
Computing the Tutte Polynomial on Graphs

of Bounded Clique-Width

Omer Giménez1?, Petr Hliněný2??, and Marc Noy1? ? ?

1 Department of Applied Mathematics
Technical University of Catalonia

Jordi Girona 1–3, 08034 Barcelona, Spain

e-mail: [omer.gimenez, marc.noy]@upc.edu

2 Department of Computer Science, FEI,
Technical University of Ostrava

17. listopadu 15, 708 33 Ostrava, Czech Republic

e-mail: petr.hlineny@vsb.cz

Abstract. The Tutte polynomial is a notoriously hard graph invariant,
and efficient algorithms for it are known only for a few special graph
classes, like for those of bounded tree-width. The notion of clique-width
extends the definition of cograhs (graphs without induced P4), and it is
a more general notion than that of tree-width. We show a subexponen-
tial algorithm (running in time exp O(n2/3)) for computing the Tutte
polynomial on cographs. The algorithm can be extended to a subexpo-
nential algorithm computing the Tutte polynomial on on all graphs of
bounded clique-width. In fact, our algorithm computes the more general
U -polynomial.

Keywords: Tutte polynomial, cographs, clique-width, subexponential
algorithm, U polynomial.
2000 Math Subjects Classification: 05C85, 68R10

1 Introduction

The Tutte polynomial T (G;x, y) of a graph G is a powerful invariant with many
applications, not only in graph theory but also in other fields such as knot
theory and statistical physics. One important feature of the Tutte polynomial is
that by evaluating T (G;x, y) at special points in the plane one obtains several
parameters of G. For example, T (G; 1, 1) is the number of spanning trees of G
and T (G; 2, 1) is the number of forests (that is, spanning acyclic subgraphs) of G.

A question that has received much attention is whether the evaluation of
T (G;x, y) at a particular point of the (x, y) plane can be done in polynomial

? Supported by Beca Fundació Crèdit Andorrà and Project BFM2001-2340.
?? Supported by Czech research grant GAČR 201/05/050 and partly by the program

“Information Society” of the Czech Academy of Sciences, project No. 1ET101940420.
? ? ? Supported by Project BFM2001-2340.

time. Jaeger, Vertigan and Welsh [8] showed that evaluating the Tutte polyno-
mial of a graph is #P-hard at every point except those lying on the hyperbola
(x − 1)(y − 1) = 1 and eight special points, including at (1, 1) which gives the
number of spanning trees. In each of the exceptional cases the evaluation can be
done in polynomial time. On the other hand, the Tutte polynomial can be com-
puted in polynomial time for graphs of bounded tree-width. This was obtained
independently by Andrzejak [2] and Noble [11]. Recently Hliněný [7] has ob-
tained the same result for matroids of bounded branch-width representable over
a fixed finite field, which is a substantial generalization of the previous results.
See [5] for additional references on this subject.

In this paper we study the problem of computing the Tutte polynomial for
cographs and, more generally, for graphs of bounded clique-width. A graph has
clique-width ≤ k if it can be constructed using k labels and the following four
operations: 1) create a new vertex with label i; 2) take the disjoint union of
several labeled graphs; 3) add all edges between vertices of label i and label j;
and 4) relabel all vertices with label i to have label j. An expression defining
a graph G built from the above four operations using k labels is a k-expression
for G. A cograph is a graph of clique-width at most two; equivalently, it is a
graph containing no induced path P4 on four vertices.

Although a class of graphs with bounded tree-width has also bounded clique-
width, the converse is not true. For instance, complete graphs have clique-width
two. It is well-known that all problems expressible in monadic second order logic
of incidence graphs become polynomial time solvable when restricted to graphs of
bounded tree-width. For bounded clique-width less is true: all problems become
polynomial time solvable if they are expressible in monadic second-order logic
using quantifiers on vertices but not on edges (adjacency graphs) [3].

Our main results are as follows:

Theorem 1.1. The Tutte polynomial of a cograph with n vertices can be com-
puted in time exp

(

O(n2/3)
)

.

Theorem 1.2. Let G be a graph with n vertices of clique-width k along with a
k-expression for G as an input. Then the Tutte polynomial of G can be computed
in time exp

(

O(n1−1/(k+2))
)

.

Theorem 1.2 is not likely to hold for the class of all graphs, since it would
imply the existence of a subexponential algorithm for 3-coloring, hence also for
3-SAT; that is considered highly unlike in the Computer Science community.
Of course, the main open question is whether there exists a polynomial time
algorithm for computing the Tutte polynomial of graphs of bounded clique-
width. We discuss this issue in the last section.

In fact, our algorithms compute not only the Tutte polynomial, but the so-
called U polynomial (see [12]), which is a stronger polynomial invariant. More-
over, we may skip the requirement of having a k-expression for G as an input in
Theorem 1.2, if we do not care about an asymptotic behaviour in the exponent:
Just to prove a subexponential upper bound we may use the approximation
algorithm for clique-width by Oum and Seymour [13, 14].

2

Since our algorithms are quite complicated, for an illustration, we first present
in Section 2 a simplified algorithm computing the number of forests in a cograph,
that is, evaluating T (G; 2, 1) for graphs of clique-width ≤ 2. (This is #P-hard
on all graphs [8].) In Section 3 we extend the algorithm to the computation of
the full Tutte polynomial on cographs. Finally, our main result, Theorem 1.2 is
proved in details in the long version [6].

2 Forests in Cographs

The class of cographs is defined recursively as follows:

1. A single vertex is a cograph.
2. A disjoint union of two cographs is a cograph.
3. A complete union of two cographs is a cograph.

Here a complete union of two graphs G ⊕ H means the operation of taking a
disjoint union G ∪̇H, and adding all edges between V (G) and V (H). A cograph
G can be represented by a tree, whose internal nodes correspond to operations
2) and 3) above, and whose leaves correspond to single vertices. We call such a
tree an expression for G.

For example, all cliques are cographs, and the complement of a cograph
is a cograph again. Cographs have long history of theoretical and algorithmic
research. In particular, they are known to be exactly the graphs without induced
paths on four vertices (P4-free).

Let us call a signature a multiset of positive integers. The size ‖α‖ of a signa-
ture α is the sum of all elements in α, respecting repetition in the multiset. A sig-
nature α of size n is represented by the characteristic vector α = (a1, a2, . . . , an),
where there are ai ≥ 0 elements i in α, and

∑n
i=1 i ·ai = n. (On the other hand,

the cardinality of α is |α| =
∑n

i=1 ai, as usual.) An important fact we need is:
Recall that Θ(f) is a usual shortcut for all functions having the same asymp-

totic growth rate as f .

Lemma 2.1. There are 2Θ(
√

n) distinct signatures of size n.

Proof. Each signature actually corresponds to a partition of n into an unordered
sum of positive integers. It is well-known [10, Chapter 15] that there are 2Θ(

√
n)

of those.

We call a double-signature a multiset of ordered pairs of non-negative integers,
excluding the pair (0, 0). The size ‖β‖ of a double-signature β is the sum of all
(x + y) for (x, y) ∈ β, respecting repetition in the multiset. We, moreover, need
to prove:

Lemma 2.2. There are exp
(

Θ(n2/3)
)

distinct double-signatures of size n.

Lemma 2.2 is a particular case of Lemma 5.1, which is proved in [6].

Lemma 2.3. A double-signature β of size n has at most exp
(

O(n2/3)
)

different
submultisets (i.e. of different characteristic vectors).

Proof. Just count all double-signatures of size ≤ n.

3

2.1 Forest Signature Table

Let us now consider a graph G and a forest U ⊂ G. The signature α of U is
the multiset of sizes of the connected components of U . (Obviously, α has size
|V (G)| if U spans all the vertices.) We call a (spanning) forest signature table of
the graph G a vector T (realized as an array T [. . .]); such that T records, for
each signature α of size |V (G)|, the number of spanning forests U ⊂ G having
signature α (as T [α]). For simplicity we usually skip the word “spanning” if it
is clear from the context. We are going to compute the forest signature table
of a cograph G recursively along the way G has been constructed. For that we
describe two algorithms.

Let us denote by ΣG the set of all signatures of size |V (G)|. It is important
to keep in mind that signatures are considered as multisets, which concerns also
set operations. For instance, a multiset union γ] δ is obtained as the sum of
the characteristic vectors of γ and δ, and a multiset difference γ \ δ is defined
by the non-negative difference of those.

Algorithm 2.4. Combining the spanning forest signature tables of graphs F
and G into the one of the disjoint union H = F ∪̇G.

Input: Graphs F,G, and their forest signature tables T F ,T G.
Output: The forest signature table T H of H = F ∪̇G.

create empty table T H of forest signatures of size |V (H)|;

for all signatures αF ∈ ΣF , αG ∈ ΣG do

set α = αF] αG (a multiset union);

add T H [α] += T F [αF] · T G[αG];

done.

The running time of this algorithm is proportional to the number of pairs of
signatures (αF , αG), which is exp

(

O(n2/3)
)

, where n = |V (H)|; this is due to
Lemma 2.2 and the fact that we have the O() expression in the exponent.

The second algorithm is, on the other hand, much more complicated. It
involves double-signatures in the following meaning: Consider a graph H with
vertices partitioned into two parts V (H) = V1 ∪ V2, and a forest U ⊂ H. The
double-signature of U (wrt. V1, V2) is the multiset of pairs

(

|V (C)∩V1|, |V (C)∩

V2|
)

over all connected components C of U .
The idea behind the algorithm is to obtain the double-signatures (for V1 =

V (F) and V2 = V (G)) of the spanning forests in H = F ⊕G from the signatures
of the spanning forests in F and G. For every pair of forests UF ⊂ F and UG ⊂ G,
the algorithm iteratively counts the different ways in which each component of
UG can be joined to components of UF . During the process, double signatures
are needed to distinguish between former vertices of F and of G in already
joined components. In fact, the algorithm works with pairs of signatures αF and
αG, that is, with whole classes of forests instead of particular forests. We also
remark that a submultiset is considered among all possible selections of repeated
elements, like if they were pairwise distinct.

4

Algorithm 2.5. Combining the spanning forest signature tables of graphs F
and G into the one of the complete union H = F ⊕ G.

Input: Graphs F,G, and their forest signature tables T F ,T G.
Output: The forest signature table T H of H = F ⊕ G.

create empty table T H of forest signatures of size |V (H)|;

for all signatures αF ∈ ΣF , αG ∈ ΣG do

set z = |V (F)|;

create empty table X of forest double-signatures of size z;

// Imagine particular forests UF ⊂ F , UG ⊂ G of signature αF , αG,

// and a selected component C ⊂ UG of size c.

set X
[

double-signature {(a, 0) : a ∈ αF }
]

= 1;

for each c ∈ αG (with repetition) do

create empty table X ′ of forest double-signatures of size z + c;

for all double signatures β of size z s.t. X[β] > 0 do

for(†) all submultisets γ ⊆ β (with repetition) do

set d1 =
∑

(x,y)∈γ x, d2 =
∑

(x,y)∈γ y;

set double-signature β′ = (β \ γ)] {(d1, d2 + c)};

add(*) X ′[β′] += X[β] ·
∏

(x,y)∈γ cx;

done

done

set X = X ′, z = z + c; dispose X ′;

done

for all double-signatures β of size |V (H)| do

set signature α0 = {x + y : (x, y) ∈ β};

add T H [α0] += X[β] · T F [αF] · T G[αG];

done

done.

Proof of Algorithm 2.5. We now explain the algorithm, and show its correctness.
It is better understandable if one imagines particular forests (representatives)
UF ⊂ F and UG ⊂ G in the place of the signatures αF and αG chosen in the
first for cycle. Then one may routinely verify that all subsequent computations
depend only on the forest signatures αF , αG (not on the particular forests), and
hence it is correct to finally multiply the computed values in X by the numbers
T F [αF] · T G[αG].

In the tables X ,X ′ we iteratively compute the numbers of all span-
ning forests in H that result by adding some edges between the forests UF

and UG (stored by their double signatures). We consider an arbitrary order
C1, C2, . . . , Ck on the connected components of UG. For i = 1, 2, . . . , k, we take
the component Ci, and count all possible ways how to connect Ci by selected
edges to a subset (†) of components of each of the previously constructed forests
on V (F ∪ C1 ∪ . . . ∪ Ci−1) which are recorded in the table X. The other ends

5

of those selected edges are considered only among vertices in V (F). (Recall that
the complete union H = F ⊕ G has added all edges between V (F) and V (Ci).)
We then record (*) numbers of all the new forests on V (F ∪ C1 ∪ . . . ∪ Ci) in a
new table X ′ that will play the role of X in the next iteration.

Saying precisely, after finishing iteration i = 1, 2, . . . , k described in the
previous paragraph, each entry X ′[β] equals the number of all forests U ′ of
signature β spanning V (F ∪ C1 ∪ . . . ∪ Ci) such that U ′ � V (F) = UF and
U ′ � V (G) = UG � C1 ∪ . . . ∪ Ci. That follows easily by an induction from the
previous arguments. At the end we count each spanning forest U ⊆ H such that
U �V (F) = UF and U �V (G) = UG exactly once. Finally, the double-signatures
in the table X partition the vertices into V (F) and V (G), but that is no longer
needed. So we “simplify” them – we record the resulting numbers only by the
(single) forest signatures in the resulting table T H .

2.2 Time Analysis

Lemma 2.6. A modified implementation of Algorithm 2.5 runs in time
exp

(

O(n2/3)
)

where n = |V (H)|.

Proof. Since we have O() in the exponent, it is enough to verify that each of
the for cycles in Algorithm 2.5 is iterated at most exp

(

O(n2/3)
)

times. That
follows from Lemma 2.1 for the first cycle, and it is clear for the second cycle.
For the third nested cycle it follows from Lemma 2.2.

A problem may occur in the fourth nested cycle ’for all submultisets γ ⊆ β’
if β consists, say, of n/2 copies of the element 2. Then there are up to exp

(

Θ(n)
)

submultisets γ to consider. Fortunately, the results of the subsequent computa-
tion depend only on the characteristic vector of γ. Hence it is enough to consider
(much less of) pairwise different submultisets γ ⊆ β (cf. Lemma 2.3), and then
multiply the resulting number by all possible choices (combinations) of repeated
elements of γ from β. Formally, the program line (†) now reads

for all different submultisets γ ⊆ β do ,

and the line (*) reads

add X ′[β′] += X[β] ·
∏

(x,y)∈γ

cx ·
∏

(x,y)∈〈β〉

(

µβ(x, y)

µγ(x, y)

)

,

where 〈α〉 denotes the ordinary set formed by elements of a multiset α, and µαz
is the repetition of an element z in α. The statement is proved.

We remark that the improvement discussed in the proof of previous
Lemma 2.6 have been fully incorporated in the subsequent algorithms.

Theorem 2.7. The number of spanning forests in an n-vertex cograph can be
computed in time exp

(

O(n2/3)
)

.

Proof. Consider a cograph G and a tree expression defining it. The forest signa-
ture table of a single vertex is trivial, and by Algorithms 2.4 and 2.5 (Lemma 2.6),

6

the forest signature tables of a union or a complete union of two cographs can
be computed in time claimed. Finally, knowing the forest signature table T of
G, the number of all spanning forests of G is computed by adding up the entries
of T .

3 The Tutte Polynomial of a Cograph

The Tutte polynomial can be defined in a number of equivalent ways. For our
purposes, given a graph G = (V,E) we define the Tutte polynomial as

T (G;x, y) =
∑

F⊆E

(x − 1)r(E)−r(F)(y − 1)|F |−r(F),

where r(F) = |V | − k(F) and k(F) is the number of connected components
of the spanning subgraph induced by the edge-subset F . It is clear that know-
ing T (G;x, y) is the same as knowing, for every i and j, how many spanning
subgraphs with the edge set F in G are there with |F | = i and k(F) = j.

Consider a spanning subgraph W ⊂ G determined on V (W) = V (G) by an
arbitrary subset F ⊂ E(G), F = E(W). The sizes of the connected components
of W define a signature of size |V (G)|. In the (spanning) subgraph signature
table S of G, for each signature α of size |V (G)| and each number of edges
f ∈ {0, 1, 2, . . . , |E(G)|}, we record the number S[α, f] of all spanning subgraphs
of G having f edges and having component sizes according to the signature α. We
shortly denote by γ �i the multiset formed by all the i-th coordinates (repetitions
accounted for) of the elements of a double-signature γ.

In order to prove Theorem 1.1 we need analogues of Algorithms 2.4 and 2.5
for computing subgraph signature tables. The algorithm for disjoint unions is
again straightforward and we omit it; the one for complete unions comes next.

Algorithm 3.1. A modification of Algorithm 2.5 for computing the (spanning)
subgraph signature table of the complete union H = F ⊕ G.

Besides adding edge number as the second index to the signature tables, the only
other major difference of this algorithm from Algorithm 2.5 is that the single
line (*) is replaced with another for cycle calling a procedure CellSel of further
Algorithm 3.2.

Input: Graphs F,G, and their subgraph signature tables SF ,SG.
Output: The subgraph signature table SH of H = F ⊕ G.

create empty table SH of subgraph signatures of size |V (H)|;

for all αF ∈ ΣF , and eF = 0, 1, . . . , |E(F)| s.t. SF [αF , eF] > 0 do

for all αG ∈ ΣG, and eG = 0, . . . , |E(G)| s.t. SG[αG, eG] > 0 do

set z = |V (F)|;

create empty table Y of subgraph double-signatures of size z;

set Y
[

double-signature {(a, 0) : a ∈ αF }, eF

]

= 1;

for each c ∈ αG (with repetition) do

7

create empty table Y ′ of subgraph double-sign. of size z + c;

for all β of size z, and e s.t. Y [β, e] > 0 do

for all different submultisets γ ⊆ β do

set r =
∏

(x,y)∈〈β〉

(

µβ(x, y)

µγ(x, y)

)

;

set d1 = ‖γ �1‖ =
∑

(x,y)∈γ x, d2 = ‖γ �2‖ =
∑

(x,y)∈γ y;

set double-signature β′ = (β \ γ)] {(d1, d2 + c)};

for f = |γ|, |γ| + 1, . . . , c · d1 do

set multiset D = c · (γ �1) = {cx : (x, y) ∈ γ};

call Algorithm 3.2: p = CellSel(D, f);

add Y ′[β′, e + f] += Y [β, e] · r · p;

done

done

done

set Y = Y ′, z = z + c; dispose Y ′;

done

for all double-sign. β of size |V (H)|, and f , s.t. Y [β, f] > 0 do

set signature α0 = {x + y : (x, y) ∈ β};

add SH [α0, f + eG] += Y [β, f] · SF [αF , eF] · SG[αG, eG];

done

done

done.

Proof of Algorithm 3.1. This algorithm is similar to the improved version of
Algorithm 2.5 (cf. Lemma 2.6), and so we only sketch the proof here. The main
new difficulty lies in counting the different ways in which a connected component
of c vertices in αG can be connected with f edges to the selected components of
signatures (x, y) ∈ γ. Recall that when counting forests we had no such difficulty,
since we joined the component of αG to each component of γ with exactly one
edge; thus we used exactly f = |γ| edges chosen in

∏

(x,y)∈γ cx different ways.

The procedure ’CellSel(D, f)’ counts this for spanning subgraphs, and we defer
the explanation to Algorithm 3.2.

Finally, notice that the edge numbers in tables Y , Y ′ do not account for the
edges from E(G), since we do not know how many edges has each one of the
components of αG. Those edges are summed up at the end, when obtaining the
signatures for H from the double-signatures stored in Y .

Algorithm 3.2. Computing the number of cellular selections: We are selecting
` elements from the union C1 ∪ C2 ∪ . . . ∪ Ck, where Ci for i = 1, 2, . . . , k are
pairwise disjoint cells of sizes di = |Ci|, and we require that some element is
selected from every cell.

Input: A multiset D = {d1, d2, . . . , dk} of cell sizes, and a number `.

8

Output: The number CellSel(D, `) of all such possible selections.

create table u[1..k][1..`], filled with 0;

for j = 1, 2, . . . , d1 do set u[1][j] =
(

d1

j

)

;

set z = d1;
for i = 2, 3, . . . , k do

add z += di;

for j = i, i + 1, . . . ,min(`, z) do

for s = 1, 2, . . . ,min
(

j − (i − 1), di

)

do

add u[i][j] += u[i − 1][j − s]·
(

di

s

)

;

done

done

done

return u[k][`].

Proof of Algorithm 3.2. Let ui,j = u[i][j] be the number of cellular selections of
j elements chosen among the first i cells. These numbers satisfy the recurrence
relation

ui,j =

r
∑

s=1

ui−1,j−s ·

(

di

s

)

where r is the maximum number of elements than can be selected from the i-th
cell to obtain a total of j elements. Since the i-th cell has di elements available,
and the i−1 previous cells contributed at least one element each to the resulting
j elements, it follows that r = min{j − (i − 1), di}.

Algorithm 3.2 just applies the previous recurrence in a correct order, and
avoids useless computations like with values of j too small or too large. It runs
in O(k`2) steps.

Proof of Theorem 1.1. As in Theorem 2.7, the subgraph signature table S of
a cograph can be computed in time proportional to the number of all possible
double-signatures of size n, i.e. in exp

(

O(n2/3)
)

. Then, summing the entries of
S, we compute the numbers of spanning subgraphs with a given number of edges
and a number of components. As we have remarked previously, these numbers
give (efficiently) the Tutte polynomial.

The U polynomial of an n-vertex graph G is defined in [12] as

U(G;x, y) =
∑

F⊆E

xn1
· · · xnk

(y − 1)|F |−r(F),

where n1, . . . , nk are the vertex sizes of the components of the spanning subgraph
(V, F). If we let x1 = · · · = xn = x − 1 in the expression above, we recover the
Tutte polynomial T (G;x, y) up to a power of x− 1. It is clear that the subgraph
signature table of a graph is precisely equivalent to the U polynomial, hence
in the statement of Theorem 1.1 we can replace “U polynomial” for “Tutte
polynomial”.

9

4 Concluding remarks

We have shown that the Tutte and U polynomials can be computed in subexpo-
nential time for cographs, and more generally for graphs with bounded clique-
width [6]. Such a result is very unlikely to hold for all graphs. Of course, the
important question of whether the Tutte polynomial can be computed in polyno-
mial time, or the problem is #P–hard even for graphs of bounded clique-width,
remains open. (The U polynomial is obviously not computable in polynomial
time due to its size.)

On the other hand, the chromatic polynomial for graphs of bounded clique-
width can be computed in polynomial time (although not FPT). This follows
by adapting the algorithm in [9] for computing the chromatic number, keeping
track also of the number of r-colorings for r = 1, . . . , n, where n is the number
of vertices. To our knowledge, that is possibly the only currently known natural
example of graph classes other than chordal graphs, where the chromatic poly-
nomial can be computed in polynomial time, but the complexity of computing
the Tutte polynomial is undecided.

References

1. G.E. Andrews, The theory of partitions, Cambridge U. Press, Cambridge, 1984.
2. A. Andrzejak, An Algorithm for the Tutte Polynomials of Graphs of Bounded

Treewidth, Discrete Math. 190 (1998), 39–54.
3. B. Courcelle, J.A. Makowsky, U. Rotics, Linear Time Solvable Optimization Prob-

lems on Graphs of Bounded Clique-Width, Theory Comput. Systems 33 (2000),
125–150.

4. B. Courcelle, S. Olariu, Upper bounds to the clique width of graphs, Discrete Appl.
Math. 101 (2000), 77–114.

5. O. Giménez, M. Noy, On the complexity of computing the Tutte polynomial of

bicircular matroids, Combin. Probab. Computing, to appear.
6. O. Giménez, P. Hliněný, M. Noy, Computing the Tutte Polynomial on graphs of

Bounded Clique-Width, manuscript, 2005.
7. P. Hliněný, The Tutte Polynomial for Matroids of Bounded Branch-Width, Combin.

Probab. Computing, to appear (2005).
8. F. Jaeger, D.L. Vertigan, D.J.A. Welsh, On the Computational Complexity of the

Jones and Tutte Polynomials, Math. Proc. Camb. Phil. Soc. 108 (1990), 35–53.
9. D. Kobler, U. Rotics, Edge dominating set and colorings on graphs with fixed clique-

width, Discrete Applied Math. 126 (2003), 197–221.
10. J.H. van Lint, R.M. Wilson, A Course in Combinatorics, Cambridge University

Press, Cambridge, 1992.
11. S.D. Noble, Evaluating the Tutte Polynomial for Graphs of Bounded Tree-Width,

Combin. Probab. Computing 7 (1998), 307–321.
12. S.D. Noble, D.J.A. Welsh, A weighted graph polynomial from chromatic invariants

of knots, Ann. Inst. Fourier (Grenoble) 49 (1999), 1057–1087.
13. Sang-Il Oum, P.D. Seymour, Approximating Clique-width and Branch-width, sub-

mitted, 2004.
14. Sang-Il Oum, Approximating Rank-width and Clique-width Quickly, In: WG 2005,

Proccedings, Lecture Notes in Computer Science, to appear (2005).

10

