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Abstract. We prove that the crossing number of an apex graph, i.e.
a graph G from which only one vertex v has to be removed to make it
planar, can be approximated up to a factor of ∆(G−v)·d(v)/2 by solving
the vertex inserting problem, i.e. inserting a vertex plus incident edges
into an optimally chosen planar embedding of a planar graph. Since the
latter problem can be solved in polynomial time, this establishes the first
polynomial fixed-factor approximation algorithm for the crossing number
problem of apex graphs with bounded degree.

Furthermore, we extend this result by showing that the optimal solution
for inserting multiple edges or vertices into a planar graph also approxi-
mates the crossing number of the resulting graph.

Keywords: crossing number, apex graph, vertex insertion, approxima-
tion.

1 Introduction

The crossing number cr(G) of a graph G = (V,E) is the minimum number of

pairwise edge crossings in a drawing of G in the plane. The crossing number prob-

lem has been vividly investigated for over 60 years, and yet only little is known

about it. See [10] for an extensive bibliography. Even for seemingly simple graph

classes, calculating—or at least bounding—the crossing number tends to be dif-

ficult. For example, we still only have conjectures for the crossing numbers of the

complete and complete bipartite graphs. Determining the crossing number of a

given graph is known to be NP-hard [5]. Even though there exist linear program-

ming based exact algorithms which are promising for “real-world” graphs arising

⋆ An advance notice on this result appeared as a poster at Graph Drawing 2008.
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and by the Institute for Theoretical Computer Science ITI, project 1M0545.
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in practical graph drawing applications [3], computing exact crossing numbers

is in general extremely difficult.

The best known polynomial algorithm for the crossing number of general

graphs with bounded degree [4] approximates, within a factor of log3 |V (G)|,

the quantity |V (G)| + cr(G), not directly cr(G). Perhaps the only currently

known polynomial constant factor approximations of cr(G) are for projective [6],

toroidal [9], and almost-planar graphs (see below), again assuming bounded de-

grees. On the other hand, the most common heuristic in practice is the planariza-

tion method : One starts with a planar subgraph G′ and re-insert the temporarily

removed edges one after another.

Let G′ be a planar graph and e 6∈ G′ an edge not yet in G′, connecting two

nonadjacent vertices. Inserting the edge e into the graph G′ means to find an

embedding of G′ and an insertion path for e, such that the resulting drawing in-

duces a planar drawing of G′ and has the smallest number of crossings. We denote

this number by ins(G′, e). While the complexity class of computing cr(G′ + e) is

unknown (and the weighted variant is NP-hard [1]), the computationally easier

ins(G′, e) clearly is an upper bound for cr(G′ + e). We can summarize two main

results regarding the edge insertion problem as follows:

Ins/1 Computing ins(G′, e) can be done in linear time [7].

Ins/2 Optimally inserting a set of edges into a planar graph G′ is NP-hard [11].

We say a non-planar graph G is almost-planar (also called near planar [1])

if it contains an edge e such that G − e is planar. Given that the complex-

ity of computing cr(G) is still unknown for almost-planar G, it was shown

in [8] that ins(G− e, e) approximates cr(G). Recently, the best possible estimate

ins(G − e, e) ≤ cr(G) · ⌊∆(G − e)/2⌋ has been proven in [1], whereby ∆(G − e)

is the maximum degree in G− e. Hence the edge insertion algorithm in fact con-

stitutes an approximation algorithm for the crossing number of almost-planar

graphs which gives a fixed factor approximation in case of bounded degree.

In terms of insertion problems, the question arises which graph structures

can be inserted optimally in polynomial time (similar to Ins/1), and when the

structures become too complex (as for Ins/2). A natural generalization of the

previous results is to consider the problem of inserting a vertex v with a specified

neighborhood into a planar graph G′ with the least number of crossings. We

denote the latter number by ins(G′, v). Although this shows to be a much harder

question than that of edge insertion, it was recently shown that it is solvable in

polynomial time [2].
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(a) Solution of vertex insertion (b) Optimal drawing

Fig. 1. An example of a vertex-v insertion instance requiring many crossings, even
though the crossing number of the graph is small.

In this paper we, in turn, show that ins(G − v, v) approximates the crossing

number of an apex graph G, i.e., a graph G with a vertex v whose removal leaves

a planar graph. Our main result (see Section 2) reads:

Theorem 1. Let G be a graph and v its vertex such that G − v is planar. The

vertex insertion problem of v into a planar embedding of G − v has a solution

with at most

d(v) · ⌊∆(G − v)/2⌋ · cr(G) crossings,

where ∆(G−v) is the maximum degree in G−v and d(v) is the degree of v in G.

Furthermore, powerful straightforward generalizations of this statement to mul-

tiple edge and vertex insertion problems are possible, and we state them later

on in Theorems 7 and 8.

In connection with the algorithm [2] we hence immediately get the following.

Corollary 2. There is a polynomial time algorithm that approximates the cross-

ing number of an apex graph G (with apex vertex v) within a factor of at most

d(v) · ⌊∆(G − v)/2⌋. This is a fixed factor approximation in case of bounded

degrees.

A quite natural question arises; how far can the optimal solution to vertex

insertion be from the crossing number? Inspired by the almost-planar construc-

tions in [7, 8], we can give the following easy construction illustrated in Figure 1:

Lemma 3. There exist apex graphs for which optimal solutions to the vertex

insertion problem require up to ⌊d(v)/2⌋ · ⌊∆(G − v)/2⌋ · cr(G) crossings (about

a half of the value in Theorem 1), for all values of d(v) and ∆(G − v).
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Proof. Consider a graph G with a chosen node v as depicted in Figure 1. The gray

regions denote large dense planar 3-connected subgraphs, i.e., they only allow

a unique planar embedding or its mirror. Moreover, since they are “dense”—

e.g., we may use sufficiently large grids—they have to be drawn planar in the

considered optimal solutions and no edge will cross through such a subgraph;

both would require many more crossings compared to the depicted solutions.

Roughly speaking, our graph mainly consists of three such dense planar 3-

connected subgraphs (H1,H2,H3), joined symmetrically via three high-degree

nodes (a, b, c). Thus, each Hi (1 ≤ i ≤ 3) together with its two incident high-

degree nodes forms a 3-connected component H ′
i, with the high-degree nodes

being the cut vertices of the graph. Each such component can be “flipped” (see

Section 3 for a precise definition) along its cut nodes. We then augment this

graph with two additional edges e, f and the vertex v (with incident edges) as

depicted, forming the graph G.

Clearly, the removal of v from G leaves a planar graph. For the vertex inser-

tion problem, G−v has to be embedded planarly. We can achieve this by flipping

H ′
1, ...,H

′
3 such that e and f can be drawn without any crossings (Figure 1(a)).

In particular, since G − v is 3-connected, this is the only possibility. Note that

the former neighbors of v are now in two disjoint faces (i.e., regions bounded by

edges), ⌊d(v)/2⌋ in each. Hence, inserting v into this embedding requires us to

route ⌊d(v)/2⌋ edges between these two faces (inserting v anywhere along that

route). Since any other route would be more expensive, this routing has to be

“close to” b. Hence we obtain ⌊d(v)/2⌋ · ⌊∆(G − v)/2⌋ crossings.

Yet, by flipping H ′
1 (Figure 1(b)), we do not require any crossings on the

edges incident to v, but only 1 crossing between e and f . Since G is non-planar,

the latter clearly is a crossing minimal solution. This establishes the claim.

2 Crossing Number Approximation

The conceptual idea for proving Theorem 1 is based on [8]. But, in contrast to the

former, we now require a more careful consideration of non-biconnected graphs,

and the task is further complicated by the fact that the position of the newly

introduced vertex v is unknown and possibly different between the solution of

the insertion and the crossing number problems.

Assume Γ is a plane embedding of the graph G−v achieving optimality in the

vertex-v insertion problem, Γc is a crossing-optimal drawing of the graph G, and

let F be a suitable minimal set of edges such that Γc−v−F is a plane embedding.
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Then |F | ≤ cr(G) and the embedding Γc − v−F can be turned into Γ −F by a

sequence of 1- and 2-flips (again, see Section 3 for the precise definition), which

consequently allows to re-embed the edges of F without crossings in G − v. In

this situation the number of new crossings introduced on the edges of v can be

bounded by an iteration of the following claim over all f ∈ F :

Lemma 4. Let H be an apex graph with an apex vertex v such that H − v

is connected. Let an edge f connect two (nonadjacent) vertices of H − v. If

(H − v) + f is planar, then there is a drawing of H + f with plane embedded

(H − v) + f having at most ins(H − v, v) + d(v) · ⌊∆(H − v)/2⌋ crossings.

We will prove this lemma in the next section. By using it, we now establish our

main Theorem 1. Although an application of the previous iteration scheme seems

straightforward, it is not so due to the unavoidable requirement for connected

H − v in Lemma 4 —notice that for an arbitrary minimal F as above, the graph

G − v − F might (easily) become disconnected. The solution is a careful choice

of the edges in F to maintain as much connectivity as possible.

Proof of Theorem 1. Let Γ and Γc be defined as above. Notice, first of all, that

in degenerate cases of d(v) ≤ 1 or ∆(G − v) ≤ 2 there always is a solution with

ins(G − v, v) = 0. Otherwise, we proceed our proof by induction on cr(G).

If Γc−v is a plane drawing, then we have a solution with ins(G−v, v) = cr(G).

A bridge is an edge whose removal would disconnect the corresponding graph.

So, assume Γc − v contains a crossing involving an edge f of G − v such that f

is not a bridge in G − v. Setting H := G − f , we see that cr(H) ≤ cr(G) − 1

from crossing-optimality of our Γc. By inductive assumption, with H in place of

G, we obtain

ins(H − v, v) ≤ d(v) · ⌊∆(H − v)/2⌋ · cr(H) ,

and by immediately subsequent application of Lemma 4,

ins(G − v, v) ≤ d(v) · ⌊∆(H − v)/2⌋ · (cr(G) − 1) + d(v) · ⌊∆(H − v)/2⌋ ≤

≤ d(v) · ⌊∆(G − v)/2⌋ · cr(G) .

It thus remains to consider that all the edges involved in crossings in Γc − v

are bridges of G − v (hence forming a “tree-like” structure with the remaining

components as “big vertices”). Let F0 be any minimal set of edges in G − v

covering all the crossings in Γc − v, i.e., for each crossing, at least one involved

edge is contained in F0. In particular, |F0| ≤ cr(G).



6 Markus Chimani, Petr Hliněný, and Petra Mutzel

If f ∈ F0, then both ends of f belong to the same face of Γc−v−F0; otherwise

these ends would be separated by a cycle C in Γc − v − F0 and the edge of C

crossing f would not be a bridge. Hence in this case we can iteratively re-insert

the edges of F0 back to Γc − F0, each time crossing at most d(v) edges incident

with v and no other edge of Γc. So (without using induction here), we obtain

ins(G − v, v) ≤ (cr(G) − |F0|) + |F0| · d(v) ≤ d(v) · cr(G) .

3 Proof of Lemma 4

It remains to prove Lemma 4. Therefore we will simplify our notation and con-

sider only the planar graphs G := H − v, and G + f where f connects two

nonadjacent vertices x, y of G. Let ∆ = ∆(G). Let w1, . . . , wd be the d former

neighbors of v in G (in H, in fact), thereafter called the “red terminals” of G. We

no longer treat v and its former edges from H as a graph vertex and edges, but

as the “red point” v and the “red lines” drawn from v to the terminals w1, . . . , wd

inside a plane embedding of G or of G + f . Hence a “crossing” is for us now a

crossing between a red line and an edge of some embedding of G. No other kinds

of crossings will occur, as we will see later. The following is a reformulation of

Lemma 4 in this special setting:

Lemma 5 (Alternative Formulation of Lemma 4). Let Γ be a plane em-

bedding of a connected graph G, and x, y ∈ V (G) be such that G + xy is planar.

Then there exists a plane embedding Γ ′ of G such that:

a) The vertices x, y belong to the same face of Γ ′, i.e. the edge f = xy can

be planarly inserted into Γ ′.

b) Assume we can draw a red point joined by red lines to all the terminals

w1, . . . , wd ∈ V (G) in Γ with ℓ crossings. Then the same can be drawn into

Γ ′ + f with at most ℓ + d · ⌊∆/2⌋ crossings.

We need some more technical terms and conditions before proceeding with

the proof.

Let G ↾ A and Γ ↾ A denote the subgraph of G and the subembedding

of Γ , respectively, induced by the edges A ⊆ E(G). We use the bar -notation

Ā := E(G) \ A to specify the complement of some edge set A ⊆ E(G) w.r.t.

E(G). A k-separation in a graph G is a bipartition (A, Ā) of the edges E(G)

such that exactly k boundary vertices of G are incident both with A and Ā.
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Fig. 2. Lemma 6: A nested sequence of 1- and
2-flips allows to obtain a planar embedding
where x and y are on the same face. The gray
regions denote subgraphs; note that each sub-
graph G ↾Fi contains the subgraph G ↾Fi−1.

This is a technical analogy of a k-vertex cut. Having a 2-separation (A, Ā) in

G, and an embedding Γ of G, a 2-flip of A in Γ (also called a Whitney flip) is

the operation which “cuts out” the subembedding Γ ↾ A and embeds back its

mirror image, exactly matching the former two cutvertices of (A, Ā). A 2-flip is

a well-known graph operation, and a folklore theorem by Whitney states that

any two plane embeddings of a 2-connected planar graph are equivalent up to a

sequence of 2-flips. Two plane embeddings are equivalent if they have the same

collections of facial cycles (or of facial walks in the case of a connected graph).

Unlike the former, no established notion of a “1-flip” seems to exist. The

following notion is suited to our needs: Having a 1-separation (A, Ā) in G with

the cutvertex z, and an embedding Γ of G, a 1-flip of A in Γ is the operation

which “cuts out” the subembedding Γ ↾ A = ΓA, then makes any face of ΓA

incident with z the new outer face of ΓA, and finally embeds ΓA or its mirror

image back to any face of Γ ↾Ā incident with z again. Note that a 1-flip operation

on A is not uniquely determined, and that our definition is actually symmetric

in the parts A, Ā. We shall use the following technical statement, cf. Figure 2:

Lemma 6. Let Γ , a plane embedding of G, and x, y ∈ V (G) be defined as in

Lemma 5. Then there exists an sequence F1 ( F2 ( . . . ( Ft ( E(G) of edge

sets such that:

a) Vertex x is only incident with edges of F1, vertex y is not incident with

any edge of Ft, and
(

Fi, F̄i

)

is a 1- or 2-separation in G for i = 1, . . . , t.
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b) The subembedding Γ ↾ Fi is contained in a single face of Γ ↾ F̄i, and

symmetrically Γ ↾ F̄i is contained in a single face of Γ ↾Fi, for i = 1, . . . , t.

c) Successively applying 1- or 2-flips of Fi, i = 1, . . . , t, onto Γ leads to an

embedding Γ0 of G such that the vertices x, y belong to the same face of Γ0.

Proof. Let Γf be any plane embedding of the graph G+f where f = xy. We pro-

ceed the proof by induction on the number of blocks (2-connected components)

of G.

• If G itself is 2-connected, then Γ can be transformed into Γf − f using a

sequence S of 2-flips by Whitney’s theorem. These flips clearly commute. If a

flip of F ⊂ E(G) is in the sequence S such that x, y ∈ G ↾F or x, y ∈ G ↾ F̄ ,

then it can be undone later without affecting the embeddability (c) of the new

edge f . Hence we can eliminate all such flips in advance. Possibly taking set

complements, we can thus assume that flipping of F occurs in our sequence

S only if x is incident exclusively with edges of F and y is not incident with

any edge of F . This establishes claim (a).

If the sequence S considers two overlapping 2-flips of F and of F ′, i.e. both

F \F ′ and F ′\F are nonempty, then also F ∩F ′ and F ∪F ′ are 2-separations

in G and we can instead flip those two sets. Hence we may assume that our

2-flipping sequence transforming Γ to suitable Γf with added edge f is of

the form F1 ( F2 ( . . . ( Ft ( E(G). Finally, to deal with the technical

condition (b), we notice that if the two boundary vertices z1, z2 of any 2-

separation in G give more than two components in G − z1 − z2, then only

two of these components containing x and y are interesting for inserting f .

The remaining ones can be flipped with either side such that (b) is satisfied.

• It remains to consider a non-2-connected graph G. If a leaf block of G is

incident with neither x, y, then this block can be safely ignored and we

proceed by induction without this block. Hence consider a leaf block K

of G with a cutvertex z, such that x is disjoint from K and y belongs to

K − z; let C = E(K). By inductive assumption, there is a flipping sequence

F 1
1 ( . . . ( F 1

t1
( C̄ transforming Γ ↾ C̄ into Γ1 such that the vertices x and z

are on the same face of Γ1. Similarly a flipping sequence F 2
1 ( . . . ( F 2

t2
( C

transforms Γ ↾ C into Γ2 such that the vertices z and y are on the same

face of Γ2. Clearly, an appropriate 1-flip of C̄ now transforms Γ1 ∪ Γ2 into

an embedding of G in which all three vertices x, z, y are on the same face.

Hence we conclude with a composed flipping sequence F 1
1 ( . . . ( F 1

t1
(
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C̄ ( F 2
1 ∪ C̄ ( . . . ( F 2

t2
∪ C̄ ( E(G) which again satisfies the conditions of

the lemma.

Proof of Lemma 5. Without loss of generality, we assume that the face of Γ

hosting the red point of part (b) is the outer face. We consider the edge-set

sequence F1 ( F2 ( . . . ( Ft ( E(G) given by Lemma 6.

Let j ∈ {1, . . . , t} be the smallest index such that at least one edge of Fj

is incident with the outer face of Γ . If all the edges of the outer face belong to

F̄t, then let j = t + 1. We set p = j − 1 and q = t + 1 − j, and define two

edge-set sequences Ai = Fi for i = 1, . . . , p, and Bi = F̄t+1−i for i = 1, . . . , q.

Let A0 = B0 = ∅, and D = E(G) \ (Ap ∪ Bq). Now, successively applying

appropriate 1- or 2-flips on all these Ai and Bi (while keeping Γ ↾D fixed) lead

to an embedding Γ ′ of G that is equivalent to Γ0 of Lemma 6, and hence x, y

belong to the same face of Γ ′ and Γ ′ + f is plane. This establishes claim (a).

Later on, we shall use another fact implied by this situation. Let Ω be the

face of Γ ↾ D containing Γ ↾ Ap. We claim that Ω must also contain Γ ↾ Bq :

We have Γ ↾ D = Γ ′ ↾ D, and the vertices x in Γ ↾ Ap and y in Γ ↾ Bq do not

belong to Γ ↾D. Planarity of Γ ′+f forces x and y to occur simultaneously in Ω.

Furthermore, Γ ↾Ap is contained in the outer face of Γ ↾Bq by our choice of j

above, and symmetrically Γ ↾Bq is in the outer face of Γ ↾Ap using Lemma 6(b).

To prove the more difficult part (b) of Lemma 5, we start from the optimal

“red drawing” (joining a red point with all the red terminals w1, . . . , wd) in Γ .

We then suitably modify the red lines incident with terminals involved in the

flipping sequences Ai or Bi: We bring them “close from outside” to the vertex x

or y, respectively, and finally re-join all these red lines in the face of Γ ′ hosting

the inserted edge f = xy. Our general goal is to add at most ⌊∆/2⌋ new crossings

on each of the d red lines; cf. Figure 3.

Formally, a terminal wj is involved in the flip of Ai if all edges incident with

wj in G belong to Ai; the analogous holds for Bi.

Consider the original Γ together with an optimal drawing of a red point v

joined by red lines to all the terminals w1, . . . , wd ∈ V (G), altogether requiring ℓ

crossings. We call this one the old red drawing, to distinguish it from a new red

drawing we are going to construct in Γ ′. By our assumptions above, v is in the

outer face Λ of Γ , but all the terminals involved in our two flipping sequences

are contained in Ω, the previously defined face of Γ ↾D.
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Fig. 3. Lemma 5: After realizing the flipping sequences Ai and Bi, we can planarly
insert f = xy. The stars within the graph denote the red terminals. Re-routing the red
(bold) lines through the neighborhood of to the cut nodes and bringing the lines close
to x or y allows us to bound the number of additional crossings on these lines.

For reference we denote by Γi the embedding obtained from Γ after applying

the subsequence of appropriate flips on A1, . . . , Ai, for i = 1, . . . , p. Then x will

always be on the outer face of Γi ↾ Ai since otherwise x could not be later

planarly joined with y belonging to Γ ′ ↾ Bq. Furthermore, if a red terminal wj

gets involved in the flipping of Ai (but not in the flipping of Ai−1), then a

segment of the old red line in Γ joining wj to red v will also join wj to the outer

face of Γi−1 ↾Ai without additional crossings. Let αj denote this red line segment

from wj . Notice, however, that the outer face of Γi−1 ↾Ai may be different from

the outer face of the next Γi ↾Ai in case of 1-flip.

The previous considerations suggest the following procedure leading to a new

“red drawing” within Γ ′ + f , as required by the part (b). We note in advance

that possible red-red crossings (i.e. between two red lines in the coming new red

drawing) will not matter since all the red lines come from a central point v.

Any such crossing can be later eliminated (at no additional cost) by mutually

exchanging the red sections between v and that crossing.

• For i = 1, . . . , p, the appropriate 1- or 2-flip of Ai (cf. Lemma 6(c) ) is applied

to Γ in such a way that the red line segments incident with the involved red

terminals in Ai get flipped together with Γi−1 ↾Ai. Consider a red terminal

wj (independently of the others) that has not been involved in the flip of

Ai−1, but is involved in the flip of Ai. Its red segment αj is flipped with Ai.
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We draw the new red line from wj using this αj which we extend such that

it reaches a close neighborhood of the vertex x on the outer face of Γi ↾Ai:

– If Ai is a 2-separation with the boundary {z1, z2}, then the outer face

of Γi−1 ↾ Ai (in which αj ends so far) is the same as the outer face of

Γi ↾ Ai. There are, though, two faces of Γi incident with Ai and con-

tained in the outer face of Γi ↾Ai (note that these two faces meet in z1

and z2). Bringing αj to a close neighborhood of x may require “pass-

ing closely by” the vertex z1 or z2. Hence in this (one-time) situation

we require either 1 future crossing of αj with the edge f , or at most

max{⌊d(z1)/2⌋, ⌊d(z2)/2⌋} ≤ ⌊∆/2⌋ crossings with edges incident to z1

or z2. By correctly choosing between z1 and z2, we can circumvent any

future crossings between αj and f in the latter case.

– If Ai is a 1-separation with the boundary {z3}, then αj has reached a

face of Γi ↾Ai incident with z3, but this face may not be the outer face

(with x). We can again bring αj to a close neighborhood of x by closely

passing around z3 at cost of at most ⌊d(z3)/2⌋ ≤ ⌊∆/2⌋ crossings with

edges incident to z3, and we can again easily avoid a future crossing of

f by symmetry around z3.

• We can apply the same construction symmetrically and independently to the

other flipping sequence of B1, . . . , Bq and its involved red terminals.

• At the end of previous constructions, there is the embedding Γ ′ of G, and

a face Ω0 ⊂ Ω of Γ ′ hosting both vertices x and y. Furthermore, for each

red terminal wj that is involved in the flipping sequences, we have a new red

αj-segment starting in wj and ending in Ω0 in a close neighborhood of x or

y, respectively. Let Ω1 denote the common intersection of Ω, of the outer

face of Γ ′ ↾Ap, and of the outer face of Γ ′ ↾Bq. Then Ω0 ⊆ Ω1, but the full

Ω1 consists of up to three faces of Γ ′. Generally, to extend a red line from

Ω0 to any of the other two faces in Ω1, or vice versa, one can pass closely

along some z, a boundary vertex of the separation of Ap or Bq, at cost of

⌊d(z)/2⌋ ≤ ⌊∆/2⌋ additional crossings.

In contrast to the involved terminals we say a terminal is untouched if is was

not involved in flips of any Ai or Bi. We have to consider the following three

cases:

– Ω is the outer face of Γ ′ containing red v (that is the case depicted in

Figure 3). In that case we choose a new red point v′ in a close neigh-

borhood of f , and directly connect all the new red αj-segments of the

involved terminals to v′. Then, since the old red lines of all untouched
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terminals must enter Ω due to the old v, we can prolong also those lines

towards v′ in Ω0 as discussed above. Overall, every new red line requires

at most ⌊∆/2⌋ additional crossings, and the new red drawing thus has

at most ℓ + d · ⌊∆/2⌋ crossings with edges of Γ ′.

– Ω does not contain the red v, but the number of untouched red terminals

is at most the number of involved red terminals. Let β denote a section

of some old red line joining v to Ω with the least number of crossings

with Γ ↾D. We first pull all the red lines of the untouched red terminals

along β towards Ω. The number of additional crossings with Γ ↾ D on

those new red lines is, by our assumption, not bigger than the number of

crossings on the old red lines joining v to the involved terminals. Those

old crossings will now become eliminated. We finish as in the previous

case.

– Finally, Ω does not contain the red v, and the number of involved red

terminals is c < d/2 (i.e. there are fewer involved than untouched termi-

nals). We choose the new red v′ identical to the old v (thus not requiring

any new crossings for the red lines of untouched terminals). Let β be de-

fined as above. We extend all the c new red αj-segments of the involved

terminals towards the end of β in Ω, which can cost up to additional

⌊∆/2⌋ crossings on each αj-segment as discussed above. Then we pro-

long all those lines along β to v′ = v which adds here no more crossings

than in the old red drawing—every old red line to an involved terminal

has crossed Γ ↾D at least as many times as β does. Hence in this case,

the new red drawing has at most ℓ+ c · ⌊∆/2⌋+ c · ⌊∆/2⌋ ≤ ℓ+ d · ⌊∆/2⌋

crossings with edges of Γ ′.

Lemma 5, and therefore also Lemma 4 and Theorem 1, are now proven.

4 Conclusions

We have shown that the vertex insertion problem finds an approximate solution

for the crossing number problem of any apex graph G (with an apex vertex v),

which is at most a factor of d(v) · ⌊∆(G − v)/2⌋ away from cr(G). Yet, we can

only give an example requiring half of this factor in Proposition 3 (Figure 1) . It

remains an open question whether our bound can be improved by this difference.

Our proving strategy builds upon the one devised in [8] for the edge in-

sertion problem. The approximation factor given therein has been later halved
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(obtaining a tight factor) by Cabello and Mohar [1], using an alternative proving

strategy. We feel that also in the case of vertex insertion, the actual bound of our

approximation algorithm should in fact be the one required by our construction

in Proposition 3. The strategy of [1] builds upon the concept of facial distance

between the two nodes that are to be connected via the inserted edge. It is

unclear how this concept could be generalized in the context of vertex insertion.

Although the problem of optimally inserting multiple edges (simultaneously)

into a planar graph is NP-hard, it is remarkable that we can generalize our proof

to show that ins(G − E′, E′) —the number of crossings necessary to insert the

edges E′ into a planar embedding of G−E′, approximates the crossing number

cr(G), too.

Theorem 7. Let G be a graph and E′ a subset of its edges such that G− E′ is

planar. Then ins(G − E′, E′) ≤ |E′| · ∆(G − E′) · cr(G) +
(

|E′|
2

)

.

We do not give a separate proof of this statement since it is analogous to the

proof of Theorem 8 below.

We can go even further and consider a more general multiple-vertex insertion

problem, asking for the number ins(G−V ′, V ′) of crossings necessary to re-insert

the (independent) vertices V ′ into a planar embedding of G − V ′.

Theorem 8. Let G be a graph and V ′ = {v1, . . . , vm} an independent subset of

its vertices such that G − V ′ is planar. Then

ins(G − V ′, V ′) ≤

(

m
∑

i=1

d(vi)

)

· ⌊∆(G − V ′)/2⌋ · cr(G) +
∑

1≤i<j≤m

d(vi)d(vj) .

Proof. Let G′ = G − V ′. For each i = 1, 2, . . . ,m independently, we apply the

arguments of Theorem 1 to the vertex-vi insertion problem for planar G′, and

hence obtain a particular solution with at most d(vi) · ⌊∆(G′)/2⌋ · cr(G′ + vi)

crossings. The crucial fact is that our proofs of Theorem 1 and mainly of Lemma 5

never query positions of the “red” terminals of vi for the purpose of drawing the

final plane embedding of G′. So, all the independent solutions to the vertex-vi

insertions share equivalent plane subembeddings of G′ at the end. (In the lan-

guage of Section 3, we can thus draw one plane embedding of G′ simultaneously

with a bunch of red lines from v1, a bunch of orange lines from v2, a bunch of

pink lines from v3, and so on. . . )

Therefore, it is possible (rigorously) to combine those particular solutions

into the desired conclusion

ins(G − V ′, V ′) ≤
∑m

i=1
d(vi) · ⌊∆(G′)/2⌋ · cr(G′ + vi) + Ψ ≤
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≤
(

∑m

i=1
d(vi)

)

· ⌊∆(G′)/2⌋ · cr(G) + Ψ ,

where an additive factor of Ψ =
∑

1≤i<j≤m d(vi)d(vj) expresses the fact that we

cannot generally prevent crossings (at most one per pair) between edges incident

with vi and with vj for i 6= j.

So, finally, since the multiple-edge and multiple-vertex insertion problems

are NP-hard, how can Theorems 7 and 8 help with solving the crossing number

problem? We hope that, at least in some special settings, the multiple-edge or

multiple-vertex insertion problems could be approximated in polynomial time.

This will then automatically give approximation algorithms for the correspond-

ing crossing number problems.
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