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1 Introduction

We assume the reader is familiar with the standard terminology of graph the-
ory. In this paper we consider finite graphs, with loops or multiple edges al-
lowed. Some standard topological graph theory terminology is briefly introduced
throughout this paper. For other related terminology and theory we refer the
reader to Mohar and Thomassen [18]. Here our main interest lies in toroidal
graphs, that is, graphs that can be embedded (meaning drawn without edge
crossings) on the torus.

The (planar) crossing number cr(G) of a graph G is the minimum number of
edge crossings in a drawing of G in the plane. To resolve ambiguity, we consider
drawings of graphs such that no edge passes through another vertex, and that no
three edges intersect in a common point which is not a vertex. Then a crossing
is an intersection point of two edges which is not a vertex.

⋆ Supported in part by the Institute for Theoretical Computer Science, project
1M0545.

⋆⋆ Supported by CONACYT Grant 45903.



Computing crossing numbers has important applications in VLSI design,
and, naturally, in the graph drawing area. The algorithmic decision problem of
crossing minimization is formulated as follows:

CrossingNumber

Input: A (multi)graph G and an integer k.
Question: Is cr(G) ≤ k ? (Possibly: if so, find the corresponding drawing).

The problem is in NP since one could guess the optimal drawing, replace its
crossings with new (degree 4, subdividing) vertices, and verify planarity of the
resulting graph. It has been proved by Garey and Johnson [9] that crossing
minimization is NP-complete if k is a part of the input. The same assertion
has been proved true later by Hliněný [12] both for cubic graphs and for the
minor-monotone version (cf. [1]) of crossing number. An important, stubborn
open problem is to decide whether the crossing number of graphs with bounded
tree-width can be computed in polynomial time.

On the positive side, a (surprising) result from Grohe [11], recently improved
by Kawarabayashi and Reed [15], states that CrossingNumber is an FPT
problem. Unfortunately, these algorithms are not usable in practice, not even
for small values of k. Regarding approximability results, the best general result
known to date is a polynomial time algorithm by Even, Guha and Schieber [8],
which approximates cr(G) + |V (G)| up to a factor of log3 |V (G)| for graphs G
of bounded degree (notice the +|V (G)| term).

Our interest in the crossing number of graphs embedded in a given surface
follows a recent major trend in crossing numbers research, which emphasizes the
relationship of crossing number to topological graph theory and to structural
parameters (see for instance [1–3, 10, 15, 22]). Böröczky, Pach and Tóth [3, 20]
prove that the crossing number of a toroidal graph G is at most c · ∆(G)V (G),
with an analogous generalization to any fixed surface. (A refinement of this
estimate bounds cr(G) by a factor of the sum of square degrees of G.) In this
direction the assymptotically best possible estimate for graphs G of orientable
genus g = o(|V (G)|) is cr(G) ≤ c · g∆(G)V (G) given by Djidjev and Vrt’o [6].
An even wider generalization of the problem by Telle and Wood [22] shows
that any class G of bounded-degree graphs excluding a fixed minor H satisfies
cr(G) ≤ cH,∆ · V (G) for every G ∈ G. Although all these estimates are tight
in the sense that there exist graph sequences attaining them assymptotically,
they give no good algorithmic approximation for CrossingNumber since many
other graphs in these classes also have arbitrarily smaller crossing number.

On the other hand, constant factor approximation algorithms of Cross-

ingNumber are known only for some particular families of graphs, such as [10]
for projective graphs of bounded degree with an approximation factor 4.5∆(G)2;
or [13] for almost planar graphs of bounded degree with an approximation fac-
tor ∆(G). (A graph is almost planar if deleting one edge leaves it planar.) In
this relation one should mention that an older result of Riskin [21] implies that,
for almost planar graphs coming from cubic 3-connected planar subgraphs, the
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crossing number can be determined exactly. Other aspects of the crossing num-
ber of almost planar graphs are dealt with in [17]. Now we extend our attention
to graphs embeddable on the torus.

The new contribution of our paper lies in a fine analysis of a natural planar-
drawing algorithm for toroidal graphs (analogous to the approach of Pach and
Tóth [20]), which is complemented with a matching lower bound on the crossing
number. This is summarized next. (We refer to Section 2 for the definition of
edge-width, and to Lemma 3.1 for details on the o(1) term appearing there).

Theorem 1.1. Given a nonplanar toroidal graph G, one can construct in poly-
nomial O(n

√
n) time, where n = |V (G)| + |E(G)|, a drawing of G in the plane

a) with at most
(
6∆(G)2 + o(1)

)
· cr(G) crossings;

b) with at most 12∆(G)2 · cr(G) crossings if G embeds in the torus with dual
edge-width at least 10⌊∆(G)/2⌋.

Hence for a fixed maximal degree bound ∆(G) ≤ ∆ we get (b) a polynomial
time algorithm which approximates CrossingNumber up to a constant factor
12∆2 for all graphs which have sufficiently “dense” toroidal embeddings. Notice
that, concerning time complexity of our algorithm, we may assume n = |V (G)|
if ∆(G) is bounded, or if G is simple.

Our paper is organized as follows. In Section 2 we describe Drawing Algo-
rithm 2.3 (cf. Theorem 1.1) and some details of its implementation. It uses a
natural idea of surgery along a manifold, extensively used in classical topology:
“cut and open” a toroidal embedding of a given graph G along a curve intersect-
ing the fewest number of edges, and then redraw the affected edges of G inside
the rest of the embedding in the best possible (crossing-wise) way. We prove in
Section 3 that this approach gives a good approximation of the correct crossing
number of G by exhibiting in G a special minor (a toroidal grid) which itself
has crossing number very close to the quantity computed in Algorithm 2.3. This
part represents the main new contribution of our paper, not appearing in any
of the related previous papers [3, 20, 22, 2]. Theoretical details about finding this
grid minor are then given in Section 4.

2 The algorithm

For the coming arguments we have to introduce some common topological terms.
A closed curve on a surface is simply called a loop. Two loops α, β on a surface
Σ are freely homotopic if α can be continuously transformed to β on Σ. A closed
curve on a surface is contractible if it is freely homotopic to a constant curve (it
can be continuously deformed to a single point).

Since we are going to work with a toroidal embedding of a given graph,
we first resolve the task of finding it. It is widely known how to test planarity
efficiently, and a strong generalization of that result by Mohar [16] claims:

Theorem 2.1 (Mohar). For every surface Σ there is a linear time algorithm
which, for a given graph G, either finds an embedding of G on Σ or returns a
subgraph of G that is a subdivision of a “minimal obstacle” for Σ.
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In particular, this result provides us a toroidal embedding of the input graph
which is known to be toroidal.

The second ingredient in our approach is a well-known concept of measuring
“dual density” of a graph embedding. Consider now a graph G embedded on a
nonplanar surface Σ (i.e. G is a topological rather than a combinatorial object,
and the embedding G itself determines the surface Σ). The edge-width ew(G) of
the embedding G is then defined as the length of the shortest cycle in G which
is not contractible on Σ.

The edge-width of a given embedding can be efficiently computed by an
algorithm of Thomassen [23]. A recent improvement of running time is in [5]:

Theorem 2.2 (Cabello, Mohar). Given an embedded graph H, one can com-
pute in time O(n

√
n), where n = |V (H)| + |E(H)|, the edge-width k of the

embedding H, and find a length-k noncontractible cycle in H.

The basic idea—“cut and open” a toroidal embedding of a given graph G
while affecting the fewest number of edges, appears in the core of the proof by
Pach and Tóth [20] (Böröczky et al [3]). We adopt it (with a slight modification –
using the topological dual instead of a triangulation) in an algorithmical setting.
See Fig. 1 for an informal hint to geometric idea of this algorithm.

Algorithm 2.3. Drawing a toroidal graph G in the plane.

1. Given a toroidal graph G, we first test planarity of G. (If G is plane, we are
done.) We construct an embedding Ḡ of G on the torus S1 using Theorem 2.1.

2. We construct the topological dual G∗ for Ḡ on S1. We compute k, the edge-
width of G∗, and the corresponding length-k cycle C∗ in G∗ as described in
Theorem 2.2.

3. Let γ be the simple loop of S1 formed by C∗. We transform S1 into a cylinder
R by “cutting along” γ. The cylinder R has two boundary curves γ1 and
γ2 which are the copies of γ. In this way the embedded (dual) graph G∗ is
naturally transformed into G⋆ on R such that C⋆

1 and C⋆
2 are the two copies

of C∗ embedded as γ1 and γ2, respectively.

4. Let Go be the graph resulting from G⋆ by contracting each of C⋆
1 and C⋆

2

into single vertices w1 and w2. Note that since G is not planar, it follows that
Go is connected. We then use breadth-first search to compute the shortest
path P o of length ℓ between w1 and w2 in Go. Let δ be the simple curve on
R formed by the embedding of P o in G⋆. Hence δ connects a point x1 on γ1

to a point x2on γ2, and δ intersects ℓ edges of the original embedding Ḡ.

5. Let F ⊆ E(G) be the set of those edges in the embedding Ḡ which are
crossed by γ, and F ′ ⊆ E(G) be the set of those crossed by δ. Hence Ḡ− F
is actually embedded on R, and we extendthis crossing-free subdrawing (of

G − F ) into a new drawing G̃of the whole graph G on R as follows: each
edge from F is newly drawn along an appropriate section of γ1 up to x1,
then along δ (crossing the ℓ edges from F ′) until reaching x2, and finally

along an appropriate section of γ2. We output G̃ as a drawing of G.
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δ

x2

x1

γ1 γ2

Fig. 1. Cutting a toroidal embedding by γ, and redrawing the affected edges along δ.

Lemma 2.4. The output graph G̃ in Algorithm 2.3 is a planar drawing of G with
at most kℓ + ⌊k2/4⌋ edge crossings, where k, ℓ are computed in the algorithm.

Proof. Since cutting the torus along any noncontractible loop (Step 3) results
in a cylinder, the graph Ḡ − F is cylinder-embedded, and hence plane (F are
the edges intersected by γ, that is, dual to E(C∗)). Now since G is nonplanar,
k > 0 and the graph Go is connected. So in Step 4 we find a dual path P o and
the associated curve δ connecting x1 with x2 on the two boundaries γ1, γ2 of our
cylinder R.

The drawing Ḡ − F is disjoint from both γ1, γ2 in R, and by the definition
of F , each e = u1u2 ∈ F has ui on the face incident with γi, i = 1, 2. Hence
such e ∈ F can be drawn along γi from ui to xi without crossings, for i = 1, 2,
and (in the middle) along δ making ℓ crossings with the edges from F ′. See in

Fig. 1. Furthermore, two edges e, e′ ∈ F must cross each other in G̃ if and only
if x1, x2 (visualized as points back on γ) separate the intersections e ∩ γ from
e′ ∩ γ. This makes at most ⌊k/2⌋⌈k/2⌉ = ⌊k2/4⌋ crossings in addition to the kℓ
crossings between F and F ′.

Lemma 2.5. Algorithm 2.3 runs in time O(n
√

n), where n = |V (H)|+ |E(H)|.
Proof. We represent an embedded graph by its rotation system (of edges at the
vertices). Step 1 runs in linear time with this representation, by Theorem 2.1.
Now the dual embedding G∗ is easily obtained in linear time, too, and so Step
2 runs in time O(n

√
n), by Theorem 2.2. The transformation into a cylindrical

embedding G⋆ described in Step 3 is simply done in O(k) time: we duplicate C∗

into C⋆
1 , C⋆

2 and “split” the local rotations of V (C∗) accordingly. In Step 4 we
deal with an abstract graph Go, and the breadth-first search (for P o) on it also
runs in O(n) time. Then in Step 5 we get the embedding Ḡ − F in linear time
as the plane dual of G⋆, excluding the C⋆

1 , C⋆
2 -faces. We also identify F ′ as the

edge set dual to E(P o) computed in Step 4.
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Finally, we visualize each crossing in the final planar drawing G̃ as a
(“dummy”) degree 4 vertex in an associated planar graph G′. Knowing C∗ and
P o, and their dually associated edge sets F and F ′, the construction of G′ is
computationally achieved in time O(kℓ+k2) (see Lemma 2.4), which is also O(n)
by further Lemma 4.1 and Theorem 3.2.

3 Lower crossing bound

Let G be a graph with maximum degree ∆(G) = ∆. For simplification we con-
sider G already embedded in the torus. As we have observed in Lemma 2.4, Algo-
rithm 2.3 yields a drawing of G in the plane with at most kℓ+k2/4 crossings. Our
basic claim, in order to prove Theorem 1.1 that this drawing is a good estimate
for cr(G), is that the computed quantity kℓ is within a constant factor of cr(G)
(more precisely, a factor that depends only on ∆ for large enough k). Equiva-
lently, there is a suitable function f(∆) > 0 such that cr(G) ≥ (f(∆)−ok(1))·kℓ.
The goal of this section is to prove this claim.

Assuming a cycle C and a path P with both ends on C, simultaneously
embedded in an orientable surface Σ, we say that P is C-separated if P is
internally disjoint from C, and the first and the last edges of P appear on
opposite sides of the loop C in Σ. To give formal mathematical meaning of
the variables k, ℓ in Algorithm 2.3, we let ew∗(G) denote the dual edge-width
(the edge-width of the topological dual of G), and we let L(G) denote the set
of orthogonal widths, that is, the set of all integers ℓ possessing the following
property: there is a noncontractible cycle C∗ of length ew∗(G) in the topological
dual G∗, such that ℓ is the length of the shortest path P ∗ in G∗ with both ends
in V (C∗) which is C∗-separated. Note that P ∗ may be a cycle, and so with a
slight abuse of terminology we do allow the ends of P ∗ to be the same. Clearly,
Algorithm 2.3 computes k = ew∗(G) and ℓ ∈ L(G).

Lemma 3.1. Let G be a graph embedded in the torus with maximum degree ∆,
k = ew∗(G) and ℓ = maxL(G). Then

cr(G) ≥
(

1

16⌊∆/2⌋2 − ok(1)

)
· kℓ ≥

(
1

4∆2
− ok(1)

)
· kℓ ,

where ok(1) → 0 as k → ∞ with fixed ∆.

Before we move on with the proof, we recall that the p × q toroidal grid is
the Cartesian product Cp×Cq of cycles of lengths p and q. This 4–regular graph
embeds naturally in the torus with the edge-width min{p, q}.
Proof. The main new ingredient for the proof is the following statement, which
guarantees the existence of a large toroidal grid minor contained in G.

Theorem 3.2. Let G be a graph embedded in the torus, k = ew∗(G) and ℓ ∈
L(G). Then G contains a minor isomorphic to the toroidal grid of size

⌈
1

2

(
k

⌊∆/2⌋ − 1

)⌉
×

⌈
ℓ

⌊∆/2⌋

⌉
.
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Assuming this result for the moment (we devote the next section to its proof),
we finish the proof of Lemma 3.1.

First we recall that if H is a minor of G, and H has maximum degree at
most 4, then cr(G) ≥ 1

4 cr(H) [19]. It is known that the crossing number of the
toroidal grid of size q× p, where p ≥ q ≥ 3, is at least 1

2 (q − 2)p [14]. Combining
these facts with Theorem 3.2, and using ℓ ≥ k/2 (from Lemma 4.1), we obtain

cr(G) ≥ 1

4
· 1

2
(q− 2)p ≥ 1

8
· k

2⌊∆/2⌋ ·
ℓ

⌊∆/2⌋ −O(ℓ) ≥
(

1

16⌊∆/2⌋2 − ok(1)

)
· kℓ .

To derive Theorem 1.1 a) from Lemma 2.4 and this estimate of Lemma 3.1,
we note that, using Lemma 4.1,

kℓ + k2/4 ≤ kℓ + kℓ/2 ≤ cr(G) · 3

2

(
1

4∆2
− ok(1)

)−1

≤ cr(G) ·
(
6∆2 + ok(1)

)
.

The same argument proves also part b) of Theorem 1.1, with a constant
factor 3

2 8∆2 = 12∆2, if we adapt Lemma 3.1 without asymptotic terms:

Corollary 3.3. Let G be a graph embedded in the torus, k = ew∗(G) and ℓ =
maxL(G). If k ≥ 10⌊∆/2⌋, then cr(G) ≥ 1

8∆2 · kℓ.

Proof. We just slightly modify the above proof of Lemma 3.1:

cr(G) ≥ 1

8

(
k

2⌊∆/2⌋ − 1

2
− 2

)
· ℓ

⌊∆/2⌋ ≥ 1

8
· k

4⌊∆/2⌋ · ℓ

⌊∆/2⌋ ≥ 1

8∆2
· kℓ .

4 Finding a grid minor

For readers’ convenience, we use throughout the coming arguments the same
notation as introduced in Algorithm 2.3 and used in Theorem 3.2.

Thus, let G be a graph embedded in the torus S1 with maximum degree ∆,
and G∗ be its topological dual. (Although its embedding may not be unique, the
following arguments can use any embedding G in S1 to derive the conclusions.)
Set k = ew∗(G) and choose any orthogonal width (see in Section 3) ℓ ∈ L(G).
Consequently select any appropriate C∗, a length-k noncontractible cycle in G∗

such that the shortest C∗-separated path P ∗ in G∗ has length ℓ. Denote by γ
the simple loop in S1 determined by C∗, and by δ the curve determined by P ∗.

Lemma 4.1. If k = ew∗(G) and ℓ ∈ L(G), then ℓ ≥ k/2.

Proof. Seeking a contradiction, we suppose that ℓ < k/2. The ends of P ∗ on
C∗ determine two subpaths of C∗ (both with the same ends as P ∗), and one of
them, say Q∗, has length at most k/2. Then Q∗ ∪ P ∗ is noncontractible and its
length is at most ℓ + k/2 < k/2 + k/2 = ew∗(G), a contradiction.

In order to finish the arguments of Section 3, we have to provide a proof of
Theorem 3.2, that is, find a sufficiently large toroidal grid minor in the graph G
relatively to the parameters k, ℓ. For that we have to carefully examine the
structure and “density” of a toroidal embedding of G.
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Remark. A beautiful result by de Graaf and Schrijver [7] precisely relates the
size of the largest guaranteed grid minor in a toroidal graph to the “face-width”
of its toroidal embedding. It is, unfortunately, not directly usable in our context
since the lower bound on the size of a toroidal grid (see Theorem 3.2) implied
by [7] would be of order k × k, and not of k × ℓ as we need.

On the other hand, our proof of Theorem 3.2 could be viewed as a graph-
theoretical alternative to [7] (de Graaf and Schrijver’s proof relies on results on
the geometry of numbers), giving a slightly worse estimate in the case of k = 2ℓ,
but significantly stronger for ℓ >> k.

Lemma 4.2. Let G, γ and ℓ be as above. Then the embedded graph G contains
at least ℓ

⌊∆/2⌋
pairwise disjoint cycles, all freely homotopic to γ.

Proof. Let F be the set of those edges of G intersected by γ on S1. We “cut
and open” S1 along γ into the cylinder R with boundary loops γ1 and γ2.
Then the (planar) subgraph H = Ḡ − F is embedded in R. We denote by δ′

a curve on R connecting a point of γ1 to a point of γ2, such that δ′ has the
fewest possible points in common with the embedding H. We claim that δ′

intersects H in p ≥ ℓ
⌊∆/2⌋

points, which can clearly be assumed to be vertices

of H. Indeed, if p < ℓ
⌊∆/2⌋ , then the union of all faces incident with the p

vertices intersected by δ′ would contain a dual path Q∗, which had length at
most p · ⌊∆/2⌋ < ℓ

⌊∆/2⌋ · ⌊∆/2⌋ = ℓ, and (considering in G∗) Q∗ would be

C∗-separated. That contradicts the above definition of ℓ.
We now “cut and open” the cylinder R along δ′, getting a rectangle with sides

γ1, δ
′
1, γ2, δ

′
2 in this cyclic order. By duplicating all p vertices of H on δ′, we get

an embedded graph H ′. Let wi and wi,2 for i = 1, . . . , p denote these duplicated
vertices. We note that there is no vertex cut X of size at most p − 1 in H ′

separating {w1, . . . , wp} from {w1,2, . . . , wp,2}, since that would give a curve ε
from γ1 to γ2 intersecting H in |X| < p points, which is a contradiction to our
choice of δ′. (One may notice that a similar argument appears, for instance,
also in [20, 10, 3].) Hence we get p pairwise disjoint paths from {w1, . . . , wp} to
{w1,2, . . . , wp,2} by Menger’s theorem in H ′. Moreover, by a planarity argument
we immediately see that each of these paths connects wi to the corresponding
wi,2 for i = 1, . . . , p. Thus they form the desired collection of p pairwise disjoint
cycles in H, and they are also disjoint from γ and freely homotopic to it.

The following statement could be proved using similar means as Lemma 4.2,
but this time with many more complications, and so we prefer an indirect ap-
proach using [4].

Lemma 4.3. Let G, γ and ℓ be as above. Then the embedded graph G contains

at least 1
2

(
k

⌊∆/2⌋ − 1
)

pairwise disjoint pairwise freely homotopic cycles which

are not homotopic to an iteration of γ.

Proof. Let λ be any simple noncontractible loop in S1 intersecting γ in one point.
We define a loop λi,j in S1 as the composition of j iterations of λ and i iterations
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of γ. (Classical topology says that any loop on S1 is freely homotopic to one
of λi,j . We neglect the orientation of the loops here.) Using the terminology of [4],
we define a “complete set of loops” on S1 as all those which are freely homotopic
to λi,0 for any i. By an analogous argument as in the proof of Lemma 4.2 we
notice that the face-width of G is r ≥ k

⌊∆/2⌋ . Thus [4, Corollary 7.1] gives the

required 1
2
(r − 1) pairwise disjoint cycles, all freely homotopic to λs,t for some s

and t 6= 0.

Proof of Theorem 3.2. We denote by C1, C2, . . . , Cp (the “C-cycles”) the
pairwise disjoint cycles in our graph G from Lemma 4.2 and by D1,D2, . . . ,Dq

(the “D-cycles”) the cycles from Lemma 4.3, where p =
⌈

ℓ
⌊∆/2⌋

⌉
and q =

⌈
1
2

(
k

⌊∆/2⌋ − 1
)⌉

. Notice that p ≥ q by Lemma 4.1, so we may assume p ≥ 3

since otherwise the statement is trivial. To simplify notation, we use cyclic in-
dexing of the C-cycles modulo p and of the D-cycles modulo q. We also let
C+ := C1 ∪ C2 ∪ . . . ∪ Cp and D+ := D1 ∪ D2 ∪ . . . ∪ Dq.

Remark. It may appear that we already have the desired grid as a minor in
C+ ∪D+, since every Dj , j ∈ {1, . . . , q}, has to intersect each Ci, i ∈ {1, . . . , p},
in some vertex of G. This is because the homotopy types of Ci and Dj on S1 are
distinct. The cycles Ci and Dj , however, could have many “zigzag” intersections,
and besides, Dj may “wind” many times in the direction orthogonal to Ci. These
problems will be dealt with in the coming proof.

First, we can assume that among all possible choices of the collection
C1, . . . , Cp, we have gotten one which minimizes |E(C+) \ E(D+)|. An F -ear
is a path having both ends in a subgraph F , but otherwise disjoint from F .
Then the following is true for our choice:

Claim 4.4. No C+-ear contained in D+ has both ends on the same cycle Ci.

Indeed, if a C+-ear P ⊂ D+ with both ends on some Ci contradicted our claim,
we could rectify the cycle Ci by following P in the appropriate section, thus
decreasing the value of |E(C+) \ E(D+)|.

We further assume that the cycles C1, C2, . . . , Cp appear in this cyclic order
around the torus; precisely, that for none 2 < i < i′ ≤ p the cycles C1 and Ci

share a face in the toroidal (sub)embedding of C1 ∪ C2 ∪ Ci ∪ Ci′ . A quasicycle
is a graph-homomorphic image of a cycle without degree-1 vertices, implicitly
retaining its cyclic ordering of vertices. Consider an arbitrary quasicycle D′

j in
G homotopic to D1 (say, initially D′

j = Dj). We say that D′
j is C+-ear good if

(cf. Claim 4.4) no C+-ear of D′
j has both ends on the same Ci.

With respect to the chosen quasicycle D′
j , we define an intersection sequence

a(j, i), i = 1, . . . , sj , of integers such that D′
j intersects all the C-cycles in the

cyclic order C1 = Ca(j,1), Ca(j,2), . . . , Ca(j,sj), choosing appropriately sj and the
same orientation as with C1, . . . , Cp. We denote by Qj,t, t = 1, 2, . . . , sj , the
path of D′

j (possibly a single vertex) forming the corresponding intersection with
the cycle Ca(j,t), and by Tj,t the path of D′

j between Qj,t and Qj,t+1. Clearly,
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a(j, t+1) 6= a(j, t) if D′
j is C+-ear good, and hence |a(j, t+1)−a(j, t)| ∈ {1, p−1}

for t = 1, 2, . . . , sj .

A collection of C+-ear good quasicycles D′
1,D

′
2, . . . ,D

′
q in G is quasigood if it

satisfies the property that whenever D′
n intersects D′

m in a path P (counting also
the case of a self-intersection with m = n), the following hold up to symmetry
between n and m: P ⊆ Qn,x for an appropriate index x of the intersection
sequence of D′

n for which a(n, x − 1) = a(n, x + 1) and a(n, x) − a(n, x − 1) ∈
{1, 1−p}, and the adjacent paths Tn,x−1,Qn,x,Tn,x of D′

n stay locally on one side
of the drawing of D′

m in S1. (Informally, this means that if D′
n intersects D′

m

in P , then D′
n makes a Ca(n,x−1)-ear with P “touching” D′

m from the left side.)
For further refernce we say that D′

n is locally on the left side of the intersection P .

Among all choices of a quasigood collection D′
1,D

′
2, . . . ,D

′
q in G, we select

one minimizing s1 + . . . + sq where sj is the above length of the intersection
sequence for D′

j .

Claim 4.5. For all 1 ≤ j ≤ q the intersection sequence of D′
j satisfies a(j, t−1) 6=

a(j, t + 1) for any 1 < t ≤ sj . Consequently, D′
1,D

′
2, . . . ,D

′
q is a collection of

pairwise disjoint proper cycles in G.

The idea of a proof of this claim is simple—if a(j, t − 1) = a(j, t + 1), then we
could rectify D′

j by following Ca(j,t−1) instead of Tj,t−1 ∪ Qj,t ∪ Tj,t; decreasing
sj by 2. We make this formally precise now.

Let Ri denote the (sub)cylinder of S1 between the boundaries Ci and Ci+1.
Notice that if a(j, t−1) = a(j, t+1) happens for a(j, t)−a(j, t−1) ∈ {−1, p−1},
then neccessarily for some other index t′ it holds a(j, t′ − 1) = a(j, t′ + 1) and
a(j, t′)−a(j, t′−1) ∈ {1, 1−p}. So suppose for a contradiction that a(j, t−1) =
a(j, t+1) = i and a(j, t) = i+1. Then the path P = Tj,t−1 ∪Qj,t ∪Tj,t is drawn
in Ri with both ends on Ci and “touching” Ci+1. We denote by R0 ⊂ Ri the
open region bounded by P and Ci, and by P ′ the section of the boundary of R0

not belonging to D′
j .

Assuming that R0 is minimal possible over all choices of j for which
a(j, t − 1) = a(j, t + 1), we show that no D′

m, m ∈ {1, . . . , q} enters R0: If
some D′

m intersected R0, then D′
m could not enter R0 across P by the “stay on

one side” property of a quasigood collection. Hence D′
m should enter and leave

R0 across P ′ ⊆ Ci, but not touch Qj,t ⊆ Ci+1 by minimality of R0. So D′
m

would make a C+-ear with both ends on Ci, contradicting the assumption that
D′

m is C+-ear good.

Now we form Do
j as the symmetric difference of D′

j with the boundary of R0

(hence Do
j follows P ′). To argue that D′

1, . . . ,D
o
j , . . . ,D′

q is a quasigood collection
again, it suffices to verify all possible new intersections of Do

j along P ′. So suppose
there is D′

n such that its intersection Qn,x with Ci contains some internal vertex
of P ′. Since D′

n is disjoint from (open) R0, it will “stay on one side” of Do
j . If

Qn,x intersects D′
j , then D′

n must be locally on the left side of this intersection,
and so it is also on the left side of the intersection with new Do

j according to
the above definition. If, on the other hand, Qn,x is disjoint from D′

j , then the
adjacent paths Tn,x−1 and Tn,x have to connect to Ci−1 by Claim 4.4, and so
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we have a(n, x) = i and a(n, x − 1) = a(n, x + 1) = i − 1 as required by the
definition for D′

n on the left side. Hence Claim 4.5 is proved.

Claim 4.6. There is a collection of pairwise disjoint cycles D′′
1 ,D′′

2 , . . . ,D′′
q in G

where D′′
j ⊂ D′

j ∪ Cj , j = 1, 2, . . . , q, such that the cyclic intersection sequence
of each D′′

j is a(j, 1) = 1, a(j, 2) = 2, . . . , a(j, p) = p of length p.

By Claim 4.5 the intersection sequence of each D′
j has a “nice” form a(j, 1) =

1, a(j, 2) = 2, . . . , a(j, p) = p, a(j, p+1) = 1, . . . Our task is (unless already true)
to “shortcut” each D′

j such that it “winds only once” in the direction orthogonal
to the loop γ. First notice that, for all i = 1, . . . , p, every Ci-ear of each D′

j is
Ci-separated (cf. Section 3) by Claim 4.5. We implicitly orient every Ci-ear so
that it intersects Ci+1 before Ci+2. If we take any C1-ear T1 ⊂ D′

1 with start x1

and end y1 on C1, and any one W1 ⊂ C1 of the two paths between x1, y1, then
the cycle D′′

1 = T1 ∪ W1 has the desired intersection sequence.
Secondly, notice that since D′′

1 is not homotopic to D′
1, every D′

j has to
intersect D′′

1 in W1. We may assume that the cycles D′
2, . . . ,D

′
q have this ordering

of their first intersections with W1 from x1. Now for j = 2, 3, . . . , q we do: let
Qj,x be the intersection of D′

j with W1 closest to x1, and let T ′
j ⊂ D′

j be the
unique C1-ear starting at Qj,x. Then let Tj ⊂ D′

j be the unique Cj-ear starting
inside T ′

j (and hence not intersecting W1), and Wj ⊂ Cj be the path between
the ends of Tj disjoint from T1. We set D′′

j = Tj ∪ Wj . It is straightforward to
verify that D′′

1 , . . . ,D′′
q is a collection of pairwise disjoint cycles in G.

Finally, with Claim 4.6 at hand it is easy to finish the whole theorem: con-
tractions of all the paths of D′′

j ∩ Ci, 1 ≤ i ≤ p, 1 ≤ j ≤ q, into single vertices,
create a subdivision of the q × p toroidal grid in G.

5 Conclusions

We observe that the apparent“weakness” of our approximation (Theorem 3.2) in
requiring large dual edge-width of Ḡ with respect to ∆ is unavoidable. Indeed,
a toroidal embedded graph of dual edge-width k = 2 may easily be planar.
By multiplying edges of such a graph and some local modification one can get
(multi)graphs of crossing number one but arbitrarily large dual edge-width on
the torus, at the expense of growing ∆.

It is natural to ask whether our results can be extended to higher genus
surfaces. The upper bound techniques, as worked out in [3] or [6], seem to pro-
vide a road map for such an extension: Specifically, for G embedded on the
orientable surface Sg, we can iterate g-times the “cut and open” construction
from Algorithm 2.3. Denoting by ki the dual edge-width and by ℓi the associated
orthogonal width obtained at steps i = 1, 2, . . . , g, we straightforwardly conclude
with a planar drawing of G of at most O

(
g2 ·max{kiℓi : i = 1, . . . , g}

)
crossings.

On the other hand, a nontrivial lower bound of order Ω(kgℓg/∆
2) is easy to ob-

tain using Theorem 3.2 at the last iteration. Unfortunately, this bound generally
falls way short of matching the upper bound within a constant factor, even with
fixed g and ∆. We have not yet been able to find a remedy for this problem.
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Finally, we remark that our “grid” Theorem 3.2 itself seems to be of some
interest in structural topological graph theory.
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14. H.A. Juárez and G. Salazar, Drawings of Cm × Cn with one disjoint family II,
J. Combinat. Theory Ser B 82 (2001), 161–165.

15. K. Kawarabayashi, B. Reed, Computing crossing number in linear time, to appear
in STOC’07.

16. B. Mohar, A linear time algorithm for embedding graphs in an arbitrary surface,
SIAM J. Discrete Math. 12 (1999), 6–26.

17. B. Mohar, On the crossing number of almost planar graphs, Informatica 30 (2006),
301–303.

18. B. Mohar and C. Thomassen, Graphs on surfaces, Johns Hopkins Studies in the
Mathematical Sciences, Johns Hopkins University Press (2001), Baltimore MD,
USA.

19. E. Garcia–Moreno, G. Salazar, Bounding the Crossing Number of a Graph in terms

of the Crossing Number of a Minor with Small Maximum Degree, J. Graph Theory
36 (2001), 168–173.

12
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