

Minimizing an Uncrossed Collection of Drawings

Petr Hliněný*

Faculty of Informatics, Masaryk University Brno, Czech Republic

Tomáš Masařík

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw
Warszawa, Poland

1 Drawings and Crossing Minimization

1 Drawings and Crossing Minimization

$\operatorname{CrossingNumber}(\boldsymbol{k}) \equiv$ problem to draw a graph with $\leq k$ edge crossings.

1 Drawings and Crossing Minimization

$\operatorname{CrossingNumber}(\boldsymbol{k}) \equiv$ problem to draw a graph with $\leq k$ edge crossings.

- The vertices of G are distinct points in the plane, and every edge $e=u v \in E(G)$ is a simple curve joining u to v.

1 Drawings and Crossing Minimization

CrossingNumber $(\boldsymbol{k}) \equiv$ problem to draw a graph with $\leq k$ edge crossings.

- The vertices of G are distinct points in the plane, and every edge $e=u v \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

1 Drawings and Crossing Minimization

CrossingNumber $(\boldsymbol{k}) \equiv$ problem to draw a graph with $\leq k$ edge crossings.

- The vertices of G are distinct points in the plane, and every edge $e=u v \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

1 Drawings and Crossing Minimization

$\operatorname{CrossingNumber}(\boldsymbol{k}) \equiv$ problem to draw a graph with $\leq k$ edge crossings.

- The vertices of G are distinct points in the plane, and every edge $e=u v \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

- A very hard algorithmic problem, indeed. . .

The Art of Multiple Drawings?

The Art of Multiple Drawings?

Or, would you like yet another drawing?

The Art of Multiple Drawings?

Or, would you like yet another drawing?

- Actually; Biedl, Marks, Ryall, and Whitesides, GD 1998: Graph Multidrawing: Finding Nice Drawings Without Defining Nice ... the multidrawing approach calls for systematically producing many drawings of the same graph, where the drawings presented to the user represent a balance between aesthetics and diversity ...

2 Uncrossed Collections of Drawings

- Inspired by "diverse solutions" in the parameterized algorithms world:

2
 Uncrossed Collections of Drawings

- Inspired by "diverse solutions" in the parameterized algorithms world: [Misra, Rosamond, Zehavi, 2020]: When seeking some collection of solutions, we may wish them to be "diverse", ... in some sense, as "diverse" as possible. [Baste, Fellows, Jaffke, Masařík, Oliveira, Philip, Rosamond, 2022] ... an intuitive notion of diversity which suits a large variety of combinatorial problems ...

2 Uncrossed Collections of Drawings

- Inspired by "diverse solutions" in the parameterized algorithms world: [Misra, Rosamond, Zehavi, 2020]: When seeking some collection of solutions, we may wish them to be "diverse", ... in some sense, as "diverse" as possible. [Baste, Fellows, Jaffke, Masařík, Oliveira, Philip, Rosamond, 2022] . . an intuitive notion of diversity which suits a large variety of combinatorial problems ...
- However, what is an exactly definable view of diversity (of solutions - the drawings) for problems related to edge crossings?

2 Uncrossed Collections of Drawings

- Inspired by "diverse solutions" in the parameterized algorithms world: [Misra, Rosamond, Zehavi, 2020]: When seeking some collection of solutions, we may wish them to be "diverse", ... in some sense, as "diverse" as possible. [Baste, Fellows, Jaffke, Masařík, Oliveira, Philip, Rosamond, 2022] . . an intuitive notion of diversity which suits a large variety of combinatorial problems ...
- However, what is an exactly definable view of diversity (of solutions - the drawings) for problems related to edge crossings?

Definition. A family of drawings $D_{1}, D_{2}, \ldots, D_{k}$ of G is an uncrossed collection of drawings if each edge of G is uncrossed in some D_{i}.

The Uncrossed Number

Definition. The uncrossed number $\operatorname{unc}(G)$ is the least size of an uncrossed collection of drawings of G.

The Uncrossed Number

Definition. The uncrossed number $\operatorname{unc}(G)$ is the least size of an uncrossed collection of drawings of G.

Trivial. $\quad \operatorname{unc}(G) \leq|V(G)|$ since we can partition into stars.

The Uncrossed Number

Definition. The uncrossed number $\operatorname{unc}(G)$ is the least size of an uncrossed collection of drawings of G.

Trivial. $\operatorname{unc}(G) \leq|V(G)|$ since we can partition into stars.

Basic properties and relations

Observation. An uncrossed collection of k drawings gives a partition of the edge set into k planar subgraphs.

The Uncrossed Number

Definition. The uncrossed number $\operatorname{unc}(G)$ is the least size of an uncrossed collection of drawings of G.
Trivial. $\operatorname{unc}(G) \leq|V(G)|$ since we can partition into stars.

Basic properties and relations

Observation. An uncrossed collection of k drawings gives a partition of the edge set into k planar subgraphs.

$$
\rightarrow \operatorname{unc}\left(K_{n}\right) \in \Theta(n)
$$

The Uncrossed Number

Definition. The uncrossed number unc (G) is the least size of an uncrossed collection of drawings of G.
Trivial. $\operatorname{unc}(G) \leq|V(G)|$ since we can partition into stars.

Basic properties and relations

Observation. An uncrossed collection of k drawings gives a partition of the edge set into k planar subgraphs.

$$
\begin{aligned}
& \rightarrow \operatorname{unc}\left(K_{n}\right) \in \Theta(n) \\
& \rightarrow \text { Uncrossed number } \geq \text { Thickness }
\end{aligned}
$$

The Uncrossed Number

Definition. The uncrossed number $\operatorname{unc}(G)$ is the least size of an uncrossed collection of drawings of G.

Trivial. \quad unc $(G) \leq|V(G)|$ since we can partition into stars.

Basic properties and relations

Observation. An uncrossed collection of k drawings gives a partition of the edge set into k planar subgraphs.
$\rightarrow \operatorname{unc}\left(K_{n}\right) \in \Theta(n)$
\rightarrow Uncrossed number \geq Thickness
Definition. The (outer) thickness of a graph G is the minimum number of (outer) planar subgraphs the edge set of G can be partitioned into.

Thickness, Uncrossed Number, and Outerthickness
Proposition. Thickness \leq Uncrossed Number \leq Outerthickness.

Thickness, Uncrossed Number, and Outerthickness

Proposition. Thickness \leq Uncrossed Number \leq Outerthickness.
Proof. Left \leq is trivial, from above. (And strict $<$, e.g., for K_{7}.)

Thickness, Uncrossed Number, and Outerthickness

Proposition. Thickness \leq Uncrossed Number \leq Outerthickness.
Proof. Left \leq is trivial, from above. (And strict $<$, e.g., for K_{7}.)
Right \leq : Each outerplanar subgraph of G can be completed to a drawing of G (only) in the outer face.

Thickness, Uncrossed Number, and Outerthickness

Proposition. Thickness \leq Uncrossed Number \leq Outerthickness.
Proof. Left \leq is trivial, from above. (And strict $<$, e.g., for K_{7}.)
Right \leq : Each outerplanar subgraph of G can be completed to a drawing of G (only) in the outer face.

Theorem. [Mansfield, 1983]
Deciding whether the thickness of a graph is 2 is NP-hard.

Thickness, Uncrossed Number, and Outerthickness

Proposition. Thickness \leq Uncrossed Number \leq Outerthickness.
Proof. Left \leq is trivial, from above. (And strict $<$, e.g., for K_{7}.)
Right \leq : Each outerplanar subgraph of G can be completed to a drawing of G (only) in the outer face.

Theorem. [Mansfield, 1983]
Deciding whether the thickness of a graph is 2 is NP-hard.
Open. The complexity of outerthickness.

Thickness, Uncrossed Number, and Outerthickness

Proposition. Thickness \leq Uncrossed Number \leq Outerthickness.
Proof. Left \leq is trivial, from above. (And strict $<$, e.g., for K_{7}.)
Right \leq : Each outerplanar subgraph of G can be completed to a drawing of G (only) in the outer face.

Theorem. [Mansfield, 1983]
Deciding whether the thickness of a graph is 2 is NP-hard.
Open. The complexity of outerthickness.
Conjecture. Minimizing the uncrossed number is para-NP-hard.

3 The Uncrossed Crossing Number

Definition. The uncrossed crossing number $\operatorname{ucr}(G)$ is the minimum of

$$
\operatorname{cr}\left(D_{1}\right)+\operatorname{cr}\left(D_{2}\right)+\cdots+\operatorname{cr}\left(D_{k}\right)
$$

over all uncrossed collections $D_{1}, D_{2}, \ldots, D_{k}$ of drawings of G.

3 The Uncrossed Crossing Number

Definition. The uncrossed crossing number $\operatorname{ucr}(G)$ is the minimum of

$$
\operatorname{cr}\left(D_{1}\right)+\operatorname{cr}\left(D_{2}\right)+\cdots+\operatorname{cr}\left(D_{k}\right)
$$

over all uncrossed collections $D_{1}, D_{2}, \ldots, D_{k}$ of drawings of G.
Proposition. The number k of drawings in an optimal solution $\operatorname{ucr}(G)$ may be arbitrarily far from the uncrossed number of G.

3 The Uncrossed Crossing Number

Definition. The uncrossed crossing number $\operatorname{ucr}(G)$ is the minimum of

$$
\operatorname{cr}\left(D_{1}\right)+\operatorname{cr}\left(D_{2}\right)+\cdots+\operatorname{cr}\left(D_{k}\right)
$$

over all uncrossed collections $D_{1}, D_{2}, \ldots, D_{k}$ of drawings of G.
Proposition. The number k of drawings in an optimal solution $\operatorname{ucr}(G)$ may be arbitrarily far from the uncrossed number of G.

But;

Few Easy Facts

Observation. Since $\operatorname{cr}\left(K_{n}\right) \in \Theta\left(n^{4}\right)$, and $\operatorname{unc}\left(K_{n}\right) \in \Theta(n)$, we have $\operatorname{ucr}\left(K_{n}\right) \in \Theta\left(n^{5}\right)$.

Few Easy Facts

Observation. Since $\operatorname{cr}\left(K_{n}\right) \in \Theta\left(n^{4}\right)$, and $\operatorname{unc}\left(K_{n}\right) \in \Theta(n)$, we have

$$
\operatorname{ucr}\left(K_{n}\right) \in \Theta\left(n^{5}\right)
$$

Proposition. $\operatorname{ucr}(G)$ is not bounded in $\operatorname{cr}(G)$.

Few Easy Facts

Observation. Since $\operatorname{cr}\left(K_{n}\right) \in \Theta\left(n^{4}\right)$, and $\operatorname{unc}\left(K_{n}\right) \in \Theta(n)$, we have

$$
\operatorname{ucr}\left(K_{n}\right) \in \Theta\left(n^{5}\right)
$$

Proposition. $\operatorname{ucr}(G)$ is not bounded in $\operatorname{cr}(G)$.
Proof. K_{5} with suitable "thick" edges has $\operatorname{cr}\left(K_{5}^{*}\right)=1$ but unbounded $\operatorname{ucr}\left(K_{5}^{*}\right)$ since any other choice of a crossing is very costly.

The Uncrossed Crossing Lemma

Theorem (the Crossing Lemma). [Ackerman 2019] If G is simple and $|E(G)| \geq 7|V(G)|$, then $\operatorname{cr}(G) \geq|E(G)|^{3} /\left(29 \cdot|V(G)|^{2}\right)$.

The Uncrossed Crossing Lemma

Theorem (the Crossing Lemma). [Ackerman 2019] If G is simple and $|E(G)| \geq 7|V(G)|$, then $\operatorname{cr}(G) \geq|E(G)|^{3} /\left(29 \cdot|V(G)|^{2}\right)$.

Theorem. If G is simple and $|E(G)| \geq 7|V(G)|$, then

$$
\operatorname{ucr}(G) \geq|E(G)|^{4} /\left(87 \cdot|V(G)|^{3}\right)
$$

The Uncrossed Crossing Lemma

Theorem (the Crossing Lemma). [Ackerman 2019] If G is simple and $|E(G)| \geq 7|V(G)|$, then $\operatorname{cr}(G) \geq|E(G)|^{3} /\left(29 \cdot|V(G)|^{2}\right)$.

Theorem. If G is simple and $|E(G)| \geq 7|V(G)|$, then

$$
\operatorname{ucr}(G) \geq|E(G)|^{4} /\left(87 \cdot|V(G)|^{3}\right)
$$

Proof. By the edge-bound in planar graphs, we need at least

$$
k \geq \frac{|E(G)|}{3|V(G)|-6} \geq \frac{|E(G)|}{3|V(G)|}
$$

drawings,

The Uncrossed Crossing Lemma

Theorem (the Crossing Lemma). [Ackerman 2019] If G is simple and $|E(G)| \geq 7|V(G)|$, then $\operatorname{cr}(G) \geq|E(G)|^{3} /\left(29 \cdot|V(G)|^{2}\right)$.

Theorem. If G is simple and $|E(G)| \geq 7|V(G)|$, then

$$
\operatorname{ucr}(G) \geq|E(G)|^{4} /\left(87 \cdot|V(G)|^{3}\right)
$$

Proof. By the edge-bound in planar graphs, we need at least

$$
k \geq \frac{|E(G)|}{3|V(G)|-6} \geq \frac{|E(G)|}{3|V(G)|}
$$

drawings, and by the Crossing Lemma for each of the drawings separately,

$$
\operatorname{ucr}(G) \geq \frac{|E(G)|}{3|V(G)|} \cdot \frac{|E(G)|^{3}}{29 \cdot|V(G)|^{2}}=\frac{|E(G)|^{4}}{87 \cdot|V(G)|^{3}}
$$

4 Complexity of Determining $\operatorname{ucr}(G)$

Theorem. [Hliněný \& Derňár 2016, via Cabello \& Mohar] It is NP-hard to compute the tile crossing number of a twisted planar tile.

4 Complexity of Determining $\operatorname{ucr}(G)$

Theorem. [Hliněný \& Derňár 2016, via Cabello \& Mohar] It is NP-hard to compute the tile crossing number of a twisted planar tile.

Theorem. It is NP-hard to compute the uncrossed crossing number,

4 Complexity of Determining $\operatorname{ucr}(G)$

Theorem. [Hliněný \& Derňár 2016, via Cabello \& Mohar] It is NP-hard to compute the tile crossing number of a twisted planar tile.

Theorem. It is NP-hard to compute the uncrossed crossing number, even if only two drawing are allowed, and even if G is almost-planar.

4 Complexity of Determining $\operatorname{ucr}(\boldsymbol{G})$

Theorem. [Hliněný \& Derňár 2016, via Cabello \& Mohar] It is NP-hard to compute the tile crossing number of a twisted planar tile.

Theorem. It is NP-hard to compute the uncrossed crossing number, even if only two drawing are allowed, and even if G is almost-planar.
Proof (via a picture).

4 Complexity of Determining $\operatorname{ucr}(G)$

Theorem. [Hliněný \& Derňár 2016, via Cabello \& Mohar] It is NP-hard to compute the tile crossing number of a twisted planar tile.

Theorem. It is NP-hard to compute the uncrossed crossing number, even if only two drawing are allowed, and even if G is almost-planar.
Proof (via a picture).

Theorem. There is a quadratic FPT-time algorithm with a parameter k that decides whether $\operatorname{ucr}(G) \leq k$.

4 Complexity of Determining $\operatorname{ucr}(G)$

Theorem. [Hliněný \& Derňár 2016, via Cabello \& Mohar] It is NP-hard to compute the tile crossing number of a twisted planar tile.

Theorem. It is NP-hard to compute the uncrossed crossing number, even if only two drawing are allowed, and even if G is almost-planar.
Proof (via a picture).

Theorem. There is a quadratic FPT-time algorithm with a parameter k that decides whether $\operatorname{ucr}(G) \leq k$.
Proof. Technical, very similar to classical Grohe's algorithm via MSO_{2} logic...

5 Final Remarks

- The uncrossed crossing number seems to behave quite similarly to the ordinary crossing number... (Is there any surprising result there?)

5 Final Remarks

- The uncrossed crossing number seems to behave quite similarly to the ordinary crossing number... (Is there any surprising result there?)
- Perhaps, what are the critical graphs for the uncrossed crossing number?

5 Final Remarks

- The uncrossed crossing number seems to behave quite similarly to the ordinary crossing number... (Is there any surprising result there?)
- Perhaps, what are the critical graphs for the uncrossed crossing number?
- On the other hand, while we were initially interested in the uncrossed crossing number, it later turned out that the "itermediate" concept of the uncrossed number is the (possibly) more interesting one!
Recall: Thickness \leq Uncrossed Number \leq Outerthickness.

5 Final Remarks

- The uncrossed crossing number seems to behave quite similarly to the ordinary crossing number... (Is there any surprising result there?)
- Perhaps, what are the critical graphs for the uncrossed crossing number?
- On the other hand, while we were initially interested in the uncrossed crossing number, it later turned out that the "itermediate" concept of the uncrossed number is the (possibly) more interesting one!
Recall: Thickness \leq Uncrossed Number \leq Outerthickness.
- The research of the uncrossed number continues, now with more collaborators (and many more results, e.g., for unc $\left(K_{n}\right)$ and $\left.\operatorname{unc}\left(K_{m, n}\right)\right)$. .

5 Final Remarks

- The uncrossed crossing number seems to behave quite similarly to the ordinary crossing number... (Is there any surprising result there?)
- Perhaps, what are the critical graphs for the uncrossed crossing number?
- On the other hand, while we were initially interested in the uncrossed crossing number, it later turned out that the "itermediate" concept of the uncrossed number is the (possibly) more interesting one!
Recall: Thickness \leq Uncrossed Number \leq Outerthickness.
- The research of the uncrossed number continues, now with more collaborators (and many more results, e.g., for unc $\left(K_{n}\right)$ and $\left.\operatorname{unc}\left(K_{m, n}\right)\right)$. .

Thank you for your attention.

