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Abstract. A graph H is a cover of a graph G if there exists a mapping
ϕ from V (H) onto V (G) such that ϕ maps the neighbors of every vertex
v in H bijectively to the neighbors of ϕ(v) in G. Negami conjectured in
1986 that a connected graph has a finite planar cover if and only if it
embeds in the projective plane. It follows from the results of Archdea-
con, Fellows, Negami, and the author that the conjecture holds as long as
K1,2,2,2 has no finite planar cover. However, this is still an open question,
and K1,2,2,2 is not the only minor-minimal graph in doubt. Let C4 (E2)
denote the graph obtained from K1,2,2,2 by replacing two vertex-disjoint
triangles (four edge-disjoint triangles) not incident with the vertex of
degree 6 with cubic vertices. We prove that the graphs C4 and E2 have
no planar covers. This fact is used in [P. Hliněný, R. Thomas, On Possi-

ble Counterexamples to Negami’s Planar Cover Conjecture, manuscript
1999] to show that that there are, up to obvious constructions, at most
16 possible counterexamples to Negami’s conjecture.

1 Introduction

All graphs in this paper are finite, and have no loops or multiple edges. The
vertex set of a graph G is denoted by V (G), the edge set by E(G). A plane
graph G is a planar graph embedded in the plane, and F (G) denotes its set
of faces. A graph H is a cover of a graph G if there exist an onto mapping
ϕ : V (H) → V (G), called a (cover) projection, such that ϕ maps the neighbors
of any vertex v in H bijectively onto the neighbors of ϕ(v) in G. A cover is called
planar if it is a finite planar graph. (Notice that every graph can be covered by
an infinite tree, but that is not what we are looking for.)

If a graph G has an embedding in the projective plane, then the lifting of
the embedding of G into the universal covering surface of the projective plane
(the sphere) is a double planar cover of G. Thus every projective-planar graph
has a planar cover. The converse is false in general, because for instance the
graph consisting of two disjoint copies of K5 has a planar cover, and yet has
no embedding in the projective plane. On the other hand, Negami made the
following interesting conjecture.
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Conjecture 1. (S. Negami, 1986) A connected graph has a finite planar cover
if and only if it has an embedding in the projective plane.

K1,2,2,2 B7 C3

C4 D2 E2

Fig. 1.

Note that the property of having a planar cover is hereditary under the minor
ordering. Thus, in order to prove Conjecture 1, it is sufficient to prove that
no graph from the family Λ of all 32 connected minor-minimal nonprojective
graphs [1, 3] has a planar cover. Let K1,2,2,2,B7,C3,C4,D2,E2 ∈ Λ denote
the graphs depicted in Fig. 1. (Our notation of these graphs mostly follows [3].)
Archdeacon [2], Fellows, Negami [7], and the author [4] have shown the following.

Theorem 2. (D. Archdeacon, M. Fellows, S. Negami, P. Hliněný, 1987–1996)
No member of the family Λ−{K1,2,2,2,B7,C3,C4,D2,E2} has a planar cover.

A vertex of degree 3 with three distinct neighbors is called cubic. A Y∆-
transformation is the operation replacing a cubic vertex v in a graph by a triangle
on the three neighbors of v. Note that every Y∆-transformation clearly preserves
the property of having a planar cover, as observed by Archdeacon. Since each
of the graphs B7,C3,C4,D2,E2 can be Y∆-transformed to K1,2,2,2, Theorem 2
implies that Conjecture 1 is equivalent to the statement that K1,2,2,2 has no
finite planar cover. However, this is still an open question, and the arguments
outlined above seem to say little about possible counterexamples.

We prove the following result, that is used in [6] to show that there are,
up to obvious constructions, at most 16 possible counterexamples to Negami’s
conjecture. The result is also contained in the author’s Ph.D. dissertation [5].

Theorem 3. The graphs (a) C4, and (b) E2 have no planar covers.
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2 The graph C4

Let H be a plane graph, and let f be the outer face of H . The graph H is called
a semi-cover of a graph G if there exists an onto mapping ϕ : V (H) → V (G),
called a semi-projection, such that for each vertex v of H not incident with f , the
neighbors of v are mapped bijectively onto the neighbors of ϕ(v), and for each
vertex w of H incident with f , the neighbors of w in H are mapped injectively
to the neighbors of ϕ(w). (Informally, the vertices of the outer face are “allowed
to miss some neighbors” in a semi-cover.) Clearly, each cover is a semi-cover,
but the converse is false.

Assume that a connected plane graph H is a semi-cover of a connected
graph G, and ϕ : V (H) → V (G) is a semi-projection. Let ψ : E(H) → E(G)
denote the corresponding edge projection, defined by ψ(uv) = ϕ(u)ϕ(v). If G

′

is a subgraph of G, then the graph H
′ with vertex set ϕ−1(V (G′)) and edge

set ψ−1(E(G′)) is called a lifting of G
′ into H . Assuming C is a cycle in G, the

semi-cover H is said to be C-fixed if the lifting of C into H consists of finite
facial cycles of the same length as C.

C7

C6
C5

C4

C3C2
C1

Fig. 2. An illustration of a necklace.

The idea of a necklace was introduced by Archdeacon in [2]. For our purpose
it is formally defined as follows. Suppose that C is an induced 4-cycle in G, w
is a vertex of G − V (C), and F is a subgraph isomorphic to K2,3 such that
C ⊂ F ⊂ G, V (F ) = V (C) ∪ {w}. Furthermore, suppose that a plane graph
H is a semi-cover of G, and that ϕ is the corresponding semi-projection. A
connected component N of the lifting of F into H is called a (C,w)-necklace,
if N is C-fixed, and the restriction of ϕ to V (N ) is a projection onto F (and
hence N is actually a cover of F ). Let the lifting of C into N consist of l facial
4-cycles C1, C2, . . . , C l; then these cycles are called the beads of the necklace,
and l is the length of the necklace. (See Fig. 2 for an illustration.) The finite face
of N not bounded by any of the beads is called the interior of N .

Let C1, C2 be two induced 4-cycles in a graph G. The graph G is said to
have the (C1, C2, w)-necklace property if
– the sets V (C1), V (C2), {w} are pairwise disjoint, and V (C1)∪V (C2)∪{w} =
V (G), i.e. G has 9 vertices;
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– for i = 1, 2, the vertices of Ci can be denoted by a, b, c, d in this cyclic order
so that aw, cw are edges of G, and that each of b, d is adjacent by an edge
to exactly one vertex of the other cycle C3−i in G.

Examples of two graphs having the necklace property are shown in Fig. 3. (At
the first look, the necklace property may seem to be similar to the property of
“having two disjoint k-graphs”, as defined in [3]. However, unlike the latter one,
the necklace property may hold also for some projective-planar graphs, such as
for the right-hand side graph in Fig. 3.)

C2C1
w C2C1

w

Fig. 3. Examples of two graphs having the necklace property.

The arguments given in this section generalize the proofs used by Archdea-
con [2] to show that the graphs K7−C4 and K4,5−M4 (Fig. 3 left) have no
planar covers. From now on, it is assumed that G is a graph having a (C1, C2, w)-
necklace property. Let a connected plane graph H be a semi-cover of G. Suppose
that V (H) can be partitioned into the vertex set of a (C1, w)-necklace N , and
the vertex set of a C2-fixed lifting of C2 into H . Furthermore, suppose that the
only vertices incident with the outer face of H are those of N , i.e. H − V (N )
is embedded in the interior of the necklace N . Then H is called a reduced semi-
cover of G bounded by the necklace N .

Lemma 2.1. Suppose that a graph G has a (C1, C2, w)-necklace property. If G

has a planar cover, then, for some i ∈ {1, 2}, G has a reduced semi-cover bounded
by a (Ci, w)-necklace.

Proof. Let a connected plane graph H be a cover of G, and let H
o denote

the lifting of the graph C1 ∪ C2 into H . Clearly, H
o is a collection of disjoint

cycles of H . Notice that if C ′ is a cycle in the lifting of Ci, and C ′ is longer than
Ci, then the cover projection “winds” C ′ several times around Ci. So if C ′ is a
face of H , it can be easily broken down into facial 4-cycles covering Ci. Hence
it may be assumed that the cycles of H

o that are faces in H have length 4, and
that they bound finite faces. If it happens that all cycles of H

o are faces in H,
then the arguments in the next paragraph may be skipped since the lifting of
G

′ into H (see below) consists only of (C1, w)-necklaces.
Let Co denote some cycle of H

o that bounds an innermost open disc con-
taining at least one vertex of H . By the previous assumption, the subgraph
embedded inside Co is C1- and C2-fixed. Without loss of generality, we may
assume that Co belongs to the lifting of C2. Let C1 = abcd, and let G

′ be the
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subgraph of G with vertex-set V (C1)∪{w} and edge-set E(C1)∪{aw, cw}. (See
the definition of the (C1, C2, w)-necklace property.) Now, since G−V (C2) ⊇ G

′

is connected, and since Co is not a face of H , some component N of the lifting
of G

′ into H must be embedded inside Co. Hence N is a (C1, w)-necklace.

Let N
o be a (C1, w)-necklace inside Co with minimal interior with respect

to inclusion. Then all vertices in the interior of N
o belong to the lifting of C2

(which is C2-fixed); otherwise there would be a (C1, w)-necklace with its interior
properly contained in the interior of N

o, by repeating the previous argument.
Thus N

o bounds a reduced semi-cover of G.

Lemma 2.2. Suppose that a graph G has a (C1, C2, w)-necklace property. If
there exists, for some i ∈ {1, 2}, a reduced semi-cover of G bounded by a (Ci, w)-
necklace of length l > 2, then there exists a reduced semi-cover of G bounded by
a (Ci, w)-necklace of length smaller than l.

Proof. The proof of this lemma is the heart of our argument. Without loss
of generality, we may assume that H is a reduced semi-cover of G bounded
by a (C1, w)-necklace N , and ϕ : V (H) → V (G) is the semi-projection. Let
the vertices of C1 be a, b, c, d in this cyclic order so that N is the lifting of
(V (C1) ∪ {w}, E(C1) ∪ {aw, cw}). Notice that if C1, C2 are two beads of the
necklace N , and v1, v2 are the vertices of C1, C2, respectively, encountered first
when traversing the necklace in the clockwise orientation, then ϕ(v1) = ϕ(v2) ∈
{a, c}.

Since N is not outerplanar, and G−{a, c, w} ⊃ C2 is connected, there exists
some cycle C ′ in H with ϕ(C ′) = C2. From the necklace property of G it follows
that there exists exactly one vertex b1 ∈ V (N ) such that ϕ(b1) = b, and that
b1 is adjacent to some vertex of C ′. Similarly, there exists exactly one vertex
d2 ∈ V (N ), ϕ(d2) = d adjacent to some vertex of C ′. Let C1 and C2 be the
beads of N such that b1 ∈ V (C1) and d2 ∈ V (C2). Clearly, C1 6= C2 since H is
a plane graph. The subgraph of H induced on V (C ′)∪{b1, d2} is denoted by B

(for “bridge”).

. . .

. . .
R

e4
e3

e2

e1

N

B

d2

c2
b2

a2

d1

c1

b1

a1

C2

C1

C ′ - w′

. . .

. . .

B

d2

c2
b2

a2

d1

c1

b1

a1

C2

C1

C ′

Fig. 4.
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Since the length of the necklace N is greater than two, one of the two regions
that B separates the interior of N into, say R, has at least one bead other than
C1, C2 on its boundary. The left-hand side of Fig. 4 illustrates the situation.
Notice, however, that the other ends of edges joining b1 and d2 with the cycle
C ′ (according to the necklace property of G) need not be diagonally opposite
on C ′. Let the vertices of C1 be a1, d1, c1, b1, the vertices of C2 be a2, b2, c2, d2

(both in clockwise orientation), and ϕ(c1) = c. Then it follows that ϕ(a2) = a.
Let e1, e2, . . . , ek be the edges that have exactly one endpoint in V (B) and

that belong to the interior of R, ordered by their appearance on the boundary
of R from b1 to d2. Let u1, . . . , uk be the ends of e1, . . . , ek, respectively, not
in V (B). Since the subgraph B is actually isomorphic to G−{a, c, w}, it follows
that ϕ(ui) ∈ {a, c, w} for i = 1, . . . , k, and hence u1, . . . , uk are incident with the
outer face of H . Now, suppose that there exist 0 ≤ i ≤ j ≤ k such that ϕ(u1) =
. . . = ϕ(ui) = c, ϕ(ui+1) = . . . = ϕ(uj) = w, and ϕ(uj+1) = . . . = ϕ(uk) = a.
In such a case, the part of H embedded in R is deleted, and the section of the
bounding necklace between c1 and a2 is replaced by a new path c1w

′a2. Instead
of the edges e1, . . . , ek, corresponding new edges e′1, . . . , e

′
k between vertices of

B and {c1, w
′, a2} are drawn, as needed. Clearly, no multiple edges are created,

and the new graph H
′ is a reduced semi-cover of G bounded by a necklace of

shorter length.

R1

c4

a3

C4

C3

. . .

. . .

e4
e3

e2

e1

N
N1

B

d2

c2
b2

a2

d1

c1

b1

a1

C2

C1

C ′ -
R1

w′

c4

a3

C4

C3

. . .

. . .

Fig. 5.

Otherwise, that is, if the above case does not happen, then there exists 1 ≤
i < k such that ϕ(ui) ∈ {w, a}, ϕ(ui+1) ∈ {c, w}, and ϕ(ui) 6= ϕ(ui+1). (See
Fig. 5, where ϕ(u2) = w, ϕ(u3) = c.) Each of the edges ei, ei+1 separates R into
two regions, and ei, ei+1 are disjoint up to possible common endvertex in B. Let
R1 be the connected component of the set R − ei − ei+1 incident with both
ei, ei+1, and let N 1 be the section of N incident with the boundary of R1. In
this case, by the choice of ui, ui+1, N1 must contain at least one bead. So let
C3, C4 be the ending beads of N 1, and let a3, c4 be the vertices of C3, C4 closest
to ui, ui+1, respectively. (Notice that C3, C4 are not necessarily next to C1, C2,
and they may be equal.) Then at most one of the vertices ui, ui+1, say ui, is
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distinct from both a3, c4, and if this happens, then ϕ(ui) = w. A new graph H
′

is formed as the part of H embedded in the region R1, bounded by the section
N 1 and a new path c4w

′a3. Possible edges between some vertices of H
′ and ui

if ui 6= a3, c4 are rerouted to the endvertex w′. Again, H
′ is clearly a reduced

semi-cover of G bounded by a necklace of shorter length than the length of N .

Lemma 2.3. Suppose that a graph G has a (C1, C2, w)-necklace property. If G

has a planar cover, then G has an embedding in the projective plane.

d2

c2

b2

a2

d1

c1

b1

a1

w2 w1

C2

C1

C ′

Fig. 6.

Proof. By Lemma 2.1, there exists a reduced semi-cover of G bounded by
a (Ci, w)-necklace for some i ∈ {1, 2}, so assume that i = 1. By repeatedly
applying Lemma 2.2, it can be deduced that there exists a reduced semi-cover
H2 of G, ϕ : V (H2) → V (G), bounded by a (C1, w)-necklace of length at most
two. As it was implicitly found in the proof of Lemma 2.2, the lifting of C1 into
H2 consists of two cycles C1, C2, and the lifting of C2 is a single cycle C ′ in the
interior of the necklace. Let the vertices of C1, C2 be C1 = a1b1c1d1 and C2 =
a2d2c2b2 in the counterclockwise orientation so that b1, d2, ϕ(b1) = b, ϕ(d2) = d

are the vertices not incident with the outer face of H2, and hence adjacent to
the cycle C ′. Let w1 be the common neighbor of c1, a2, and w2 be the common
neighbor of c2, a1, in the bounding necklace. (See Fig. 6 for an example.)

An embedded projective-planar graph Hp is formed from H2 by deleting
the vertices d1, b2, and identifying the opposite pairs w1 = w2, a1 = a2, c1 = c2.
Let ϕ′ be the restriction of ϕ onto V (C ′) ∪ {a1, b1, c1, w1, d2}. It is claimed
that ϕ′ : V (Hp) → V (G) is an isomorphism. Indeed, the vertices of V (C ′) ∪
{b1, d2} are not incident with the outer face of H2, and hence they are incident
with all the required edges in the isomorphism relation by the definition of ϕ
and ϕ′. In particular, all the required edges between the sets V (C ′) ∪ {b1, d2}
and {a1, c1, w1} are present also in Hp, and the edges a1w1, c2w1 are in Hp as
well. (Recall that there is no edge between a, c in G.)
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Fig. 7. The graph C4.

Proof of Theorem 3(a). Let the vertices of the graph C4 be denoted by
a, b, c, d, a′, b′, c′, d′, x as depicted in Fig. 7. It is easy to verify that C4 has the
(C1, C2, x)-necklace property for C1 = abcd and C2 = a′b′c′d′. By [3], C4 has no
projective embedding, and hence it has no planar cover by Lemma 2.3.

Remark. It is possible to generalize the definition of a necklace, allowing it to
be a lifting of a subgraph isomorphic to K4, with pairs of edge-sharing facial
triangles as the beads. (A variant that was used by Archdeacon in [2].) Then the
above arguments work as well, and they also include the graph K7−C4.

Remark. It is likely that Lemma 2.3 can be proved for much wider definition
of a necklace, assuming more cycles of different sizes to be potential beads of
a necklace, and allowing more additional vertices and interconnecting edges.
Unfortunately, this does not seem to be useful for any one of the 16 graphs that
might be (up to obvious constructions) possible counterexamples to Negami’s
conjecture [6].

3 The graph E2

Let the vertices of E2 be denoted by a1, a2, a3, a4, b1, b2, b3, b4, b5, b6, x, as in
Fig. 8. Suppose, for a contradiction, that there exists a connected planar cover
H of E2, determined by a projection ϕ : V (H) → V (E2). The graph H is
treated as a plane graph here. Clearly, |ϕ−1(v)| is the same number for every
vertex v ∈ V (E2), so let us denote this number by n.

If G is a plane graph and u is a vertex of degree 2 with neighbors v, v′ in
G, then suppressing u in G means deleting the vertex u and adding a new edge
vv′ drawn along the original path vuv′. A plane graph H

′ on the vertex set
V (H ′) = ϕ−1(a1) ∪ ϕ−1(a2) ∪ ϕ−1(a3) ∪ ϕ−1(a4) is constructed from H by
deleting all vertices u of H for which ϕ(u) = x, and by suppressing all vertices
w of H such that ϕ(w) ∈ {b1, b2, b3, b4, b5, b6}. Our proofs need to work with a
connected graph, while H

′ may not be connected. So we define a graph H4 as
an arbitrary connected component of H

′ which bounds an innermost region of
the plane (i.e. H

′ − V (H4) is embedded in the outer face of H4).
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a1

Fig. 8. The graph E2.

Let the mappings ψ : V (H4) → {1, 2, 3, 4}, η : E(H4) → {1, 2, . . . , n}, and
λ : {1, 2, . . . , n} → F (H4) be defined by the following rules: For a vertex v

of H4, let ψ(v) = i if ϕ(v) = ai. Assuming ϕ−1(x) = {x1, x2, . . . , xn}, define
η(e) = j if e is an edge of H4 that was formed by suppressing a vertex w ∈ V (H)
with wxj ∈ E(H). For 1 ≤ j ≤ n, define λ(j) = f if f is a face of H4 containing
xj . (Notice that xj is a vertex of H , but not of H4, so xj lies inside some face
of H4.) Let m = |ψ−1(1)|. It follows easily from the fact that H covers E2 that
these mappings are well-defined. After all, the mapping ψ may be viewed as an
m-fold covering projection of H4 onto a complete graph on vertices 1, 2, 3, 4,
and the mappings η and λ describe “relations” of edges and faces of H 4 to the
vertices x1, . . . , xn of H .

Lemma 3.1. The plane graph H4, and the mappings ψ, η, λ, satisfy the follow-
ing properties.

(a) H4 is a simple 2-connected 3-regular graph on 4m vertices, and ψ is a cover
projection of H4 onto K4, the complete graph on the vertex set {1, 2, 3, 4}.
In particular, any two vertices v 6= w of H4 satisfying ψ(v) = ψ(w) must be
at distance of at least 3 apart.

(b) If e is an edge of H4, then λ(η(e)) is a face incident with e. Consequently,
for a face f and j ∈ λ−1(f), the edges of η−1(j) lie on the boundary of f .

(c) If j ∈ {1, 2, . . . , n} such that λ(j) is a finite face of H4, then η−1(j) has
six elements, and {{ψ(u), ψ(v)} : uv ∈ η−1(j)} is the collection of all six
two-element subsets of {1, 2, 3, 4}.

(d) Let f be a face of H4, and j1, j2 ∈ λ−1(f). If e1, e2, e3, e4 are four edges of
f in this cyclic order (not necessarily consecutive), and η(e1) = η(e3) = j1,
η(e2) = η(e4) = j2, then j1 = j2.

Proof. (a) All these properties, except the first one, follow immediately from
the definition of H4. Since H4 is connected and 3-regular, it is enough to show
that it is 2-edge-connected. Indeed, for each edge uv of H4 there is a triangle C
in K4 containing the vertices ψ(u), ψ(v). Hence uv belongs to a cycle that is a
component of the lifting of C into H4. Thus H4 is 2-edge-connected.
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(b) Let w ∈ V (H) be the vertex that was suppressed when forming the
edge e, and let f, f ′ be the two faces of H4 incident with e. By definition, η(e) =
j if and only if wxj is an edge in H (ϕ(xj) = x). Since H is planar, the vertex
xj is embedded in one of the faces f, f ′ of H4, thus λ(η(e)) ∈ {f, f ′}.

(c) The vertex xj in H has six neighbors w1, . . . , w6, where ϕ(wi) = bi. Let
e1, . . . , e6 denote the edges of H

′ formed by suppressing the vertices w1, . . . , w6,
respectively. Since xj lies in a finite face of H4, all edges e1, . . . , e6 belong to
H4 from planarity, and hence η−1(j) = {e1, . . . , e6}. Moreover, each of the six
vertices b1, . . . , b6 of E2 has a different pair of vertices a1, a2, a3, a4 as neighbors.
Therefore {ψ(ui), ψ(vi)} for ei = uivi, i = 1, . . . , 6 are six different pairs of
numbers from 1, 2, 3, 4.

(d) Let w1, w2, w3, w4 be the vertices that were suppressed when forming the
edges e1, e2, e3, e4, respectively, and let C be the cycle in H corresponding to the
boundary of f . If j1 6= j2, then {w1, xj1 , w3} and {w2, xj2 , w4} are the vertex sets
of two disjoint paths embedded in the same face of C. However, this contradicts
planarity of H since w1, w2, w3, w4 lie in this cyclic order on the boundary of C.

A discharging argument is used to show that the graph H4 and the mappings
ψ, η, λ with the properties described by Lemma 3.1 cannot exist. Generally, a
discharging argument first assigns certain charge to vertices, edges, and/or faces
of a graph, then it redistributes the charge according to specified discharging
rules, and finally it shows that the total sum of charge has changed, which
leads to a contradiction. In this particular case, the starting charges and the
discharging rules are defined as follows.

Initial charges. Each face f of H4 starts with a charge of 3k, where k is the
length of f . All edges of H4 start with no charge.

Discharging rules. For any face f of H4, and for any four consecutive vertices
u1, u2, u3, u4 on the boundary of f such that ψ(u1) = ψ(u4) (possibly u1 = u4),
the following rule applies: If λ(η(u2u3)) = f , then the edge u2u3 receives a charge
of 1 from f , otherwise u2u3 sends a charge of 1 to f . (See also Fig. 9.)

1

1

6

6

x1

v2v1

u4

u3u2

u1

f ′

f

Fig. 9. An illustration of the discharging rule, ψ(u1) = ψ(u4), λ(η(u2u3)) = f .

Lemma 3.2. Each edge of H4 ends up with a charge of 0.
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Proof. Let e be an edge of H4. By Lemma 3.1(b), λ(η(e)) = f is
a face incident with e. Let u1, u2, u3, u4 denote four consecutive vertices
of f such that e = u2u3. Let f ′ denote the other face incident with e,
and let v1, u2, u3, v2 be four consecutive vertices of f ′. (See Fig. 9.) By
Lemma 3.1(a), ψ(u1), ψ(u2), ψ(u3), ψ(v1) form a permutation of 1, 2, 3, 4. Simi-
larly, ψ(u4), ψ(u2), ψ(u3), ψ(v2) form a permutation of 1, 2, 3, 4. Thus ψ(u1) =
ψ(u4) if and only if ψ(v1) = ψ(v2). So if ψ(u1) 6= ψ(u4), then no discharging
rule applies to e. If ψ(u1) = ψ(u4), then ψ(v1) = ψ(v2). Therefore the edge e
receives a charge of 1 from the face f and sends a charge of 1 to f ′, and hence
it ends up with no charge.

Since H4 is a 2-connected graph, each face is bounded by a cycle of length
of at least 3. In order to use induction in the proof of the next lemma, the
assumptions about the graph H4 need to be restricted to each face of H4 alone.
The following claim is an immediate corollary of Lemma 3.1.

Claim 1. Suppose that C is the cycle bounding a finite face f of H4. Let
Y ⊆ E(C) be the set defined by Y = η−1(λ−1(f)). Let ψ′ be the restriction of
ψ to V (C), and let η′ be the restriction of η to Y .
(a) If v 6= w are two vertices of C, and ψ′(v) = ψ′(w), then the distance between

v, w is at least 3.
(b) For j ∈ η′(Y ), η′−1(j) is a set of six edges of C, and {{ψ′(u), ψ′(v)} : uv ∈

η′−1(j)} is the collection of all six two-element subsets of {1, 2, 3, 4}.
(The symbol f(A) stands for the image of A under f .)

(c) If e1, e2, e3, e4 ∈ Y are four edges of the cycle C in this cyclic order (not
necessarily consecutive), and η′(e1) = η′(e3) = j1, η

′(e2) = η′(e4) = j2,
then j1 = j2.

The discharging rules are reformulated for the cycle C (which stands for the
cycle bounding f now), the set Y , and the mapping ψ′ as follows:

Claim 2. The cycle C starts with a charge of 3|V (C)|. Whenever u1, u2, u3, u4

are four consecutive vertices of C (possibly u1 = u4) such that ψ′(u1) = ψ′(u4),
the edge u2u3 receives a charge of 1 from C if u2u3 ∈ Y , and u2u3 sends a charge
of 1 to C else.

Lemma 3.3. Suppose that a cycle C of the length at least 3, a set Y ⊆ E(C),
and mappings ψ′ : V (C) → {1, 2, 3, 4}, η′ : Y → {1, . . . , n} satisfy the conditions
described by Claim 1. If the discharging rules from Claim 2 are applied to C, then
C ends up with a charge of at least 12 · | η′(Y ) | + 12.

Proof. Let k = |V (C)|, and p = | η′(Y ) |. Notice that |Y | = 6p by
Claim 1(b). So the charge of C may decrease by at most 6p in the discharg-
ing process. If k ≥ 6p+ 4, then 3k− 6p ≥ 12p+ 12, and hence the lemma holds.
Thus it is necessary to consider only cycles with k ≤ 6p + 3. If p = 0, then
|Y | = 0 and k = 3, so C is a triangle. In such a case, u1 = u4 holds for any four
consecutive vertices u1, u2, u3, u4 of C, so C receives a charge of 1 from each of
its edges. Therefore it ends up with a charge of 9 + 3 = 12, as desired.
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Fig. 10.

The rest of the statement is proved by induction on p ≥ 1. The base
case p = 1 needs to be considered for cycles of length k ≤ 9. Let the ver-
tices of C be denoted by v1, v2, . . . , vk in order, see Fig. 10. By Claim 1(b),
{ψ′(v1), ψ

′(v2)}, {ψ′(v2), ψ
′(v3)}, . . . , {ψ

′(vk), ψ′(v1)} include all two-element
subsets of {1, 2, 3, 4}. In other words, ψ′(v1)ψ

′(v2) . . . ψ
′(vk)ψ′(v1) is a closed

walk in K4 visiting all edges. Hence, in particular, each of the four ψ′-values
1, 2, 3, 4 occurs at least twice among the vertices of C, so the length of C is 8
or 9.

Consider first k = 8 (Fig. 10 left). Assume, without loss of generality, that the
edge v2v3 receives a charge of 1 from C, so v2v3 ∈ Y , ψ′(v1) = ψ′(v4) = 1, and
{ψ′(v2), ψ

′(v3)} = {2, 3}. Since the ψ′-values of two of the vertices v5, v6, v7, v8
should be 4, Claim 1(a) implies that necessarily ψ′(v5) = ψ′(v8) = 4, and
{ψ′(v6), ψ

′(v7)} = {2, 3}. Now, since {ψ′(v2), ψ
′(v3)} = {ψ′(v6), ψ

′(v7)}, at most
one of the edges v2v3, v6v7 may be in Y by Claim 1(b), so v6v7 6∈ Y , and hence
v6v7 sends a charge of 1 to C. That means, whenever an edge e of C receives
a charge from C, then the edge opposite to e sends a charge to C. Therefore
C always ends up with at least the initial charge of 3 · 8 = 24 = 12p + 12, as
required.

Consider k = 9 now (Fig. 10 right). In this case, one of the ψ′-values 1, 2, 3, 4
occurs three times at distance three on the boundary of C, so let it be ψ′(v3) =
ψ′(v6) = ψ′(v9) = 4. Then, whatever the other values of ψ′ are, the edges v1v2,
v4v5, v7v8 receive a charge of 1 each from C. (Actually, all three edges v1v2,
v4v5, v7v8 belong to Y by Claim 1(b).) If no other edge receives a charge from C,
then C ends up with a charge of 3 ·9−3 = 24 = 12p+12, as desired. Otherwise,
assume, without loss of generality, that the edge v1v9 receives a charge of 1 from
C, so ψ′(v2) = ψ′(v8) = 1. By Claim 1(a), there is only one possibility for the
remaining values ψ′(v4) = ψ′(v7) = 3, ψ′(v1) = ψ′(v5) = 2, up to symmetry.
Since {ψ′(v1), ψ

′(v9)} = {ψ′(v5), ψ
′(v6)}, the same argument as in the previous

paragraph implies that the edge v5v6 sends a charge of 1 to C. No discharging
rule applies elsewhere, so C ends up with a charge of 3 ·9−4+1 = 24 = 12p+12.

Assume the induction hypothesis. (Every cycle C satisfying our assumptions
for some p ≥ 1 ends up with a charge of at least 12p + 12.) Let C be a cycle
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for which | η′(Y ) | = p+ 1 ≥ 2, and let X = η′(Y ). First, it is shown that there
exist distinct j1, j2 ∈ X, and two disjoint paths P1 = s1s2 . . . sq ⊇ η′−1(j1),
P2 = t1t2 . . . tq′ ⊇ η′−1(j2) on the boundary of C such that, for i = 1, 2, Pi ∩
η′−1(k) = ∅ whenever k ∈ X − {j1, j2}. Let j1 ∈ X be chosen such that the
path P1 in C has the smallest possible length. If there is some j ′1 ∈ X such that
η′−1(j′1)∩P1 6= ∅, then η′−1(j′1) is strictly contained in P1 by Claim 1(c), which
is a contradiction to the choice of j1. The other path P2 is found in a similar
way in C − V (P1) (which is connected).

Similarly as in the base induction case, it follows from Claim 1(b) that
ψ′(s1)ψ

′(s2) . . . ψ
′(sq) and ψ′(t1)ψ

′(t2) . . . ψ
′(tq′) are walks (not necessarily

closed) in K4, both visiting all of its edges. Hence, in particular, each of the
ψ′-values 1, 2, 3, 4 occurs at least twice among the vertices of P1 and of P2, so
q, q′ ≥ 8. And since |η′−1(j)| = 6 for each j ∈ X −{j1, j2}, the length of C is at
least k ≥ 6(p+1−2)+ q−1+ q′−1 ≥ 6(p+1)+2. (Recall that k ≤ 6(p+1)+3
can be assumed.)

If k = 6(p+ 1) + 3, then, without loss of generality, q = 8 and q′ ≤ 9. In the
case when the net charge edges of P1 receive from C (considering also a charge
that some edges of P1 might send to C) is at most 3, the cycle C ends up with
a charge of at least 3k−6p−3 = 12p+24 = 12(p+1)+12, as desired. Similarly,
if k = 6(p + 1) + 2, then q = q′ = 8. In the case when the net charge edges of
each of P1, P2 receive from C is at most 3, the cycle C ends up with a charge of
at least 3k − 6(p − 1) − 3 − 3 = 12p + 24 = 12(p + 1) + 12 again. Thus, up to
symmetry, it remains to consider the case when the path P1 of length 7 receives
the net charge of at least 4 from the cycle C (regardless of k).
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Fig. 11.

Recall that each of the ψ′-values 1, 2, 3, 4 occurs twice among the vertices
of P1. If ψ′(s1) = ψ′(s8), then P1 would correspond to a closed walk in K4

of length 7 visiting all edges, which is impossible. So assume, without loss of
generality, that ψ′(s1) = 1, ψ′(s8) = 3, see Fig. 11. Since ψ′(s2) = 3, ψ′(s7) = 1
is not possible due to Claim 1(a), it can also be assume that ψ′(s7) = 2. Now, if
ψ′(s6) = 1, then necessarily ψ′(s2) = ψ′(s5) = 4, and no edge of P1 has values
{1, 3}, which is a contradiction to Claim 1(b). So ψ′(s6) = 4. Further, the three
possible values of ψ′(s2) are considered.
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If ψ′(s2) = 4, then ψ′(s3) 6= 1 6= ψ′(s5) by Claim 1(a) and (b), hence ψ′(s4) =
1, ψ′(s3) = 2 and ψ′(s5) = 3 by Claim 1(a). In such situation, only the edges
s1s2, s7s8, and one of s2s3, s6s7 may receive charges from C, so edges of P1

receive the net charge of at most 3 from C, which is an already covered case.
If ψ′(s2) = 2, then ψ′(s3) = 4, {ψ′(s4), ψ

′(s5)} = {1, 3}, and the edges of P1

again receive the net charge of at most 3 from C: For ψ′(s4) = 3 and ψ′(s5) = 1,
the discharging rule may apply only to s1s2, s7s8, and s4s5. For ψ′(s4) = 1 and
ψ′(s5) = 3, the three edges s1s2, s7s8, s4s5, and one of s2s3, s6s7 may receive a
charge of 1 from C, but the other one of the edges s2s3, s6s7 sends a charge of 1
to C since it is not in Y by Claim 1(b). (So the net charge of at most 4− 1 = 3
is sent from C.)

The remaining possibility is ψ′(s2) = 3, hence ψ′(s3) = 4, ψ′(s5) = 1, and
ψ′(s4) = 2. In such a situation, C may send charge of up to 4 to the edges s1s2,
s4s5, s5s6, s7s8 of P1, provided that ψ′(s0) = 4 and ψ′(s9) = 4, see Fig. 11 right.

If the latter case happens, a new cycle C
′ is formed by replacing the path

P1 with the edge s1s8, a new set Y ′ = Y − E(P1) is defined, and the mappings
ψ′, η′ are restricted to E(C ′), Y ′, respectively. It is easy to check that the
conditions in Claim 1(b,c) are still satisfied for C

′ by the choice of P1. Also,
validity of Claim 1(a) is preserved in this special case. (See the picture.) Since
| η′(Y ′) | = | η′(Y ) | − 1 = p, the new cycle C

′ ends up with a charge of at least
12p+12 by the induction assumption. Now, the cycle C is longer by 6 than C

′,
hence C starts with a charge larger by 18 than C

′ does. The same discharging
rules (cf. Claim 2) apply in C as in C

′ to all edges of C
′ except for two, namely

s1s8 and s8s9. (The edge s1s8 does not exist in C, and s8s9 has a neighbor of a
different ψ′-value in C than in C

′.) Additionally, exactly four edges of P1 receive
a charge of 1 from C. Therefore the cycle C ends up with a charge of at least
(12p + 12) + 18 − 2 − 4 = 12(p+ 1) + 12, as desired.

Corollary 3.4. Each finite face f of H4 ends up with a charge of at least
12|λ−1(f)| + 12.

Proof. Lemma 3.3 is applied to the cycle C bounding f , and to the set Y
and the mappings ψ′, η′ defined as in Claim 1. Notice that λ−1(f) = η′(Y ) by
definition.

Proof of Theorem 3(b). Since H4 is a 3-regular graph on 4m vertices,
the total charge at the beginning is

3
∑

f∈F (H4)

|f | = 3 · 12m = 36m.

The number of faces of H4 is 2m+2 by Euler’s formula. It is a trivial observation
that each face of H4, and hence also the outer one, ends up with a charge of
at least twice bigger than its length. Let us denote the outer face of H 4 by f0,
and let F = F (H4) − {f0}. If L =

⋃

f∈F
λ−1(f), then all edges of E(H4) −

η−1(L) belong to f0 from definition, and so |f0| ≥ 6m−6|L| using Lemma 3.1(c).
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Furthermore, by Lemma 3.2 and Corollary 3.4, the total sum of charges at the
end of the discharging process is at least

0 +
∑

f∈F

(

12|λ−1(f)| + 12
)

+ 2|f0| = 12 · |F| + 12 ·
∑

f∈F

|λ−1(f)| + 2|f0| ≥

≥ 12 · |F| + 12|L| + 2(6m − 6|L|) = 12(2m + 2 − 1) + 12m = 36m+ 12 > 36m.

However, the discharging process just redistributes existing charges, and no new
charge is introduced during the process. This contradiction shows that the graph
H4, and hence also a planar cover of E2, cannot exist.
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4. P. Hliněný, K4,4 − e Has No Finite Planar Cover, J. Graph Theory 27 (1998), 51–

60.
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