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%Petr Hliněný, C-S Grafy 2007 1 Crossing number of a proj. graph

The crossing number of a projective graph isThe crossing number of a projective graph is

quadratic in the face–widthquadratic in the face–width
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Departamento de Matemáticas, CINVESTAV, Mexico

Jesus Leaños and Gelasio Salazar

Universidad Autónoma de San Luis Potośı, Mexico
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OverviewOverview

1 Drawings and the Crossing Number 3
Basic definitions, an overview for embedded graphs.

2 Projective graphs 5
Bounding the crossing number of projective graphs.

3 Approximation algorithm 9
How to approximate the crossing number of a projective graph
of bounded degrees within a constant factor.

4 Crossing number on orientable surfaces 10
We extend the results to crossing numbers
(of projective graphs again) on higher orientable surfaces.
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1 Drawings and the Crossing Number1 Drawings and the Crossing Number

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.
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%Petr Hliněný, C-S Grafy 2007 3 Crossing number of a proj. graph

1 Drawings and the Crossing Number1 Drawings and the Crossing Number

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.
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Definition. Crossing number cr(G)
is the smallest number of edge crossings in a drawing of G.

Importance – in VLSI design [Leighton et al], graph visualization, etc.
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1 Drawings and the Crossing Number1 Drawings and the Crossing Number

Definition. Drawing of a graph G:

– The vertices of G are distinct points,
and every edge e = uv ∈ E(G) is a simple curve joining u to v.

– No edge passes through another vertex,
and no three edges intersect in a common point.
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Definition. Crossing number cr(G)
is the smallest number of edge crossings in a drawing of G.

Importance – in VLSI design [Leighton et al], graph visualization, etc.

Warning. There are slight variations of the definition of crossing number, some
giving different numbers! (Like counting odd-crossing pairs of edges.)
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Embedded graphs

Consider graphs embedded on a (fixed) surface Σ.

Theorem 1. [Böröczky, Pach and Tóth / Djidjev and Vrt’o, 2006]
The (planar) crossing number of a Σ-embedded graph is O(∆n).
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Embedded graphs

Consider graphs embedded on a (fixed) surface Σ.

Theorem 1. [Böröczky, Pach and Tóth / Djidjev and Vrt’o, 2006]
The (planar) crossing number of a Σ-embedded graph is O(∆n).

This can be generalized even further. . .

Theorem 2. [Telle and Wood, 2006]
The crossing number of a bounded-deg. graph excluding a fixed minor is O(n).
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Embedded graphs

Consider graphs embedded on a (fixed) surface Σ.

Theorem 1. [Böröczky, Pach and Tóth / Djidjev and Vrt’o, 2006]
The (planar) crossing number of a Σ-embedded graph is O(∆n).

This can be generalized even further. . .

Theorem 2. [Telle and Wood, 2006]
The crossing number of a bounded-deg. graph excluding a fixed minor is O(n).

Lower bounds?

• Trivial Ω(g), but very weak.

• Finer estimates must study the structure of a Σ-embedding. . .
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Embedded graphs

Consider graphs embedded on a (fixed) surface Σ.

Theorem 1. [Böröczky, Pach and Tóth / Djidjev and Vrt’o, 2006]
The (planar) crossing number of a Σ-embedded graph is O(∆n).

This can be generalized even further. . .

Theorem 2. [Telle and Wood, 2006]
The crossing number of a bounded-deg. graph excluding a fixed minor is O(n).

Lower bounds?

• Trivial Ω(g), but very weak.

• Finer estimates must study the structure of a Σ-embedding. . .

Definition. Face-width of a graph G in Σ is the smallest number of points a
Σ-noncontractible loop intersects the drawing of G.
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2 Projective graphs2 Projective graphs

We prove the following. . .

Theorem 3. If G embeds in the projective plane with face-width at least r ≥ 6,
then the crossing number of G in the plane is at least r2/36.
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2 Projective graphs2 Projective graphs

We prove the following. . .

Theorem 3. If G embeds in the projective plane with face-width at least r ≥ 6,
then the crossing number of G in the plane is at least r2/36.

The corresponding “easy” direction reads:

Proposition 4. If G is a graph with maximum degree ∆ that embeds in the
projective plane with face-width r, then the crossing number of G in the plane
is at most r2∆2/8.
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2 Projective graphs2 Projective graphs

We prove the following. . .

Theorem 3. If G embeds in the projective plane with face-width at least r ≥ 6,
then the crossing number of G in the plane is at least r2/36.

The corresponding “easy” direction reads:

Proposition 4. If G is a graph with maximum degree ∆ that embeds in the
projective plane with face-width r, then the crossing number of G in the plane
is at most r2∆2/8.

Proof. Trivially – cut the projective embedding of G at r points (and open it
to the plane).

Hence there are at most s = r∆/2 affected edges, and redrawing those induces
at most s2/2 crossings.
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To prove Theorem 3, we argue. . .

Theorem 5. Every graph that embeds in the projective plane with face-width r
has a minor isomorphic to the projective diamond grid Pr.
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To prove Theorem 3, we argue. . .

Theorem 5. Every graph that embeds in the projective plane with face-width r
has a minor isomorphic to the projective diamond grid Pr.
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Proof. Again, cut the projective embedding of G at r points (and open it to
the plane, to 2r points).

Find two “orthogonal” collections of r paths each between those points, by
Menger’s theorem.

By planarity, these two collections form Pr. . .
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Definition. I-collection – each two cycles have connected intersection, and no
vertex is in more than two cycles.
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Definition. I-collection – each two cycles have connected intersection, and no
vertex is in more than two cycles.
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Proposition 6. The projective diamond grid Pr of size r contains an I-col-
lection of r − 1 cycles.
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Definition. I-collection – each two cycles have connected intersection, and no
vertex is in more than two cycles.
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Proposition 6. The projective diamond grid Pr of size r contains an I-col-
lection of r − 1 cycles.

Proposition 7. If an I-collection C is embedded in the plane, then |C| ≤ 4.
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Theorem 8. If G contains an I-collection of size k > 4, then the crossing
number of G is at least k(k − 1)/20.

Proof. Any 5-tuple of cycles in the I-collection must induce a crossing by
Proposition 7. Each such crossing is counted at most

(k−2
3

)
times. Hence we

have at least this many crossings in G:(
k

5

)
/

(
k − 2

3

)
= k(k − 1) / 5 · 4
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Theorem 8. If G contains an I-collection of size k > 4, then the crossing
number of G is at least k(k − 1)/20.

Proof. Any 5-tuple of cycles in the I-collection must induce a crossing by
Proposition 7. Each such crossing is counted at most

(k−2
3

)
times. Hence we

have at least this many crossings in G:(
k

5

)
/

(
k − 2

3

)
= k(k − 1) / 5 · 4

Regarding Theorem 3, we continue:

• We have k = r − 1 by Proposition 6.

• So the number of crossings is by Theorem 8, for r ≥ 6,

(r − 1)(r − 2) / 20 ≥ r2/36 .
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3 Approximation algorithm3 Approximation algorithm

Theorem 9. For every fixed ∆ there is a polynomial time approximation algo-
rithm that computes the crossing number of a projective graph with maximum
degree ∆ within a constant factor.

• We test whether the input graph G is planar in O(n) time.

• We construct the topological dual G∗ of G in the projective plane.
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3 Approximation algorithm3 Approximation algorithm

Theorem 9. For every fixed ∆ there is a polynomial time approximation algo-
rithm that computes the crossing number of a projective graph with maximum
degree ∆ within a constant factor.

• We test whether the input graph G is planar in O(n) time.

• We construct the topological dual G∗ of G in the projective plane.

• Then we use the O(n
√

n)-time algorithm of Cabello and Mohar to find
a shortest noncontractible cycle C∗ in G∗.
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3 Approximation algorithm3 Approximation algorithm

Theorem 9. For every fixed ∆ there is a polynomial time approximation algo-
rithm that computes the crossing number of a projective graph with maximum
degree ∆ within a constant factor.

• We test whether the input graph G is planar in O(n) time.

• We construct the topological dual G∗ of G in the projective plane.

• Then we use the O(n
√

n)-time algorithm of Cabello and Mohar to find
a shortest noncontractible cycle C∗ in G∗.

• Let F be the set of edges of G intersected by the (dual) edges of C∗.
Then G − F is a plane embedding, and we add the edges of F back to
G− F , making a plane drawing with at most

(|F |
2

)
pairwise crossings.
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3 Approximation algorithm3 Approximation algorithm

Theorem 9. For every fixed ∆ there is a polynomial time approximation algo-
rithm that computes the crossing number of a projective graph with maximum
degree ∆ within a constant factor.

• We test whether the input graph G is planar in O(n) time.

• We construct the topological dual G∗ of G in the projective plane.

• Then we use the O(n
√

n)-time algorithm of Cabello and Mohar to find
a shortest noncontractible cycle C∗ in G∗.

• Let F be the set of edges of G intersected by the (dual) edges of C∗.
Then G − F is a plane embedding, and we add the edges of F back to
G− F , making a plane drawing with at most

(|F |
2

)
pairwise crossings.

• Since
(|F |

2

)
< |F |2/2 ≤ r2∆2/8, we have an approximation of cr(G)

within factor 4.5∆2.
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4 Crossing number on orientable surfaces4 Crossing number on orientable surfaces

Consider the crossing number on a fixed orientable surface Σg . . .

• Proposition 7 extends to any orientable surface using a result of Juvan,
Malnič and Mohar, with a bound ≤ Mg.
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4 Crossing number on orientable surfaces4 Crossing number on orientable surfaces

Consider the crossing number on a fixed orientable surface Σg . . .

• Proposition 7 extends to any orientable surface using a result of Juvan,
Malnič and Mohar, with a bound ≤ Mg.

• Hence an extension of Theorem 3 gives a lower bound of r2/(Mg + 2)2

crossings.
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%Petr Hliněný, C-S Grafy 2007 10 Crossing number of a proj. graph

4 Crossing number on orientable surfaces4 Crossing number on orientable surfaces

Consider the crossing number on a fixed orientable surface Σg . . .

• Proposition 7 extends to any orientable surface using a result of Juvan,
Malnič and Mohar, with a bound ≤ Mg.

• Hence an extension of Theorem 3 gives a lower bound of r2/(Mg + 2)2

crossings.

• An extension of the approximation algorithm is also straightforward.



'

&

$

%

'

&

$
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ConclusionsConclusions

• Only very few graphs classes have efficient constant-factor approximaions
for the crossing number; e.g. almost-planar graphs of bounded degrees.
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ConclusionsConclusions

• Only very few graphs classes have efficient constant-factor approximaions
for the crossing number; e.g. almost-planar graphs of bounded degrees.

We add a new family:

• We can estimate the hard crossing number parameter of projective graphs
(of bounded degrees) using the more easy face-width parameter.

• This extends also to crossing numbers on any orientable surfaces.
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%Petr Hliněný, C-S Grafy 2007 11 Crossing number of a proj. graph

ConclusionsConclusions

• Only very few graphs classes have efficient constant-factor approximaions
for the crossing number; e.g. almost-planar graphs of bounded degrees.

We add a new family:

• We can estimate the hard crossing number parameter of projective graphs
(of bounded degrees) using the more easy face-width parameter.

• This extends also to crossing numbers on any orientable surfaces.

• Another new result of PH and Salazar similarly estimates the crossing
number of toroidal graphs (of bounded degrees). . .
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ConclusionsConclusions

• Only very few graphs classes have efficient constant-factor approximaions
for the crossing number; e.g. almost-planar graphs of bounded degrees.

We add a new family:

• We can estimate the hard crossing number parameter of projective graphs
(of bounded degrees) using the more easy face-width parameter.

• This extends also to crossing numbers on any orientable surfaces.

• Another new result of PH and Salazar similarly estimates the crossing
number of toroidal graphs (of bounded degrees). . .

• What further generalization are possible?
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%Petr Hliněný, C-S Grafy 2007 11 Crossing number of a proj. graph

ConclusionsConclusions

• Only very few graphs classes have efficient constant-factor approximaions
for the crossing number; e.g. almost-planar graphs of bounded degrees.

We add a new family:

• We can estimate the hard crossing number parameter of projective graphs
(of bounded degrees) using the more easy face-width parameter.

• This extends also to crossing numbers on any orientable surfaces.

• Another new result of PH and Salazar similarly estimates the crossing
number of toroidal graphs (of bounded degrees). . .

• What further generalization are possible?

• Thank you for attention!
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