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OverviewOverview

1 Drawings and the Crossing Number 3
Basic definitions, and an overview of related computational complexity re-
sults and questions.

2 Drawing Toroidal Graphs with few Crossings 6
Natural approaches to planar drawing of toridal graphs, constructions of
Böröczky, Pach and Tóth; Djidjev and Vrt’o. Our refinement and analysis.

3 Lower-bounding the Crossing Number 8
How to obtain a precise lower bound on the crossing number of a toroidal
graph. Proving the approximation ratio.

4 Conclusion and Future Steps 11
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1 Drawings and the Crossing Number1 Drawings and the Crossing Number

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.
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1 Drawings and the Crossing Number1 Drawings and the Crossing Number

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.
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Definition. Crossing number cr(G) of a graph G
is the smallest number of edge crossings in a drawing of G.

Importance – in VLSI design [Leighton et al], graph visualization, etc.
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1 Drawings and the Crossing Number1 Drawings and the Crossing Number

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.
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Definition. Crossing number cr(G) of a graph G
is the smallest number of edge crossings in a drawing of G.

Importance – in VLSI design [Leighton et al], graph visualization, etc.

Warning. There are slight variations of the definition of crossing number, some
giving different numbers! (Like counting odd-crossing pairs of edges.)



'

&

$

%

'

&

$
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Computational complexity

Remark. It is practically very hard to determine the crossing number.

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a suitable drawing of G, then replace crossings with new vertices, and
test planarity. . .

. . . . . .
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Computational complexity

Remark. It is practically very hard to determine the crossing number.

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a suitable drawing of G, then replace crossings with new vertices, and
test planarity. . .

. . . . . .

Theorem 1. [Garey and Johnson, 1983] CrossingNumber is NP -hard.
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Computational complexity

Remark. It is practically very hard to determine the crossing number.

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a suitable drawing of G, then replace crossings with new vertices, and
test planarity. . .

. . . . . .

Theorem 1. [Garey and Johnson, 1983] CrossingNumber is NP -hard.

Theorem 2. [Grohe, 2001], [Kawarabayashi and Reed, 2007]
CrossingNumber(≤ k) is in FPT .
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Computational complexity

Remark. It is practically very hard to determine the crossing number.

Observation. The problem CrossingNumber(≤ k) is in NP :
Guess a suitable drawing of G, then replace crossings with new vertices, and
test planarity. . .

. . . . . .

Theorem 1. [Garey and Johnson, 1983] CrossingNumber is NP -hard.

Theorem 2. [Grohe, 2001], [Kawarabayashi and Reed, 2007]
CrossingNumber(≤ k) is in FPT .

Theorem 3. [PH, 2004]
CrossingNumber is NP -hard even on simple 3-connected cubic graphs.

Corollary 4. The minor-monotone version of c.n. is also NP -hard.
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Looking for “natural parametrizations”

Question 5. [Seese, 199?]
How hard is CrossingNumber on graphs of bounded tree-width?
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Looking for “natural parametrizations”

Question 5. [Seese, 199?]
How hard is CrossingNumber on graphs of bounded tree-width?

Question 6. Is CrossingNumber polynomial on almost planar (i.e. being one
edge from planarity) graphs?



'

&

$

%

'

&

$
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Looking for “natural parametrizations”

Question 5. [Seese, 199?]
How hard is CrossingNumber on graphs of bounded tree-width?

Question 6. Is CrossingNumber polynomial on almost planar (i.e. being one
edge from planarity) graphs?

. . . . . .

Theorem 7. [PH and GS, 2006] CrossingNumber can be approximated
within factor of ∆(G) for an almost planar graph G in O(n) time.

Theorem 8. [Gitler, Leaños, PH and GS, 2007] CrossingNumber can
be approx. w. factor of 4.5∆(G)2 for a projective graph G in O(n log n) time.
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Looking for “natural parametrizations”

Question 5. [Seese, 199?]
How hard is CrossingNumber on graphs of bounded tree-width?

Question 6. Is CrossingNumber polynomial on almost planar (i.e. being one
edge from planarity) graphs?

. . . . . .

Theorem 7. [PH and GS, 2006] CrossingNumber can be approximated
within factor of ∆(G) for an almost planar graph G in O(n) time.

Theorem 8. [Gitler, Leaños, PH and GS, 2007] CrossingNumber can
be approx. w. factor of 4.5∆(G)2 for a projective graph G in O(n log n) time.

Question 9. Can we get any reasonable FPT algorithm for (approximating, at
least?) CrossingNumber based on “how far” the graph is from planarity?

The next step — Toroidal graphs. . .
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2 Drawing Toroidal Graphs with few Crossings2 Drawing Toroidal Graphs with few Crossings

All current approaches are based on similar natural ideas:

• Cut the (surface) embedded graph along a “short” nonseparating loop.

• Reconnect the cut edges “across” the rest of the drawing.
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2 Drawing Toroidal Graphs with few Crossings2 Drawing Toroidal Graphs with few Crossings

All current approaches are based on similar natural ideas:

• Cut the (surface) embedded graph along a “short” nonseparating loop.

• Reconnect the cut edges “across” the rest of the drawing.

Idea appears in [Böröczky, Pach and Tóth, 2006], or [Djidjev and Vrt’o, 2006].

These results extend to other surfaces quite straighforwardly.
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2 Drawing Toroidal Graphs with few Crossings2 Drawing Toroidal Graphs with few Crossings

All current approaches are based on similar natural ideas:

• Cut the (surface) embedded graph along a “short” nonseparating loop.

• Reconnect the cut edges “across” the rest of the drawing.

Idea appears in [Böröczky, Pach and Tóth, 2006], or [Djidjev and Vrt’o, 2006].

These results extend to other surfaces quite straighforwardly.

Moreover, [Telle and Wood, 2006] extend to drawings of all proper minor closed
graph classes with linear crossing number (using “planar decompositions”).
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2 Drawing Toroidal Graphs with few Crossings2 Drawing Toroidal Graphs with few Crossings

All current approaches are based on similar natural ideas:

• Cut the (surface) embedded graph along a “short” nonseparating loop.

• Reconnect the cut edges “across” the rest of the drawing.

Idea appears in [Böröczky, Pach and Tóth, 2006], or [Djidjev and Vrt’o, 2006].

These results extend to other surfaces quite straighforwardly.

Moreover, [Telle and Wood, 2006] extend to drawings of all proper minor closed
graph classes with linear crossing number (using “planar decompositions”).

Approximation?

Unfortunately, the above constructions in no way provide approximation algo-
rithms.

The reason — lack of a corresponding lower bound on the crossing number. . .
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Cut–and–redraw a toroidal graph

• We embed G on the torus (linear time by [Mohar 1999]).

• We find a “shortest nonseparating” loop of length k on the torus, using
an O(n log n) algorithm of [Kutz 2006]. (k = dual edge-width of G.)

• Cutting the torus into a cylinder, we “reconnect” the cut edges along a
shortest length-` dual path, producing ≤ k` + k2/4 crossings.
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3 Lower-bounding the Crossing Number3 Lower-bounding the Crossing Number

of Toroidal Graphsof Toroidal Graphs

For the rest we have k the dual edge-width of G on the torus, and ` the “dual
length” of the cylindrical embedding of G we cut out from our torus.

Lemma 10.

cr(G) ≥
( 1

3∆2
− ok(1)

)
· k`
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3 Lower-bounding the Crossing Number3 Lower-bounding the Crossing Number

of Toroidal Graphsof Toroidal Graphs

For the rest we have k the dual edge-width of G on the torus, and ` the “dual
length” of the cylindrical embedding of G we cut out from our torus.

Lemma 10.

cr(G) ≥
( 1

3∆2
− ok(1)

)
· k`

Proof outline:

• We will find a large toroidal grid minor in G, relative to k, `, and ∆.
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3 Lower-bounding the Crossing Number3 Lower-bounding the Crossing Number

of Toroidal Graphsof Toroidal Graphs

For the rest we have k the dual edge-width of G on the torus, and ` the “dual
length” of the cylindrical embedding of G we cut out from our torus.

Lemma 10.

cr(G) ≥
( 1

3∆2
− ok(1)

)
· k`

Proof outline:

• We will find a large toroidal grid minor in G, relative to k, `, and ∆.

• If H is a minor of G, and H has maximum degree at most 4, then
cr(G) ≥ 1

4 cr(H).

• The crossing number of the toroidal grid of size p× q, where p ≥ q ≥ 3,
is at least 1

2(q − 2)p.
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3 Lower-bounding the Crossing Number3 Lower-bounding the Crossing Number

of Toroidal Graphsof Toroidal Graphs

For the rest we have k the dual edge-width of G on the torus, and ` the “dual
length” of the cylindrical embedding of G we cut out from our torus.

Lemma 10.

cr(G) ≥
( 1

3∆2
− ok(1)

)
· k`

Proof outline:

• We will find a large toroidal grid minor in G, relative to k, `, and ∆.

• If H is a minor of G, and H has maximum degree at most 4, then
cr(G) ≥ 1

4 cr(H).

• The crossing number of the toroidal grid of size p× q, where p ≥ q ≥ 3,
is at least 1

2(q − 2)p.

Actually, without asymptotic terms our lower bound reads cr(G) ≥ 1
4∆2 · k`,

provided that k ≥ 16b∆/2c.
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For the rest we have k the dual edge-width of G on the torus, and ` the “dual
length” of the cylindrical embedding of G we cut out from our torus.

Hence we need to prove:

Theorem 11. G contains a minor isomorphic to the toroidal grid of size

max

(⌊
2

3

k

b∆/2c

⌋
,

⌈
`

b∆/2c

⌉)
×
⌊
2

3

k

b∆/2c

⌋
.
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For the rest we have k the dual edge-width of G on the torus, and ` the “dual
length” of the cylindrical embedding of G we cut out from our torus.

Hence we need to prove:

Theorem 11. G contains a minor isomorphic to the toroidal grid of size

max

(⌊
2

3

k

b∆/2c

⌋
,

⌈
`

b∆/2c

⌉)
×
⌊
2

3

k

b∆/2c

⌋
.

Proof outline:

• Using [de Graaf and Schrijver, 1994] we get a toroidal grid minor of size⌊
2
3

k
b∆/2c

⌋
×
⌊

2
3

k
b∆/2c

⌋
in G.



'

&

$

%

'

&

$
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For the rest we have k the dual edge-width of G on the torus, and ` the “dual
length” of the cylindrical embedding of G we cut out from our torus.

Hence we need to prove:

Theorem 11. G contains a minor isomorphic to the toroidal grid of size

max

(⌊
2

3

k

b∆/2c

⌋
,

⌈
`

b∆/2c

⌉)
×
⌊
2

3

k

b∆/2c

⌋
.

Proof outline:

• Using [de Graaf and Schrijver, 1994] we get a toroidal grid minor of size⌊
2
3

k
b∆/2c

⌋
×
⌊

2
3

k
b∆/2c

⌋
in G.

• We obtain another collection of
⌈

`
b∆/2c

⌉
pairwise disjoint cycles of G on

our cylinder, using a network-flow duality argument.
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For the rest we have k the dual edge-width of G on the torus, and ` the “dual
length” of the cylindrical embedding of G we cut out from our torus.

Hence we need to prove:

Theorem 11. G contains a minor isomorphic to the toroidal grid of size

max

(⌊
2

3

k

b∆/2c

⌋
,

⌈
`

b∆/2c

⌉)
×
⌊
2

3

k

b∆/2c

⌋
.

Proof outline:

• Using [de Graaf and Schrijver, 1994] we get a toroidal grid minor of size⌊
2
3

k
b∆/2c

⌋
×
⌊

2
3

k
b∆/2c

⌋
in G.

• We obtain another collection of
⌈

`
b∆/2c

⌉
pairwise disjoint cycles of G on

our cylinder, using a network-flow duality argument.

• We will then combine one collection of
⌊

2
3

k
b∆/2c

⌋
cycles in G with the

latter collection to form a new toroidal grid minor of the required size.
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Our main theoretical contribution actually is the following:

Theorem 12. Suppose a toroidal graph H contains a collection C of p pairwise
disjoint pairwise freely homotopic cycles, and an analogous collection D of q
cycles, such that D is not homotopic to an iteration of C.

Then H contains a p× q toroidal grid minor.
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Our main theoretical contribution actually is the following:

Theorem 12. Suppose a toroidal graph H contains a collection C of p pairwise
disjoint pairwise freely homotopic cycles, and an analogous collection D of q
cycles, such that D is not homotopic to an iteration of C.

Then H contains a p× q toroidal grid minor.

Unfortunately, the two cycle collections can interact in really nasty ways on the
torus, and the proof requires a detailed technical analysis (proceedings).
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4 Conclusion and Future Steps4 Conclusion and Future Steps

Main result. We have got an O(n log n) time algorithm that approximates
CrossingNumber on toroidal graphs up to a

factor of 6∆(G)2 ,

provided that the graph embeds with dual edge-width at least 8∆(G).
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4 Conclusion and Future Steps4 Conclusion and Future Steps

Main result. We have got an O(n log n) time algorithm that approximates
CrossingNumber on toroidal graphs up to a

factor of 6∆(G)2 ,

provided that the graph embeds with dual edge-width at least 8∆(G).

Possible extensions. For graphs embedded on a higher orientable surface Σg.
(Assume bounded g and ∆.)

• Repeat the algorithm of Section 2 for g steps until Σg is cut down to a
plane. Denote by ki and `i the “dual lengths” obtained at step i.

• After that, reconnect all the cut edges greedily along shortest dual paths.
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4 Conclusion and Future Steps4 Conclusion and Future Steps

Main result. We have got an O(n log n) time algorithm that approximates
CrossingNumber on toroidal graphs up to a

factor of 6∆(G)2 ,

provided that the graph embeds with dual edge-width at least 8∆(G).

Possible extensions. For graphs embedded on a higher orientable surface Σg.
(Assume bounded g and ∆.)

• Repeat the algorithm of Section 2 for g steps until Σg is cut down to a
plane. Denote by ki and `i the “dual lengths” obtained at step i.

• After that, reconnect all the cut edges greedily along shortest dual paths.

• It is straighforward to show that one gets O(maxi=1,...,g ki · `i) crossings.

• The same lower-bound proof now shows cr(G) ≥ Ω(kg × `g);



'

&

$

%

'

&

$
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4 Conclusion and Future Steps4 Conclusion and Future Steps

Main result. We have got an O(n log n) time algorithm that approximates
CrossingNumber on toroidal graphs up to a

factor of 6∆(G)2 ,

provided that the graph embeds with dual edge-width at least 8∆(G).

Possible extensions. For graphs embedded on a higher orientable surface Σg.
(Assume bounded g and ∆.)

• Repeat the algorithm of Section 2 for g steps until Σg is cut down to a
plane. Denote by ki and `i the “dual lengths” obtained at step i.

• After that, reconnect all the cut edges greedily along shortest dual paths.

• It is straighforward to show that one gets O(maxi=1,...,g ki · `i) crossings.

• The same lower-bound proof now shows cr(G) ≥ Ω(kg × `g);
but we need to prove cr(G) ≥ Ω(maxi=1,...,g ki · `i), which is still open
(work in progress), and it does not seem easy to finish. . .
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