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Abstract. Contact graphs are a special kind of intersection graphs of ge-
ometrical objects in which the objects are not allowed to cross but only
to touch each other. Contact graphs of line segments in the plane are con-
sidered — it is proved that recognizing line-segment contact graphs, with
contact degrees of 3 or more, is an NP-complete problem, even for planar
graphs. This result contributes to the related research on recognition com-
plexity of curve contact graphs (P. Hliněný: The classes and recognition
of curve contact graphs , J. Combin. Theory Ser. B 74 (1998), 87–103).

1 Introduction

The intersection graphs of geometrical objects have been extensively studied for
their many practical applications. Formally the intersection graph of a set fam-
ily M is defined as a graph G with the vertex set V (G) = M and the edge set
E(G) =

{

{A,B} ⊆ M|A 6= B, A ∩ B 6= ∅
}

.
A special type of geometrical intersection graph—the contact graph, in which

the geometrical objects are not allowed to cross but only to touch each other, is
considered here. Unlike general intersection graphs, only a few results are known
in this field. Probably the first result in this field is the one by Koebe [11] about
representation of planar graphs as contact graphs of discs in the plane. Con-
tact graphs of line segments are considered in the works of de Fraysseix, Os-
sona de Mendez, Thomassen, Pach [3],[18],[4], and, recently, Castro, Cobos, Dana,
Márquez, Noy [2], see Section 2.

This paper shows that the recognition of line-segment contact graphs is NP-
complete. (This was already announced in [8] and sketched in the technical re-
port [7].) Although the paper is primarily concerned with line-segment contact
graphs, it is useful to define and to consider more general curve contact graphs
here (see [9, 10]). Simple curves of finite length (Jordan curves) in the plane are
considered as a generalization of line segments. Each curve has two endpoints
and all of its other points are called interior points; they form the interior of
the curve. We say that a curve ϕ ends in (passes through) a point X if X is an
endpoint (interior point) of ϕ.

? This work was supported by Czech research grants GAUK 193/1996, GAČR
0194/1996, and Czech-US research grant 94051.



Definition. A finite set R of Jordan curves in the plane is called a curve contact
representation of a graph G if the interiors of the curves are pairwise disjoint and
G is the intersection graph of R. The graph G is called the contact graph of R. A
curve contact representation R is said to be a line-segment contact representation
if each curve of R is a line segment.
A graph H is called a contact graph of curves (contact graph of line segments) if
there exists a curve contact representation (line-segment contact representation)
of a graph G ∼= H .
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Fig. 1. An example of a line-segment contact representation of a graph.

A point is said to be a contact point (k-contact point) of a contact represen-
tation R if it is contained in at least two curves (exactly k curves) of R. We say
that an endpoint of a curve is free if it is not a contact point. In Figure 1, an
example of a contact representation and its contact graph are given. For a better
view, every contact point is emphasized by a circle around it. Note that for any
k–contact point C either all those k curves end in C or one curve passes through
C and the other k − 1 curves end in C.
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Fig. 2. The difference between one-sided (C1) and two-sided (C2) contact points.

The above presented definition allows two types of contact points, as shown
in Figure 2. A contact representation is called one-sided if each of its contact
points is one-sided; that means either all the curves end in the point, or one curve
passes through it and the other curves approach it from only one side. We are
considering only one-sided contact representations in this paper, which seem to
be more natural. (However, the NP reduction can also be adapted for general
two-sided contact representations [7].)

A contact representation is a k–contact representation if each of its contact
points contains at most k curves. Two contact representations are said to be
similar, if there is a bijection between their sets of curves and the induced bijection
between their contact points, which preserve the cyclic order of curves around
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the contact points. For the sake of brevity we use the notions “representation”
and “contact graph” instead of “line-segment contact representation” and “line-
segment contact graph”, respectively.

2 Related Results

This section presents other results published on our topic. First let us mention a
result describing 2-contact graphs of segments in two directions [3].

Theorem (de Fraysseix, Ossona de Mendez, Pach). Graph is a contact
graph of vertical and horizontal line segments if and only if it is a planar bipartite
graph.

The same result, formulated in terms of visibility representations, was actually dis-
covered earlier in [17]. We also include the following characterization of 2-contact
graphs of line segments [18]:

Theorem (Thomassen). Graph G is a 2–contact graph of line segments if and
only if G is planar, and |E(H)| ≤ 2 · |V (H)| − 3 for each subgraph H ⊆ G.

Moreover, every triangle-free planar graph can be represented using just three
prescribed distinct directions of segments [2].

Theorem (de Castro, Cobos, Dana, Márquez, Noy). Every triangle-free
planar graph is a 2-contact graph of line segments in just three directions.

Various classes of curve and line-segment contact graphs are defined, and their
inclusions are completely described, in [10]. It is worthwhile to notice that 3-
contact graphs are always planar. The chromatic number and cliques in curve
contact graphs are studied in [9]. The next lemma [10] allows us to describe curve
contact representations in polynomial space.

Lemma 2.1. For every curve contact representation, there exists a similar rep-
resentation consisting of piecewise linear curves with corners embedded on a grid
of quadratic size (linear in both dimensions).

A description of line-segment contact representations is not so obvious.
Namely, it is a question what number precision (i.e. how many bits) is needed to
describe an arbitrary line-segment contact representation. Recently, it was proved
by de Fraysseix and Ossona de Mendez [4] (see also [5]) that a curve contact rep-
resentation can be, under certain conditions, “stretched” to a similar line-segment
contact representation. A weak arrangement of pseudolines is a system of (infinite
length) curves in the plane, each two of them having at most one intersection.

Theorem 1. (de Fraysseix, Ossona de Mendez) For each curve contact rep-
resentation R such that the curves of R are extendable into a weak arrangement
of pseudolines, there exists a line-segment contact representation S similar to R.
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The problem of deciding whether a given graph can be represented as an in-
tersection graph of specified objects, is important when studying intersection or
contact graphs. The decision version of the problem is called the recognition of
those graphs. Many of the intersection graph classes are recognizable in poly-
nomial time (like interval graphs [15], circle graphs [1], etc). On the other hand,
many of them are known to be NP-hard (like string graphs [12] or 3-ball touching
graphs); moreover, it is often not even known whether their recognition belongs
to NP since a possible representation can be very complex (see [14] for string
graphs).

Considering curve contact graphs, we can summarize the main results here. It
is easy to recognize curve 2-contact graphs, and the above result of Thomassen
gives a polynomial algorithm for recognizing line-segment 2-contact graphs. The
situation gets more interesting for 3-contact graphs—the following is proved
in [10]:

Theorem2. (PH) There is a polynomial algorithm that for a given planar tri-
angulation decides whether it is a curve 3–contact graph.
The recognition of k–contact graphs of curves is NP–complete for k ≥ 3, even
within the class of planar graphs.

3 Recognition of line-segment contact graphs

The aim of this paper is to show NP-completeness of the recognition of line-
segment contact graphs, which contributes to the research on recognition com-
plexity of curve contact graphs from [10].

Theorem3. The recognition of contact graphs (k–contact graphs for k ≥ 3) of
line segments is NP–complete, even within the class of planar graphs.

The original proof of this theorem, sketched in the technical report [7], was
complicated and showed only the NP-reduction. However, Theorem 1 implies that
the problem belongs to NP, and recent improvements to the reduction enable us
to describe it in a reasonable way.

Lemma3.1. The recognition of line-segment contact graphs belongs to NP.

Proof. Suppose the given graph G has a line-segment contact representation
S. By Lemma 2.1, there exists a similar contact representation T consisting of
piecewise linear curves embedded on a grid of quadratic size. It is easy to extend
the piecewise linear curves of T to obtain an arrangement L of the same crossing
type as the straight lines of S have, which is still embedded on a grid of quadratic
size. Naturally, L is a weak arrangement of pseudolines supporting a contact
representation of the graph G.

Thus it is enough to guess the contact representation T , and the arrangement
L extending it. It can be checked in polynomial time that L is a weak arrangement
of pseudolines, and that T is a contact representation of the given graph G. (Then
G has a line-segment contact representation by Theorem 1.)

2

In our proof of the recognition complexity, we will reduce from the PLANAR 3-
SAT problem (see [6] for a general overview). It is defined as a special case of the
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satisfiability problem (a formula Φ with a set variables V and a set of clauses C),
for which the bipartite formula graph F = F Φ, V (F ) = C ∪ V , E(F ) = {xc :
c ∈ C, x ∈ c or ¬x ∈ c} is planar with degrees of all vertices bounded by 3. The
planar version of the SAT problem is known to be NP-complete from the work [16],
and has been used in similar geometrical reductions previously (see [12] for an
example). Note that we may suppose that each variable has at most 2 positive
and at most 2 negated occurrences in Φ; otherwise the formula is reducible.

Before starting the reduction, we need one more technical lemma proved
in [10]. Two triangles are neighbouring if they have a common edge.

Lemma 3.2. If a curve 3–contact representation of a graph G contains f free
endpoints of curves, then it contains at least (|E(G)| − 2 · |V (G)|+ f) 3–contact
points forming non-neighbouring facial triangles in some planar drawing of G.

A natural question arises of how we can force an endpoint of a curve to be free.
Generally, if a special subgraph is added that has no free endpoint in its contact
subrepresentation, then any other curve adjacent to some curve of this subgraph
must use its own endpoint for the adjacency, thus the endpoint is free with respect
to the rest of the representation. We say that the endpoint is “eaten”. While a
simple “end-eating” graph exists for curve contact representations, the situation
gets complicated for line-segment contact representations.

Lemma 3.3. The PLANAR 3-SAT problem reduces to the recognition of line-
segment 3-contact graphs.
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Fig. 3. The variable graph V of a variable x, with two terminals a1a4, a2a3 for positive
occurences and two terminals a1a2, a3a4 for negated occurences of x in clauses; and its
possible contact representations (encoding logical values T and F ).

The proof of this lemma is an extension of the one used for curve contact graphs
in [10]. So first, we briefly repeat main steps of that proof, modified specifically
for our proof.

Given a planar formula Φ, a graph RΦ that has a line-segment contact repre-
sentation iff the formula Φ is satisfiable, is constructed as follows: All variable and
clause vertices of the formula graph F Φ are replaced by copies of special graphs
V and C from Figures 3 and 4. Everything is arranged within a sufficiently large
global frame which is used to “eat” the endpoints of specified line segments. The
variable–clause edges are then substituted by paths of connectors crossing the
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Fig. 4. The clause graph C of a clause c = l1 ∨ l2 ∨ l3, with terminals p1p2, p2p3, p3p1

for the literals l1, l2, l3 resp.; and one of its possible contact representations (forcing l3
to be T ). Another two representations result by rotation.

frame. The connectors are attached to variable or clause subgraphs or to frame
cells in special vertex pairs called terminals.

Formally, the variable graph V is the graph on 5 vertices in Figure 3, and the
clause graph C is the graph on 10 vertices presented in Figure 4. (The vertices
a1, a2, a3, a4 of V , and p1, p2, p3 of C, are going to be attached to the global
frame—to produce “eaten” endpoints of curves.) Lemma 3.4 shows key properties
of these graphs: Two possible ways to represent the graph V will encode logical
values T/F of variables, and three essential representations of the graph C will
determine true literals in clauses.

A (designated) pair of adjacent vertices of a graph G is called a terminal
of G. Suppose that R is a contact representation of G. The terminal uv of G

is said to be available in R if there is a 2-contact point of the segments u, v in
the representation R. (The availability of a terminal will express its “information
state”.) The terminals of the variable graph V are the pairs a1a2, a2a3, a3a4,
a4a1. The terminals of the clause graph C are the pairs p1p2, p2p3, p3p1.

Lemma3.4. (a) Suppose that R is a contact representation of the graph V such
that each of the segments a1, a2, a3, a4 has one free endpoint in R. Then no other
endpoint in R is free. Additionally, either none of the terminals a1a4, a2a3, or
none of a1a2, a3a4, is available in R.

(b) Suppose that S is a representation of the graph C such that each of the
segments p1, p2, p3 has one free endpoint in S. Then no other endpoint in S is
free. Additionally, at least one of the terminals p1p2, p2p3, p1p3 is not available
in S.

Proof. Notice that the graphs V, C have maximal cliques of size 3, and so their
representations R, S, respectively, are 3-contact.

(a) The proof follows from Lemma 3.2: Any representation of the graph V

having 4 free endpoints must contain 2 non-neighbouring triangles represented by
3-contact points, and there are just two choices of these triangles—either a1a4b
and a2a3b, or a1a2b and a3a4b. Hence either the terminals a1a4 and a2a3, or a1a2

and a3a4, are not available in R. Moreover, no other endpoint can be free in R.
(b) Similarly, any representation of the graph C having 3 free endpoints must

contain 4 non-neighbouring triangles represented by 3-contact points. Thus one
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of them must be p1p2q3, p2p3q1 or p1p3q2. Again, there can be no more non-
neighbouring triangles, and hence no more free endpoints.
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Fig. 5. A connector t1t2, connecting terminal u1u2 with terminal v1v2; and a possible
contact representation (transfering the value T from u1u2 to v1v2).

A connector joining two terminals u1u2 and v1v2 consists of two additional
vertices t1, t2, and five edges u1t1, u2t1, t1t2, t2v1, t2v2. There are no other edges
incident with t1, t2. (See Figure 5.) The purpose of a connector is to transfer “in-
formation state” between terminals. The next lemma shows a necessary property
of a connector joining two terminals.

Lemma 3.5. Let u1u2 and v1v2 be terminals in a graph G, and t1t2 be a connector
joining them. Let R be a contact representation of G such that none of the seg-
ments u1, u2, v1, v2 has a free endpoint within the subrepresentation of G−{t1, t2}.
Then at least one of the terminals u1u2 or v1v2 must be available in R−{t1, t2}.

Proof. The edge t1t2 of the connector uses one endpoint, say that of t1, in R.
If the edges t1u1, t1u2 were represented by distinct contact points, one of them
would have to use an endpoint of u1 or u2, but that endpoint would be free in
the subrepresentation of G − {t1, t2}. Therefore the connector triangle t1u1u2 is
represented by a 3-contact point in R; and consequently, the terminal u1u2 is
available in R− {t1}.

2

Further, we define the “end-eating” frame that supports the whole construc-
tion. The left-hand side of Figure 6 shows one cell of the frame. These cells are
arranged into a chain by identifying the vertices f ′, g′, k′ of one cell with the ver-
tices f, g, k of the next one (i.e. f ′

1 = f2, g
′

1 = g2, k
′

1 = k2, f ′

2 = f3, g
′

2 = g3, k
′

2 = k3,
. . . , for cells indexed 1, 2, 3, . . . in the chain), as it is shown on the right-hand side
of the figure. The frame graph F is formed by a collection of the cell chains that
are stretched between two additional vertices A,B, as sketched in Figure 7. If the
particular representation of one cell (Figure 6) is suitably adjusted by a projective
transformation, a contact representation of the whole chain can be formed, look-
ing like a thin long belt with concave sides. These chains are extended between
the segments A,B, resulting in a contact representation of F (Figure 7).

Moreover, the edges ff ′ and gg′ of each cell form a matching pair of terminals,
which can be used to transfer information across the frame in our reduction. All
the necessary properties of the frame graph are shown in the following lemma.

Lemma 3.6. If the segments A and B have both endpoints free in a contact rep-
resentation R of the graph F , then no other segment of this representation has
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Fig. 7. A sketch of the frame graph F , formed by chains of cells from Figure 6 stretched
between two additional vertices A, B, is on the left. On the right, there is a scheme of a
possible contact representation of F , having both endpoints of A and both of B free.

a free endpoint. Additionally, for each cell of the frame F , at least one of the
terminals ff ′, gg′ is not available in R.

Proof. A closer look shows that one cell (Figure 6) has 14 vertices and 29 edges,
and it can contain at most 7 non-neighbouring triangles. If k is the number of
chains and ci is the number of cells in the i-th chain of the graph F , then F has
∑k

i=1
(ci(14 − 3) + 3) + 2 = 11

∑k

i=1
ci + 3k + 2 vertices and

∑k

i=1
29ci + 2 · 3k =

29
∑k

i=1
ci + 6k edges altogether. Taking cells one by one, the maximal number

of non-neighbouring triangles in F is at most t(F) = 7
∑k

i=1
ci. Since there is no

4-clique in F , by Lemma 3.2, any of its contact representations contains at most

t(F)+2|V (F)|−|E(F )| = 7
k
∑

i=1

ci+2

(

11
k
∑

i=1

ci + 3k + 2

)

−

(

29
k
∑

i=1

ci + 6k

)

= 4
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free endpoints of segments.

To prove the second part of the lemma, notice that if there are 4 free endpoints
(of the both segments A,B) in the representation, then the subrepresentation of
each cell of F in R must contain exactly seven 3-contact points forming non-
neighbouring triangles. By simple checking, one of them must be ff ′h′ or gg′h′′,
and hence the terminal ff ′ or gg′, respectively, is not available in R.

2

4 Completing the reduction

Let v be a vertex disjoint with F . We say that a vertex v is attached to the frame
graph F if there exist one edge between v and some of the copies of vertices f
or g of F . In analogue to a connector, we say that a false terminator is joined
with a terminal uv if a new vertex is added to the graph, adjacent to both u, v,
and attached to the frame F . (False terminators are used to “force availability”
of connectors in the reduction.)

.......
HH���� cc

��HH ��HH ZZ##
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Fig. 8. A scheme of a connector path stretched across the frame from a variable subgraph
to a clause subgraph.

Suppose that G ⊃ F is a graph containing copies of the variable and clause
graphs. We call the connector path a sequence of connectors (Figure 8) in G, the
first one of them joining a terminal of the variable subgraph V with a terminal of
some frame cell in F , the second one joining the opposite terminal of the same
cell with a terminal of the next cell, and so on. . . , up to the last connector joining
a terminal of the last cell in the path with a terminal of the clause subgraph C.

Let a PLANAR 3-SAT formula Φ be given as Φ = c1 ∧ c2 ∧ . . . ∧ cl, where
ci = λi1 ∨ λi2 ∨ λi3 for i = 1, . . . , k, and ci = λi1 ∨ λi2 for i = k + 1, . . . , l; and let
x1, x2, . . . , xn be the variables of Φ. We say that a graph RΦ is a framed emulator
of a PLANAR 3-SAT formula Φ if it is constructed as follows: The construction
starts with the union of the graph F (the size of which is determined later), of
disjoint copies V(x1), . . . ,V(xn) of the variable graph V , and of disjoint copies
C(c1), . . . ,C(cl) of the clause graph C. All copies of the vertices a1, a2, a3, a4 ∈
V (V) and p1, p2, p3 ∈ V (C) are attached to the frame F . For each literal λij = xm

(λij = ¬xm), i = 1, . . . , l, a unique connector path is joining the terminal a4a1 or
a2a3 (a1a2 or a3a4) of V(xm), with a terminal pjpj+1 of C(ci). For each clause ci,
k < i ≤ l, a copy of the false terminator is added to the terminal p3p1 of C(ci).
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The skeleton of a framed emulator RΦ is defined as the subgraph consisting
of the frame F , of all copies of the vertices a1, a2, a3, a4 and p1, p2, p3, and of all
copies of connectors and false terminators.

Proof of Lemma 3.3. Suppose, for a while, that any contact subrepresentations of
the frame F is guaranteed to have both endpoints of A and both of B free. Let Φ be
the PLANAR 3-SAT formula, given as above. Our proof proceeds in the following
steps: First, we prove that if there exists a 3-contact representation of any framed
emulator RΦ, then the formula Φ is satisfiable. Second, we construct a framed
emulator RΦ that has a 3-contact representation if Φ is satisfiable. Third, we show
how to force the endpoints of A and of B to be free in a contact representation
of RΦ.

Let R be a 3-contact representation of a framed emulator RΦ such that all
endpoints of A,B are free in R. Lemmas 3.5 and 3.6 together imply: If two termi-
nals are joined by a connector path in RΦ, then at least one of the two terminals
must be available in the rest of the emulator. For each variable xi, i = 1, . . . , n of
Φ we set xi = T if some of the terminals a1a4 or a2a3 is available in the subrep-
resentation of V(xi), and we set xi = F if some of the terminals a1a2 or a3a4 is
available there. This is well defined because of Lemma 3.4(a). We claim that this
is a satisfying assignment for Φ.

Indeed, for each 1 ≤ j ≤ l, one of the terminals of the clause subgraph C(cj)
is not available in its subrepresentation by Lemma 3.4(b). It is easy to see that
the non-available terminal is not the one with a false terminator added (if j >
k). Hence the variable terminal of V(xi), that is joined with the non-available
clause terminal of C(cj) by a connector path, is available is the subrepresentation
of V(xi). Therefore, by our setting of the variables of Φ, the variable xi makes the
clause cj to be true; so Φ is satisfiable.
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Fig. 9. A scheme of a contact representation of the skeleton of RΦ, with connector paths
joining variables and clauses (following edges of the planar formula graph).

Conversely, we precise the construction of the graph RΦ so that it has a line-
segment contact representation if Φ is satisfiable.

Let m be the number of vertices of the formula graph F Φ. The frame graph F

used in our construction consists of 2m cell chains, each chain formed by 3m cells.
Recall the scheme of a contact representation of F from Figures 6,7. Based on that
representation, we actually construct a flexible scheme of contact representations
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for the skeleton of RΦ. This scheme is independent the property whether Φ is
satisfiable, and the scheme can be completed to a representation of whole RΦ if
a satisfying assignment of Φ is given.

We start with a planar embedding of the formula graph F Φ, and we distribute
the vertices of it into each second region of F (as separated by the cell chains),
so that the edges of the formula graph can still be drawn across the frame graph
without crossing one another. Then we replace each clause vertex by copies of
the three segments p1, p2, p3 of C, and each variable vertex by copies of the four
segments a1, a2, a3, a4 of V , as sketched in Figure 9. One endpoint of each of these
segments is attached to a copy of the f or g vertex of the frame F (the “eaten”
endpoints).

The noncrossing edges of the formula graph are replaced by disjoint noncross-
ing connector paths in the following way: The variable and clause subgraphs of R

use only the middle m cells of each cell chain in F , and the connector paths use
the top m and the bottom m cells. Those regions of the frame that do not contain
formula vertices are used to “switch back” a connector path, and to change be-
tween the top and the bottom layer of connector paths, as depicted in Figure 9.
Recall that each cell of the frame can be independently represented in two ways
that are mirror images of each other (Figure 6). That property allows us to “ori-
ent” each connector path in any of the two directions, as needed when completing
the representation for satisfiable formula Φ.

The graph RΦ results from the contact graph of the above described repre-
sentation by completing all vertices of the variable and clause subgraphs. One
can easily check that the construction of RΦ is finished in polynomial time. If
Φ is satisfiable, then the missing line-segments of variable and clause subgraphs
clearly can be completed (according to the satisfying evaluation of variables of Φ)
in the representation of the skeleton, and the connector paths can be “oriented”
as needed for representing the variable and clause subgraphs.

Finally, a little trick forces both endpoints of the segments A and B to be
free in a contact representation of the graph RΦ. We make 5 copies of the graph
constructed above, and identify the vertices A and B of these copies. (That is, all
5 copies of A make one vertex, and all 5 copies of B make another one vertex.)
Then at most 4 of these copies may be “damaged” by using an endpoint of A
or B; but the fifth copy satisfies the assumption about free endpoints.

2

This completes the proof of Theorem 3, because the graph RΦ is planar, and
all of its contact representations are 3-contact since RΦ contains no 4-clique.
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9. P. Hliněný, The maximal clique and colourability of curve contact graphs , Discrete
Applied Math. 81 (1998), 59-68.
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