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Kl Drawings and the Crossing Number

Definition. Drawing of a graph G:
— The vertices of G are distinct points,
and every edge e = uv € E(G) is a simple curve joining u to v.

— No edge passes through another vertex,
and no three edges intersect in a common point.
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Definition. Drawing of a graph G:

— The vertices of G are distinct points,
and every edge e = uv € E(G) is a simple curve joining u to v.

— No edge passes through another vertex,
and no three edges intersect in a common point.

Definition. Crossing number cr(G) of a graph G
is the smallest number of edge crossings in a drawing of G.

Importance — in VLSI design [Leighton et al], graph visualization, etc.

Warning. There are slight variations of the definition of crossing number, some
giving different numbers! (Like counting odd-crossing pairs of edges.) J
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KComputational complexity
Remark. It is practically very hard to determine the crossing number.
Observation. The problem CROSSINGNUMBER(< k) is in NP:

Guess a suitable drawing of GG, then replace crossings with new vertices, and
test planarity. ..
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KComputational complexity
Remark. It is practically very hard to determine the crossing number.

Observation. The problem CROSSINGNUMBER(< k) is in NP:
Guess a suitable drawing of GG, then replace crossings with new vertices, and
test planarity. ..

Theorem 1. [Garey and Johnson, 1983] CROSSINGNUMBER is N P-hard.

Theorem 2. [Grohe, 2001], [Kawarabayashi and Reed, 2007]
CROSSINGNUMBER(Z k) is in F'PT.

Theorem 3. [PH, 2004]
CROSSINGNUMBER is IN P-hard even on simple 3-connected cubic graphs.

Corollary 4. The minor-monotone version of c.n. is also N P-hard.
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Looking for “natural parametrizations”

Question 5. [Seese, 1997]
How hard is CROSSINGNUMBER on graphs of bounded tree-width?
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Question 5. [Seese, 1997]
How hard is CROSSINGNUMBER on graphs of bounded tree-width?

Question 6. Is CROSSINGNUMBER polynomial on almost planar (i.e. being one
edge from planarity) graphs?

Theorem 7. [PH and GS, 2006] CROSSINGNUMBER can be approximated
within factor of A(G) for an almost planar graph G in O(n) time.

Theorem 8. [Gitler, Leaiios, PH and GS, 2007] CROSSINGNUMBER can
be approx. w. factor of 4.5A(G)? for a projective graph G in O(nlogn) time.
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Question 5. [Seese, 1997]
How hard is CROSSINGNUMBER on graphs of bounded tree-width?

Question 6. Is CROSSINGNUMBER polynomial on almost planar (i.e. being one
edge from planarity) graphs?

Theorem 7. [PH and GS, 2006] CROSSINGNUMBER can be approximated
within factor of A(G) for an almost planar graph G in O(n) time.

Theorem 8. [Gitler, Leaiios, PH and GS, 2007] CROSSINGNUMBER can
be approx. w. factor of 4.5A(G)? for a projective graph G in O(nlogn) time.

Question 9. Can we get any reasonable FPT algorithm for (approximating, at
least?) CROSSINGNUMBER based on "how far" the graph is from planarity?

The next step — Toroidal graphs. ..
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KZ Drawing Toroidal Graphs with few Crossings

All current approaches are based on similar natural ideas:

e Cut the (surface) embedded graph along a “short” nonseparating loop.

e Reconnect the cut edges “across” the rest of the drawing.

I




/2 Drawing Toroidal Graphs with few Crossings
All current approaches are based on similar natural ideas:

e Cut the (surface) embedded graph along a “short” nonseparating loop.

e Reconnect the cut edges “across” the rest of the drawing.

I

Idea appears in [Boroczky, Pach and Téth, 2006], or [Djidjev and Vrto, 2006].

These results extend to other surfaces quite straighforwardly.
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/2 Drawing Toroidal Graphs with few Crossings \
All current approaches are based on similar natural ideas:

e Cut the (surface) embedded graph along a “short” nonseparating loop.
e Reconnect the cut edges “across” the rest of the drawing.
Idea appears in [Boroczky, Pach and Téth, 2006], or [Djidjev and Vrto, 2006].
These results extend to other surfaces quite straighforwardly.

Moreover, [Telle and Wood, 2006] extend to drawings of all proper minor closed
graph classes with linear crossing number (using “planar decompositions”).

Approximation?

Unfortunately, the above constructions in no way provide approximation algo-
rithms.

The reason — lack of a corresponding lower bound on the crossing number. ..
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e We embed G on the torus (linear time by [Mohar 1999]).

e We find a “shortest nonseparating” loop of length & on the torus, using
an O(nlogn) algorithm of [Kutz 2006]. (k = dual edge-width of G.)

e Cutting the torus into a cylinder, we “reconnect” the cut edges along a

shortest length-¢ dual path, producing < k/ + k?/4 crossings.
\ Petr Hlinény, ISAAC 07, Sendai 7 Crossing Number of Toroidal Graphs J
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For the rest we have k the dual edge-width of G on the torus, and ¢ the “dual
length” of the cylindrical embedding of G we cut out from our torus.

Lemma 10. q
@) = (W . ok(1)> Y,




/3 Lower-bounding the Crossing Number \
of Toroidal Graphs

For the rest we have k the dual edge-width of G on the torus, and ¢ the “dual
length” of the cylindrical embedding of G we cut out from our torus.

Lemma 10. q
@) = (W . ok(1)> Y,

Proof outline:

e We will find a large toroidal grid minor in G, relative to k, ¢, and A.




K3 Lower-bounding the Crossing Number \
of Toroidal Graphs

For the rest we have k the dual edge-width of G on the torus, and ¢ the “dual
length” of the cylindrical embedding of G we cut out from our torus.

Lemma 10. q
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Proof outline:

e We will find a large toroidal grid minor in G, relative to k, ¢, and A.

e If H is a minor of G, and H has maximum degree at most 4, then
cr(G) > Ler(H).

e The crossing number of the toroidal grid of size p x ¢, where p > ¢ > 3,
is at least %(q — 2)p.
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of Toroidal Graphs

For the rest we have k the dual edge-width of G on the torus, and ¢ the “dual
length” of the cylindrical embedding of G we cut out from our torus.

Lemma 10. 1
@) = (W —ok(1)> Y,

Proof outline:

e We will find a large toroidal grid minor in G, relative to k, ¢, and A.
e If H is a minor of G, and H has maximum degree at most 4, then
cr(G) > Ler(H).

e The crossing number of the toroidal grid of size p x ¢, where p > ¢ > 3,
is at least %(q — 2)p.

Actually, without asymptotic terms our lower bound reads cr(G) > ﬁ -k,
provided that k£ > 16| A/2]. J
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length” of the cylindrical embedding of G we cut out from our torus.

Hence we need to prove:
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length” of the cylindrical embedding of G we cut out from our torus.

Hence we need to prove:

Theorem 11. G contains a minor isomorphic to the toroidal grid of size

(s [7ml) * (sl
31a/2]]” |1a/2]|) ™ (318721

Proof outline:

e Using [de Graaf and Schrijver, 1994] we get a toroidal grid minor of size
k
3] x ) n e

e We obtain another collection of [LA/QJW pairwise disjoint cycles of G on
our cylinder, using a network-flow duality argument.

e We will then combine one collection of {3 LA/ZJJ cycles in G with the
latter collection to form a new toroidal grid minor of the required size.
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Our main theoretical contribution actually is the following: \

Theorem 12. Suppose a toroidal graph H contains a collection C of p pairwise
disjoint pairwise freely homotopic cycles, and an analogous collection D of g
cycles, such that D is not homotopic to an iteration of C.

Then H contains a p x q toroidal grid minor.
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Our main theoretical contribution actually is the following: \

Theorem 12. Suppose a toroidal graph H contains a collection C of p pairwise
disjoint pairwise freely homotopic cycles, and an analogous collection D of g
cycles, such that D is not homotopic to an iteration of C.

Then H contains a p x q toroidal grid minor.

Unfortunately, the two cycle collections can interact in really nasty ways on the
torus, and the proof requires a detailed technical analysis (proceedings). J
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Main result. We have got an O(nlogn) time algorithm that approximates
CROSSINGINUMBER on toroidal graphs up to a

factor of 6A(G)?,

provided that the graph embeds with dual edge-width at least 8A(G).

Possible extensions. For graphs embedded on a higher orientable surface 3.
(Assume bounded g and A.)

e Repeat the algorithm of Section 2 for g steps until 3, is cut down to a
plane. Denote by k; and ¢; the “dual lengths” obtained at step .

e After that, reconnect all the cut edges greedily along shortest dual paths.
e It is straighforward to show that one gets O(max;—1 4 k; - ¢;) crossings.

e The same lower-bound proof now shows cr(G) > Q(k, x £4);

but we need to prove cr(G) > Q(max;—1,. 4 k; - £;), which is still open
(work in progress), and it does not seem easy to finish. ..
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