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Abstract

We show that for each integer g ≥ 0 there is a constant cg > 0 such that every
graph that embeds in the projective plane with sufficiently large face–width r has
crossing number at least cgr

2 in the orientable surface Σg of genus g. As a corollary,
we give a polynomial time constant factor approximation algorithm for the crossing
number of projective graphs with bounded degree.
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1 Introduction

We recall that the face–width of a graph G embedded in a surface Σ is the
minimum number of intersections of G with a noncontractible curve in Σ.

Fiedler et al. [5] proved that the orientable genus of a projective graph
grows linearly with the face–width. Our aim is to show that for each integer
g ≥ 0, the crossing number crg of projective graphs in the closed orientable
surface Σg of genus g grows quadratically with the face–width.

Theorem 1.1 For every integer g ≥ 0 there are constants cg, rg > 0, such
that if G embeds in the projective plane with face–width at least r ≥ rg, then
the crossing number crg(G) of G in Σg is at least cgr

2.

Our strategy for proving Theorem 1.1 is to show the existence of sufficiently
large grid–like structures, so called diamond grids (Theorem 2.1), in projec-
tive graphs, and then prove that diamond grids have large crossing number
(Section 3, which concludes with a proof of Theorem 1.1).

No algorithm is known for approximating the crossing number of arbitrary
(not even bounded–degree) graphs within a constant factor. The best result
reported in this direction is by Even, Guha, and Schieber [4], who give an
O(log3 n) approximation algorithm for cr(G) + |V (G)| (not for cr(G), thus
weak in the case of graphs with few crossings) on bounded-degree graphs.

Answering affirmatively to a question of P. Brass, Pach and Tóth [7] gave
upper bounds for the crossing numbers (in the plane) of graphs embedded in a
given orientable surface. Böröczky, Pach and Tóth then extended this results
to arbitrary surfaces [2], showing that for every surface χ there is a constant cχ

such that if a graph with n vertices and maximum degree ∆ embeds in χ, then
its planar crossing number is at most cχ∆ n. This was recently generalized by
Wood and Telle to graphs with an excluded minor [9] (see also [1]).

Along a similar vein, we also give natural upper bounds for the crossing
numberof a projective graph in terms of its face–width r and its maximum
degree ∆, see in Section 4. Consequently, we have an approximation algorithm:

Theorem 1.2 For every fixed ∆ and orientable surface Σg, there is a poly-
nomial time approximation algorithm that computes the crossing number crg

of a projective graph with maximum degree ∆ within a constant factor.

2 Finding a large diamond projective grid

Randby [8] gave, for each integer r > 0, a full characterization of those pro-
jective graphs that are minor–minimal with respect to having face–width r.



He showed that all such graphs can be obtained from the r× r projective grid
by Y∆– and ∆Y –exchanges. Now although it is not too difficult to show that
the r×r projective grid has crossing number quadratic in r for r ≥ 3, it is not
that straightforward to show that performing Y∆ and ∆Y operations does not
decrease the crossing number significantly. Thus our approach is to find, in
projective graphs of given face–width, a related grid–like structure that better
suits our purposes.
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Fig. 1. Projective diamond grids of sizes 10 (left) and 11 (right).

The diamond grid Dr of size r is a plane graph whose vertices are all
integer pairs (i, j) where |i|+ |j| ≤ r, such that j is always odd, the parity of
i is the opposite of the parity of r, and an edge of Dr joins (i, j) to (i′, j′) iff
|i− i′|+ |j− j′| = 2. The projective diamond grid Pr of size r is obtained from
Dr by identifying the opposite pairs of its “boundary” vertices, that is, (i, j)
with (−i,−j) whenever |i|+ |j| = r. On the left (respectively right) hand side
of Fig. 1 we illustrate the projective diamond grid of size 10 (respectively, 11).

Theorem 2.1 Every graph that embeds in the projective plane with face-width
r has a minor isomorphic to Pr.

3 Crossing number of projective diamond grids

A set C of cycles in a graph is an I-collection if each two cycles in C have
connected, nonempty intersection, and no vertex is in more than two cycles
of C. The following statement is an easy exercise (see Fig. 2).

Proposition 3.1 The projective diamond grid Pr of size r contains an I-
collection of r − 1 cycles.

The first key observation is that each fixed orientable surface cannot host
an arbitrarily large embedded I–collection.

Proposition 3.2 For each nonnegative integer g there is a positive constant
Mg such that if an I–collection C is embedded in Σg then |C| ≤ Mg.
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Fig. 2. Finding an I-collection of 9 cycles in P10.

Secondly, we show that the crossing number of sufficiently large I-
collections grows quadratically with their size, which finishes the main proof.

Theorem 3.3 Let G be a graph that contains an I–collection of size k > Mg,
where Mg is the constant in Proposition 3.2. Then the crossing number of G
in Σg is at least k(k − 1)/(Mg(Mg + 1)).

Proof of Theorem 1.1. By Theorem 2.1, G contains a Pr-minor. It is more-
over obvious that if a minor of G contains an I-collection, then an I-collection
of the same size is contained also in G itself. Hence it now follows from Propo-
sition 3.1 that G contains an I-collection of r−1 cycles, and from Theorem 3.3
that crg(G) ≥ (r − 1)(r − 2)/(Mg(Mg + 1)). Thus Theorem 1.1 follows if we
set rg = Mg + 2, and cg = 1/(Mg + 2)2 since Mg + 2 ≤ r. 2

It is easy to see that M0 = 4 (planar case) satisfies Proposition 3.1, and so
a special planar (g = 0) version of Theorem 1.1 gives a lower bound 1

36
r2.

4 Estimating the crossing number

The basic idea behind our approximation algorithm is that the crossing num-
ber of bounded degree projective graphs is bounded from above and from
below by quantities that are within a constant factor of each other. The
required lower bound is given in Theorem 1.1.

To obtain the upper bound we perform surgery on the projective plane: cut
along an essential (noncontractible) curve that intersects the embedded graph
as little as possible, then rejoin the pieces and bound the number of crossings
thus obtained. This technique is presented in its full generality (applies to all
surfaces) by Böröczky, J. Pach, and G. Tóth in [2]. Using these techniques,
we now give a bound that explicitly involves the face–width of the embedding.



Proposition 4.1 Suppose that G is a graph with maximum degree ∆ that
embeds in the projective plane with face–width r. Then the crossing number
of G in the plane (and thus in any orientable surface) is at most r2∆2/8.

The idea of the previous paragraph readily translates into an approxi-
mation algorithm proving Theorem 1.2: We test whether the input graph
G embeds in Σg using the O(n)-time algorithm by Mohar [6], and then we
use the O(n

√
n)-time algorithm of Cabello and Mohar [3] to find a shortest

noncontractible cycle in dual G∗.

Remark 4.2 In the planar case of Theorem 1.2, the described approximation
algorithm yields a drawing of G within a factor 4.5∆2 of cr0(G).
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