

Structure and Generation of Crossing-critical Graphs, I.

Petr Hliněný

Faculty of Informatics, Masaryk University Brno, Czech Republic

joint work with

Zdeněk Dvořák and Bojan Mohar

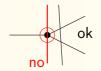
Crossing number cr(G): how many *edge crossings* are required to draw G in the plane?

1

Crossing number cr(G): how many *edge crossings* are required to draw G in the plane?

Crossing number cr(G): how many *edge crossings* are required to draw G in the plane?

Crossing number cr(G): how many *edge crossings* are required to draw G in the plane?



What forces high crossing number?

Crossing number cr(G): how many *edge crossings* are required to draw G in the plane?

What forces high crossing number?

 Many edges – cf. Euler's formula, and some strong enhancements [Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].

Crossing number cr(G): how many *edge crossings* are required to draw G in the plane?

What forces high crossing number?

- Many edges cf. Euler's formula, and some strong enhancements [Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].
- Structural properties (even with sparse edges) but what exactly?

Crossing number cr(G): how many *edge crossings* are required to draw G in the plane?

What forces high crossing number?

- Many edges cf. Euler's formula, and some strong enhancements [Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].
- Structural properties (even with sparse edges) but what exactly?

Definition. Graph *H* is *c*-crossing-critical if $cr(H) \ge c$ and cr(H - e) < c for all edges $e \in E(H)$.

We study crossing-critical graphs to understand what structural properties force the crossing number of a graph to be large.

Petr Hliněný, BIRS, 2018

2/11

Some starting examples

• Kuratowski (30): The only 1-crossing-critical graphs K_5 and $K_{3,3}$.

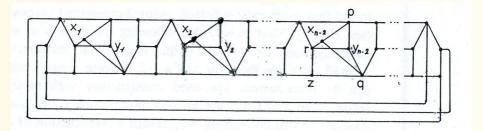
(Yes, up to subdivisions, but we ignore that...)

Some starting examples

• Kuratowski (30): The only 1-crossing-critical graphs K_5 and $K_{3,3}$.

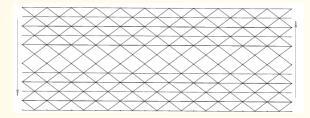
(Yes, up to subdivisions, but we ignore that...)

 Širáň (84), Kochol (87): Infinitely many *c*-crossing-critical graphs for every *c* ≥ 2, even simple 3-connected.



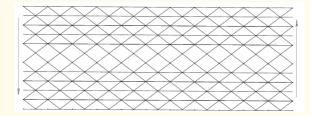
2 More Crossing-critical Constructions

• Salazar (03): every edge "drops" cr(G) a lot (\sqrt{c}) .

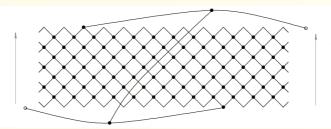


2 More Crossing-critical Constructions

• Salazar (03): every edge "drops" cr(G) a lot (\sqrt{c}) .



• Hliněný (02): "drop" by 1, but having *planarizing edge*.

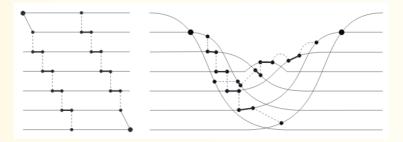


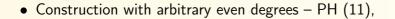
• An infinite *c*-crossing-critical family has average degree in [3,6] (no cheating with degree-2 vertices!).

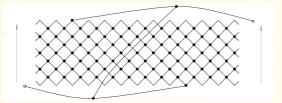
- An infinite *c*-crossing-critical family has average degree in [3, 6] (no cheating with degree-2 vertices!).
- Excluding average degree 3 via Graph minors...

- An infinite *c*-crossing-critical family has average degree in [3, 6] (no cheating with degree-2 vertices!).
- Excluding average degree 3 via Graph minors...
- Excluding avg. deg. 6 Hernández-Vélez, Salazar and Thomas (12).

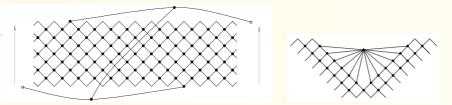
- An infinite *c*-crossing-critical family has average degree in [3, 6] (no cheating with degree-2 vertices!).
- Excluding average degree 3 via Graph minors...
- Excluding avg. deg. 6 Hernández-Vélez, Salazar and Thomas (12).
- Getting average degree close to 3 Bokal's (10) staircase strip.



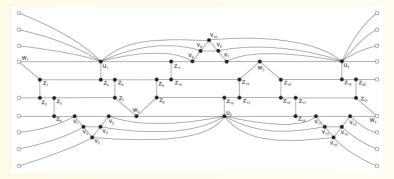




• Construction with arbitrary even degrees – PH (11),

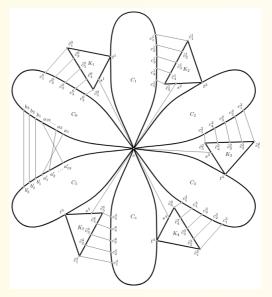


• and with arbitrary odd degrees – Bokal, Bračič, Derňár, PH (15).



... and a bit of surprise

 Dvořák, Mohar (10): A *c*-crossing-crit. graph with unbounded degree, *c* ≥ 171.



• Richter and Thomassen (93):

A *c*-crossing-critical graph has $cr(G) \le 2.5c + 16$.

- Richter and Thomassen (93):
 A *c*-crossing-critical graph has *cr*(*G*) ≤ 2.5*c* + 16.
- Geelen, Richter, Salazar (04):
 A *c*-crossing-critical graph has tree-width bounded in *c*.

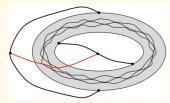
- Richter and Thomassen (93):
 A *c*-crossing-critical graph has *cr*(*G*) ≤ 2.5*c* + 16.
- Geelen, Richter, Salazar (04):
 A *c*-crossing-critical graph has tree-width bounded in *c*.
- Hliněný (03): ... and also path-width bounded in c.

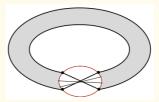
- Richter and Thomassen (93):
 A *c*-crossing-critical graph has *cr*(*G*) ≤ 2.5*c* + 16.
- Geelen, Richter, Salazar (04): A *c*-crossing-critical graph has tree-width bounded in *c*.
- Hliněný (03): ... and also path-width bounded in c.
- Hliněný and Salazar (08):
 A *c*-crossing-critical graph has no large K_{2,n}-subdivision.

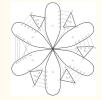
- Richter and Thomassen (93):
 A *c*-crossing-critical graph has *cr*(*G*) ≤ 2.5*c* + 16.
- Geelen, Richter, Salazar (04): A *c*-crossing-critical graph has tree-width bounded in *c*.
- Hliněný (03): ... and also path-width bounded in c.
- Hliněný and Salazar (08):
 A *c*-crossing-critical graph has no large K_{2,n}-subdivision.
- Bokal, Oporowski, Richter, Salazar (16): Fully described 2-crossing-critical graphs up to fin. small exceptions.

- Richter and Thomassen (93):
 A *c*-crossing-critical graph has *cr*(*G*) ≤ 2.5*c* + 16.
- Geelen, Richter, Salazar (04): A *c*-crossing-critical graph has tree-width bounded in *c*.
- Hliněný (03): ... and also path-width bounded in c.
- Hliněný and Salazar (08):
 A *c*-crossing-critical graph has no large K_{2,n}-subdivision.
- Bokal, Oporowski, Richter, Salazar (16): Fully described 2-crossing-critical graphs up to fin. small exceptions.
- Dvořák, Hliněný, Mohar, Postle (11, not published): A *c*-crossing-critical graph cannot contain a deep nest, and so it has bounded dual diameter.

Informally, "thin and long" bands, joined together, and huge faces around...

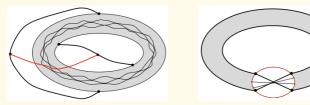


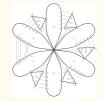




+ combinations of these together

Informally, "thin and long" bands, joined together, and huge faces around...



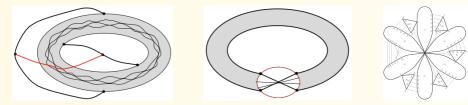


+ combinations of these together

* Our result *

I. "Nothing else than the previous" can constitute crossing-criticality.

Informally, "thin and long" bands, joined together, and huge faces around...

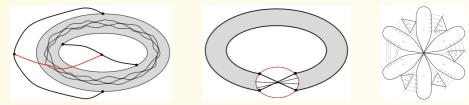


+ combinations of these together

* Our result *

- I. "Nothing else than the previous" can constitute crossing-criticality.
- II. There are well-defined local operations (replacements) that can reduce any large *c*-crossing-critical graph to a smaller one.

Informally, "thin and long" bands, joined together, and huge faces around...



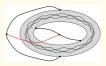
+ combinations of these together

* Our result *

- I. "Nothing else than the previous" can constitute crossing-criticality.
- II. There are well-defined local operations (replacements) that can reduce any large *c*-crossing-critical graph to a smaller one.
- III. There are finitely many well-defined building bricks that can produce all *c*-crossing-critical graphs from a finite set of base graphs.

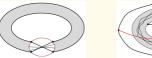
Once again, with an informal explanation

I. "Nothing else than these" can constitute crossing-criticality for sufficiently large graphs.



Once again, with an informal explanation

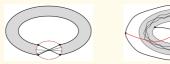
I. "Nothing else than these" can constitute crossing-criticality for sufficiently large graphs.



II. There are well-defined local operations (replacements) that can reduce any large *c*-crossing-critical graph to a smaller one.

Once again, with an informal explanation

I. "Nothing else than these" can constitute crossing-criticality for sufficiently large graphs.



- II. There are well-defined local operations (replacements) that can reduce any large *c*-crossing-critical graph to a smaller one.
- III. There are finitely many well-defined building bricks that can produce all *c*-crossing-critical graphs from a finite set of base graphs.

4 To be continued...

by Zdeněk

Petr Hliněný, BIRS, 2018