

Structure and Generation of Crossing-critical Graphs

Petr Hliněný

Faculty of Informatics, Masaryk University Brno, Czech Republic

joint work with

Zdeněk Dvořák and Bojan Mohar

Crossing number cr(G): how many *edge crossings* are required to draw G in the plane?

1

Crossing number cr(G): how many *edge crossings* are required to draw G in the plane?

Crossing number cr(G): how many *edge crossings* are required to draw G in the plane?

Crossing number cr(G): how many *edge crossings* are required to draw G in the plane?

What forces high crossing number?

Crossing number cr(G): how many *edge crossings* are required to draw G in the plane?

What forces high crossing number?

 Many edges – cf. Euler's formula, and some strong enhancements [Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].

Crossing number cr(G): how many *edge crossings* are required to draw G in the plane?

What forces high crossing number?

- Many edges cf. Euler's formula, and some strong enhancements [Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].
- Structural properties (even with sparse edges) but what exactly?

Crossing number cr(G): how many *edge crossings* are required to draw G in the plane?

What forces high crossing number?

- Many edges cf. Euler's formula, and some strong enhancements [Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].
- Structural properties (even with sparse edges) but what exactly?

Definition. Graph *H* is *c*-crossing-critical if $cr(H) \ge c$ and cr(H - e) < c for all edges $e \in E(H)$.

We study crossing-critical graphs to understand what structural properties force the crossing number of a graph to be large.

Some starting examples

• Kuratowski (30): The only 1-crossing-critical graphs K_5 and $K_{3,3}$.

(Yes, up to subdivisions, but we ignore that...)

Some starting examples

• Kuratowski (30): The only 1-crossing-critical graphs K_5 and $K_{3,3}$.

(Yes, up to subdivisions, but we ignore that...)

 Širáň (84), Kochol (87): Infinitely many *c*-crossing-critical graphs for every *c* ≥ 2, even simple 3-connected.

And some more recent constructions

• Salazar (03):

And some more recent constructions

• Salazar (03):

• Hliněný (02):

... and a bit of surprise

 Dvořák, Mohar (10): A *c*-crossing-crit. graph with unbounded degree, *c* ≥ 171.

• Richter and Thomassen (93):

A c-crossing-critical graph has $cr(G) \le 2.5c + 16$.

- Richter and Thomassen (93):
 A *c*-crossing-critical graph has *cr*(*G*) ≤ 2.5*c* + 16.
- Geelen, Richter, Salazar (04):
 A *c*-crossing-critical graph has tree-width bounded in *c*.

- Richter and Thomassen (93):
 A *c*-crossing-critical graph has *cr*(*G*) ≤ 2.5*c* + 16.
- Geelen, Richter, Salazar (04):
 A *c*-crossing-critical graph has tree-width bounded in *c*.
- Hliněný (03): ... and also path-width bounded in c.

- Richter and Thomassen (93):
 A *c*-crossing-critical graph has *cr*(*G*) ≤ 2.5*c* + 16.
- Geelen, Richter, Salazar (04): A *c*-crossing-critical graph has tree-width bounded in *c*.
- Hliněný (03): ... and also path-width bounded in c.
- Hliněný and Salazar (08):
 A *c*-crossing-critical graph has no large K_{2,n}-subdivision.

- Richter and Thomassen (93):
 A *c*-crossing-critical graph has *cr*(*G*) ≤ 2.5*c* + 16.
- Geelen, Richter, Salazar (04): A *c*-crossing-critical graph has tree-width bounded in *c*.
- Hliněný (03): ... and also path-width bounded in c.
- Hliněný and Salazar (08):
 A *c*-crossing-critical graph has no large K_{2,n}-subdivision.
- Bokal, Oporowski, Richter, Salazar (16): Fully described 2-crossing-critical graphs up to fin. small exceptions.

- Richter and Thomassen (93):
 A *c*-crossing-critical graph has *cr*(*G*) ≤ 2.5*c* + 16.
- Geelen, Richter, Salazar (04): A *c*-crossing-critical graph has tree-width bounded in *c*.
- Hliněný (03): ... and also path-width bounded in c.
- Hliněný and Salazar (08):
 A *c*-crossing-critical graph has no large K_{2,n}-subdivision.
- Bokal, Oporowski, Richter, Salazar (16): Fully described 2-crossing-critical graphs up to fin. small exceptions.
- Dvořák, Hliněný, Mohar, Postle (11, not published):
 A *c*-crossing-critical graph cannot contain a deep nest, and so it has bounded dual diameter.

Informally, "thin and long" bands, joined together, and huge faces around...

+ combinations of these together

Informally, "thin and long" bands, joined together, and huge faces around...

+ combinations of these together

* Our result *

I. "Nothing else than the previous" can constitute crossing-criticality.

Informally, "thin and long" bands, joined together, and huge faces around...

+ combinations of these together

* Our result *

- I. "Nothing else than the previous" can constitute crossing-criticality.
- II. There are well-defined local operations (replacements) that can reduce any large *c*-crossing-critical graph to a smaller one.

Informally, "thin and long" bands, joined together, and huge faces around...

+ combinations of these together

* Our result *

- I. "Nothing else than the previous" can constitute crossing-criticality.
- II. There are well-defined local operations (replacements) that can reduce any large *c*-crossing-critical graph to a smaller one.
- III. There are finitely many well-defined building bricks that can produce all *c*-crossing-critical graphs from a finite set of base graphs.

Once again, with an informal explanation

I. "Nothing else than these" can constitute crossing-criticality for sufficiently large graphs.

Once again, with an informal explanation

I. "Nothing else than these" can constitute crossing-criticality for sufficiently large graphs.

II. There are well-defined local operations (replacements) that can reduce any large *c*-crossing-critical graph to a smaller one.

Once again, with an informal explanation

I. "Nothing else than these" can constitute crossing-criticality for sufficiently large graphs.

- II. There are well-defined local operations (replacements) that can reduce any large *c*-crossing-critical graph to a smaller one.
- III. There are finitely many well-defined building bricks that can produce all *c*-crossing-critical graphs from a finite set of base graphs.

Dividing the proof into two major steps.

3

 General understanding of the struct. of a plane band and tiles: In every plane (topological!) graph of bounded path-width, either

Dividing the proof into two major steps.

3

- General understanding of the struct. of a plane band and tiles: In every plane (topological!) graph of bounded path-width, either
 - find a spec. substructure, not relevant to crossing-crit. graphs,

Dividing the proof into two major steps.

3

- **1.** General understanding of the struct. of a plane band and tiles:
 - In every plane (topological!) graph of bounded path-width, either
 - find a spec. substructure, not relevant to crossing-crit. graphs,
 - or, get a topological long-band structure composed of boundedsize tiles separated (between consecutive ones) by paths.

Dividing the proof into two major steps.

3

- **1.** *General understanding of the struct. of a plane band and tiles:* In every plane (topological!) graph of bounded path-width, either
 - find a spec. substructure, not relevant to crossing-crit. graphs,
 - or, get a topological long-band structure composed of boundedsize tiles separated (between consecutive ones) by paths.

2. Removing and inserting tiles in a plane band:

Get a long plane band in our crossing-crit. graph, as in the previous.

Dividing the proof into two major steps.

3

- General understanding of the struct. of a plane band and tiles: In every plane (topological!) graph of bounded path-width, either
 - find a spec. substructure, not relevant to crossing-crit. graphs,
 - or, get a topological long-band structure composed of boundedsize tiles separated (between consecutive ones) by paths.

2. Removing and inserting tiles in a plane band:

Get a long plane band in our crossing-crit. graph, as in the previous. Find repeated isomorphic sections, and shorten the band between suitable two consecutive repetitions.

Dividing the proof into two major steps.

3

- General understanding of the struct. of a plane band and tiles: In every plane (topological!) graph of bounded path-width, either
 - find a spec. substructure, not relevant to crossing-crit. graphs,
 - or, get a topological long-band structure composed of boundedsize tiles separated (between consecutive ones) by paths.

2. Removing and inserting tiles in a plane band:

Get a long plane band in our crossing-crit. graph, as in the previous. Find repeated isomorphic sections, and shorten the band between suitable two consecutive repetitions.

Prove that such shortening preserves crossing-criticality.

Starting from a path-decomposition of bounded width, the main trouble is that its bags do not correspond to our topological graph (our picture).

a) Modify the decompos. to ensure "homogeneous horizon. connectivity".

- a) Modify the decompos. to ensure "homogeneous horizon. connectivity".
- **b)** Characterize a bounded topological type of each bag.

- a) Modify the decompos. to ensure "homogeneous horizon. connectivity".
- b) Characterize a bounded topological type of each bag.
 Apply an algebraic tool Simon's factorization forest, to a semigroup formed by concatenation of these topological types.

- a) Modify the decompos. to ensure "homogeneous horizon. connectivity".
- b) Characterize a bounded topological type of each bag.
 Apply an algebraic tool Simon's factorization forest, to a semigroup formed by concatenation of these topological types.
- **c)** The previous gives a subband with a "homogeneous topol. structure"; either the desired band with properly separated and connected tiles, or

- a) Modify the decompos. to ensure "homogeneous horizon. connectivity".
- b) Characterize a bounded topological type of each bag.
 Apply an algebraic tool Simon's factorization forest, to a semigroup formed by concatenation of these topological types.
- **c)** The previous gives a subband with a "homogeneous topol. structure"; either the desired band with properly separated and connected tiles, or one of special substructures forbidden in crossing-critical graphs:

3.2 Removing and inserting tiles

a) "Long band" \rightarrow consider shelled bands, shelled fans, and necklaces.

3.2 Removing and inserting tiles

a) "Long band" \rightarrow consider shelled bands, shelled fans, and necklaces.

b) Repeated isomorphic sections \rightarrow overlay, and forget the stretch betw.

c) Use further repetitions of this local picture around to argue that *c*-crossing-criticality is preserved:

3.2 Removing and inserting tiles a) "Long band" → consider shelled bands, shelled fans, and necklaces. b) Repeated isomorphic sections → overlay, and forget the stretch betw.

c) Use further repetitions of this local picture around to argue that *c*-crossing-criticality is preserved:

- G_1 drawn with < c crossings \rightarrow can expand with no new crossing,
- (more difficult) G e drawn with < c crossings \rightarrow can modify and shrink to $G_1 e$ with no new crossing.

• Could our result be "as nice" as the one for 2-crossing-critical? That is, will our characterization eventually be "explicit" (wrt. c)?

- Could our result be "as nice" as the one for 2-crossing-critical? That is, will our characterization eventually be "explicit" (wrt. c)?
 - Expectedly, not for the "small" base graphs.

- Could our result be "as nice" as the one for 2-crossing-critical? That is, will our characterization eventually be "explicit" (wrt. c)?
 - Expectedly, not for the "small" base graphs.
 - Unfortunately, very unlikely also for our "building bricks", since the crossing number of a twisted planar tile is NP-hard.

- Could our result be "as nice" as the one for 2-crossing-critical? That is, will our characterization eventually be "explicit" (wrt. c)?
 - Expectedly, not for the "small" base graphs.
 - Unfortunately, very unlikely also for our "building bricks", since the crossing number of a twisted planar tile is NP-hard.
- What further applications of our characterization can we have?

- Could our result be "as nice" as the one for 2-crossing-critical? That is, will our characterization eventually be "explicit" (wrt. c)?
 - Expectedly, not for the "small" base graphs.
 - Unfortunately, very unlikely also for our "building bricks", since the crossing number of a twisted planar tile is NP-hard.
- What further applications of our characterization can we have?
 - A new view of known properties, such as the following one: the average degree of an infinite *c*-crossing-critical family is bounded away from 3 below and 6 above.

- Could our result be "as nice" as the one for 2-crossing-critical? That is, will our characterization eventually be "explicit" (wrt. c)?
 - Expectedly, not for the "small" base graphs.
 - Unfortunately, very unlikely also for our "building bricks", since the crossing number of a twisted planar tile is NP-hard.
- What further applications of our characterization can we have?
 - A new view of known properties, such as the following one: the average degree of an infinite *c*-crossing-critical family is bounded away from 3 below and 6 above.
 - And some currently open problems, such as that the crossing number of a *c*-crossing-critical graph should be $c+O(\sqrt{c})$, and whether there exists a 5-regular *c*-crossing-critical family.

- Could our result be "as nice" as the one for 2-crossing-critical? That is, will our characterization eventually be "explicit" (wrt. c)?
 - Expectedly, not for the "small" base graphs.
 - Unfortunately, very unlikely also for our "building bricks", since the crossing number of a twisted planar tile is NP-hard.
- What further applications of our characterization can we have?
 - A new view of known properties, such as the following one: the average degree of an infinite *c*-crossing-critical family is bounded away from 3 below and 6 above.
 - And some currently open problems, such as that the crossing number of a *c*-crossing-critical graph should be $c+O(\sqrt{c})$, and whether there exists a 5-regular *c*-crossing-critical family.

Thank you for your attention.