conjectured cr(Cp2Cq) = (p− 2)q which is known for p = 3, 4, 5.

– Consequently, cr(Cp2Cq) ≥ 1
3pq, and hence in general

cr(G) ≥ 1

12
Tex(G).

– Specifically, on the torus;

cr(G) = O
(
∆(G)2 · Tex(G)

)
.
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On the torusOn the torus

• Cut toroidal G along shortest
nonsep. dual cycle – length k.
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On the torusOn the torus

• Cut toroidal G along shortest
nonsep. dual cycle – length k.

• Re-route the k cut edges along
a shortest dual path – length ` ≥ k/2.

• Consequently;

cr(G) ≤ k · `+ ∗ ≤ 3

2
k`.
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• Cut toroidal G along shortest
nonsep. dual cycle – length k.

• Re-route the k cut edges along
a shortest dual path – length ` ≥ k/2.

• Consequently;

cr(G) ≤ k · `+ ∗ ≤ 3

2
k`.

• How about a toroidal grid in G?

Lemma. Assume G on the torus contains p ≥ 3 disjoint cycles of one homotopy
class and q ≥ 3 disjoint cycles of another homotopy, then G has a Cp2Cq-minor.
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On the torusOn the torus

• Cut toroidal G along shortest
nonsep. dual cycle – length k.

• Re-route the k cut edges along
a shortest dual path – length ` ≥ k/2.

• Consequently;

cr(G) ≤ k · `+ ∗ ≤ 3

2
k`.

• How about a toroidal grid in G?

Lemma. Assume G on the torus contains p ≥ 3 disjoint cycles of one homotopy
class and q ≥ 3 disjoint cycles of another homotopy, then G has a Cp2Cq-minor.

• Consequently (only on the torus!);

Tex(G) ≥
⌈

`

b∆(G)/2c

⌉
·
⌊

2

3

⌈
k

b∆(G)/2c

⌉⌋
≥ 16

7∆(G)2
k`≥ 32

21∆(G)2
cr(G).
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• Considering only orientable surf.

• Do we need “higher grids” on
surfaces beyond the torus?
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• Do we need “higher grids” on
surfaces beyond the torus?

NO!

• Even for a high-genus grid, its “essential part” (note; fixed g!) can be
captured by a suitable toroidal grid. . .
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Beyond the torusBeyond the torus

• Considering only orientable surf.

• Do we need “higher grids” on
surfaces beyond the torus?

NO!

• Even for a high-genus grid, its “essential part” (note; fixed g!) can be
captured by a suitable toroidal grid. . .

• In fact, we can prove (under suitable density assumption);

c0(∆, g) · cr(G) ≤ Tex(G) ≤ c1 · cr(G).
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• What property of an embedding
forces large toroidal grids?
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It is the face-width in [R+S], [dG+S].
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• What property of an embedding
forces large toroidal grids?

It is the face-width in [R+S], [dG+S].

• For us (and for crossing-number), the
dual edge-width seems technically more suitable:

= how many edges of G we have to cross by a non-contractible loop.
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forces large toroidal grids?

It is the face-width in [R+S], [dG+S].

• For us (and for crossing-number), the
dual edge-width seems technically more suitable:

= how many edges of G we have to cross by a non-contractible loop.

• Actually, we want the loop to be non-separating, and capture also “the
other dimension” (cf. “k × `”) to lower-bound the grid size.
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2 Stretch of an Embedding2 Stretch of an Embedding

• What property of an embedding
forces large toroidal grids?

It is the face-width in [R+S], [dG+S].

• For us (and for crossing-number), the
dual edge-width seems technically more suitable:

= how many edges of G we have to cross by a non-contractible loop.

• Actually, we want the loop to be non-separating, and capture also “the
other dimension” (cf. “k × `”) to lower-bound the grid size.

Of course, would be nice to have the definition symmetric (in “k and `”).
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Petr Hliněný, SoCG Meets STOC, 2016 8 / 14 Toroidal Grids, Stretch and Crossing. . .

Defining stretchDefining stretch

• Geometric intersection number
of loops α and β

= min
α′∼α, β′∼β

|α′ ∩ β′|.
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• Geometric intersection number
of loops α and β

= min
α′∼α, β′∼β

|α′ ∩ β′|.

• α, β are k-crossing if this geom. intersection number is k.

Definition. The stretch of an embedded graph G is defined by

Str(G) := min
{
|A| · |B| : A,B ⊆ G cycles and 1-crossing

}
.
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Definition. The stretch of an embedded graph G is defined by

Str(G) := min
{
|A| · |B| : A,B ⊆ G cycles and 1-crossing

}
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• Note; 1-crossing loops ⇒ non-contractible & non-separating.
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Defining stretchDefining stretch

• Geometric intersection number
of loops α and β

= min
α′∼α, β′∼β

|α′ ∩ β′|.

• α, β are k-crossing if this geom. intersection number is k.

Definition. The stretch of an embedded graph G is defined by

Str(G) := min
{
|A| · |B| : A,B ⊆ G cycles and 1-crossing

}
.

• Note; 1-crossing loops ⇒ non-contractible & non-separating.

• Relation to the crossing number:

cr(G) ≤ Str(G∗) on the torus – trivial

cr(G) ≥ c2(∆, g) · Str(G∗) in general – not so easy
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Some properties of stretchSome properties of stretch

• Let C ⊆ G be a shortest
non-separating cycle. Then
Str(G//C) ≥ 1

4Str(G).
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• Let C ⊆ G be a shortest
non-separating cycle. Then
Str(G//C) ≥ 1

4Str(G).

• Let A,B ⊆ G be a cycle pair
witnessing Str(G) and |A| ≤ |B|. Then ewn(G//A) ≥ 1

2 ewn(G).
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• For a cycle C ⊆ G, all the cycles odd-crossing C in G satisfy the “3-path
condition”.
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Some properties of stretchSome properties of stretch

• Let C ⊆ G be a shortest
non-separating cycle. Then
Str(G//C) ≥ 1

4Str(G).

• Let A,B ⊆ G be a cycle pair
witnessing Str(G) and |A| ≤ |B|. Then ewn(G//A) ≥ 1

2 ewn(G).

• For a cycle C ⊆ G, all the cycles odd-crossing C in G satisfy the “3-path
condition”.

Consequently, odd-Str(G) = Str(G) (allowing odd-crossing pairs A,B).

• Note; above the torus, we cannot directly relate cr(G) to Str(G∗) !
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• Recall what we want to prove. . .
c0(∆, g) · cr(G) ≤ Tex(G) ≤ c1 · cr(G).

• We have already seen Tex(G) ≤ 12 cr(G). OK
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• Recall what we want to prove. . .
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• We have already seen Tex(G) ≤ 12 cr(G). OK

The left-hand inequality? So far only for the torus!
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• Recall what we want to prove. . .
c0(∆, g) · cr(G) ≤ Tex(G) ≤ c1 · cr(G).

• We have already seen Tex(G) ≤ 12 cr(G). OK

The left-hand inequality? So far only for the torus!

• The strategy: to draw G with few crossing unless encounter a large grid.

Imagine we cut G0 = G along a shortest non-sep. dual cycle of length k1
to G1, with dual distance `1 between the sides in G1.
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Imagine we cut G0 = G along a shortest non-sep. dual cycle of length k1
to G1, with dual distance `1 between the sides in G1.

• Continue this G1 to G2, . . . , to Gg, getting pairs (ki, `i) for i = 1, . . . , g.
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3 Tie Up the Ends3 Tie Up the Ends

• Recall what we want to prove. . .
c0(∆, g) · cr(G) ≤ Tex(G) ≤ c1 · cr(G).

• We have already seen Tex(G) ≤ 12 cr(G). OK

The left-hand inequality? So far only for the torus!

• The strategy: to draw G with few crossing unless encounter a large grid.

Imagine we cut G0 = G along a shortest non-sep. dual cycle of length k1
to G1, with dual distance `1 between the sides in G1.

• Continue this G1 to G2, . . . , to Gg, getting pairs (ki, `i) for i = 1, . . . , g.

• In plane Gg, reconnect the k1 + · · ·+ kg cut edges, costing only

c3(g) ·maxi(ki`i) crossings.
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Tex(g) ∼ maxi(ki`i).
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• We need to “relate”
Tex(g) ∼ maxi(ki`i).

• Can assume maxi(ki`i) = k1`1.

• If k1`1 ∼ Str(G), then we recursively apply prev. Str(G//C) ≥ 1
4Str(G).

Relatively easy.
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• Can assume maxi(ki`i) = k1`1.

• If k1`1 ∼ Str(G), then we recursively apply prev. Str(G//C) ≥ 1
4Str(G).

Relatively easy.

• If k1`1 >> Str(G), then we need to “cut off” the handle(s) causing small
stretch. . .
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• We need to “relate”
Tex(g) ∼ maxi(ki`i).

• Can assume maxi(ki`i) = k1`1.

• If k1`1 ∼ Str(G), then we recursively apply prev. Str(G//C) ≥ 1
4Str(G).

Relatively easy.

• If k1`1 >> Str(G), then we need to “cut off” the handle(s) causing small
stretch. . .

We can use prev. ewn(G//A) ≥ 1
2 ewn(G) and a complicated induction

setup to “preserve” much of the handle contributing k1`1 – till a torus.
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The tough guyThe tough guy

• We need to “relate”
Tex(g) ∼ maxi(ki`i).

• Can assume maxi(ki`i) = k1`1.

• If k1`1 ∼ Str(G), then we recursively apply prev. Str(G//C) ≥ 1
4Str(G).

Relatively easy.

• If k1`1 >> Str(G), then we need to “cut off” the handle(s) causing small
stretch. . .

We can use prev. ewn(G//A) ≥ 1
2 ewn(G) and a complicated induction

setup to “preserve” much of the handle contributing k1`1 – till a torus.

• After all; Tex(G) ∼ k1`1 ≥ c0(∆, g) · cr(G).

Theorem. c0(∆, g) · cr(G) ≤ Tex(G) ≤ c1 · cr(G) for G densely embedded on
an orientable surface.
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4 Algorithmic Corner4 Algorithmic Corner

Crossing Approximation Algorithm

• Algorithm CrossingApproximation
Input: graph G embedded in a surface Σ of fixed genus g
Output: a drawing of G with c(∆(G), g) · cr(G) crossings
1. (G0,Σ0)← (G,Σ)
2. F ← ∅
3. for i = 1, 2, . . . , g do
4. γi ← shortest non-separating dual cycle in Gi−1
5. F ← F ∪ E∗(γi)
6. (Gi,Σi)← cut (Gi−1,Σi−1) through γi
7. for f = uv ∈ F do
8. πf ← shortest dual u-v path in (Gg,S0)
9. draw f along πf (avoid multi-crossings)
10. return (Gg + F, S0)

• Runtime O(n log n)
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Stretch Algorithm

• Algorithm ComputeStretchSurgery
Input: graph G embedded in a surface Σ of genus g
Output: the stretch of G
1. i← 1
2. (G1,Σ1)← (G,Σ)
3. str ←∞
4. while Σi not the sphere and |V (Gi)| ≤ g · |V (G)| do
5. αi ← shortest non-separating cycle in Gi
6. βi ← shortest cycle crossing αi exactly once
7. str ← min{str, len(αi) · len(βi)}
8. (Gi+1,Σi+1)← cut (Gi,Σi) along αi
9. and attach disks to the boundaries
10. i← i+ 1
11. return str

• Runtime O(g4n log2 n) – but watch |V (Gi)| carefully. . .
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• Extending stretch and the estimates to the nonorientable case?
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• Removing ∆(G) from the estimates?

Not possible with the above definitions of expanse and stretch, but. . .

• Extending stretch and the estimates to the nonorientable case?

Yes, no major obstacle, but having now three kinds of stretch certificates
and three kinds of grids to consider!
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5 Conclusions5 Conclusions

• Removing ∆(G) from the estimates?

Not possible with the above definitions of expanse and stretch, but. . .

• Extending stretch and the estimates to the nonorientable case?
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• Removing ∆(G) from the estimates?

Not possible with the above definitions of expanse and stretch, but. . .

• Extending stretch and the estimates to the nonorientable case?

Yes, no major obstacle, but having now three kinds of stretch certificates
and three kinds of grids to consider!

• Replacing stretch by face-stretch and handling minor crossing number?

Again, no major obstacle, just nasty technical problems. . .

• Finding other applications of stretch in algorithms. . .

Any suggestions?

Thank you for your attention.
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