
A Parametrized Algorithm for Matroid

Branch-Width

Petr Hliněný?

Department of Computer Science FEI
VŠB – Technical University of Ostrava

17. listopadu 15, 708 33 Ostrava, Czech Republic

E-mail: hlineny@member.ams.org

April 7, 2005

Abstract. Branch-width is a structural parameter very closely related
to tree-width, but branch-width has an immediate generalization from
graphs to matroids. We present an algorithm that, for a given ma-
troid M of bounded branch-width t which is represented over a finite
field, finds a branch decomposition of M of width at most 3t in cu-
bic time. Then we show that the branch-width of M is a uniformly
fixed-parameter tractable problem. Other applications include recogni-
tion of matroid properties definable in the monadic second-order logic
for bounded branch-width, or [Oum] a cubic approximation algorithm
for graph rank-width and clique-width.

Keywords: representable matroid, parametrized algorithm, branch-
width, rank-width.

2000 Math Subjects Classification: 05B35, 68R05.

1 Introduction

We assume that the reader is familiar with basic concepts of graph theory, for
example [7]. In the past decade, the notion of a tree-width of graphs [21] attracted
plenty of attention, both from graph-theoretical and computational points of
view. This attention followed the pioneer work of Robertson and Seymour on
the Graph Minor Project [20], and results of various researchers using tree-
width in dynamic programming and parametrized complexity, see [2] for a brief
introduction. We postpone formal definitions until the next sections.

The theory of parametrized complexity provides a background for analysis of
difficult algorithmic problems which is finer than classical complexity theory. For
an overview, we suggest [8]. Briefly saying, a problem is called “fixed-parameter
tractable” if there is an algorithm having running time with the (possible) super-
polynomial part separated in terms of some natural “parameter”, which is sup-
posed to be small even for large inputs in practice. Successful practical appli-
cations of this concept are known, for example, in computational biology or in

? This paper follows author’s original research carried out at the Victoria University
of Wellington in New Zealand, in 2001–2002.



database theory: Imagine a query of a small size k to a large database of size
n >> k; then an O(2k ·n) parametrized algorithm may be better in practice than,
say, an O(nk) algorithm, or even than an O((kn)c) polynomial algorithm.

Generaly speaking, we are interested in algorithmic problems that are
parametrized by a tree-like structure of the input objects, or the tree-width pa-
rameter. However, for matroid theorists, it is the (very similar, but less known)
parameter called branch-width [21] that has proved to be the more useful tool.
This is because, unlike tree-width, branch-width does not refer to vertices and
so it extends directly from graphs to matroids, and hence also to matrices and
vector configurations. We refer to [15] for a closer discussion on matroid tree-
width.

The tree-width of a graph is hard to compute in general. It has been shown
by Bodlaender [3] that graph tree-width is a uniformly fixed-parameter tractable
property, and, moreover, an optimal tree-decomposition of a graph can be found
in parametrized linear time. That algorithm is used in [4] to find an optimal
branch-decomposition of a graph in parametrized linear time. However, these
algorithms are so closely tied with graphs that it seems impossible to generalize
them to matroids. Recent advances concerning matroid connectivity, on the other
hand, lead to a simple and practical polynomial algorithm [11] for deciding
whether a given matroid has branch-width at most 3. Unfortunately, there seems
to be no generalization of that algorithm to higher values of branch-width, too.

In this paper we show (Algorithm 4.1, Theorem 4.12) how to construct
a near-optimal branch-decomposition of a matroid represented over any finite
field in parametrized (with respect to branch-width) cubic time. We also prove
(Theorem 5.4) that matroid branch-width (and tree-width) are fixed-parameter
tractable properties for matroids represented over finite fields.

These algorithms and their consequences are formulated in the language of
matroid theory since it is natural and convenient, and since it shows the close
relations of this research to well-known graph structural and computational con-
cepts. Our work could be, as well, viewed in terms of matrices, point configura-
tions, or linear codes over a finite field

�
. The key to the subject is the notion

of parse trees for bounded-width
�

-represented matroids, defined in Section 3
as an analogue of parse trees for graphs of bounded tree-width.

In [13] we prove a result analogous to so called “MS2-theorem” by Cour-
celle [5] for matroids represented by matrices over a finite field

�
: If M is a family

of matroids described by a sentence in the monadic second-order logic of ma-
troids, then the “parse trees” of bounded-branch-width

�
-represented members

of M are recognizable by a finite tree automaton. So in connection of [13] with
Algorithm 4.1, we prove that all matroid properties expressible in the monadic
second-order logic are uniformly fixed-parameter tractable for

�
-represented ma-

troids of bounded branch-width. Another application [12] gives an efficient al-
gorithm for computing the Tutte polynomial of a matroid, the critical index,
and the Hamming weight or the weight enumerator of a linear code, when the
branch-width is bounded. Moreover, a recent algorithm of Oum [18] uses Algo-

2



rithm 4.1 to approximate the clique-width of a graph in parametrized cubic time,
via a new parameter related to matroid branch-width – the rank-width [17].

In order to make the paper accessible to a wide audience of computer sci-
entists, we provide sufficient introductory definitions for relevant concepts of
structural matroid theory.

2 Basics of Matroids

We refer to Oxley [19] for matroid terminology. A matroid is a pair M = (E,B)
where E = E(M) is the ground set of M (elements of M), and B ⊆ 2E is a
nonempty collection of bases of M , no two of which are in an inclusion. Moreover,
matroid bases satisfy the “exchange axiom”; if B1, B2 ∈ B and x ∈ B1−B2, then
there is y ∈ B2 −B1 such that (B1 −{x})∪ {y} ∈ B. Subsets of bases are called
independent sets, and the remaining sets are dependent. Minimal dependent sets
are called circuits. The rank function rM (X) in M is the maximal cardinality of
an independent subset of a set X ⊆ E(M).

If G is a graph, then its cycle matroid on the ground set E(G) is denoted
by M(G). The independent sets of M(G) are the forests of G, and the circuits
of M(G) are the cycles of G. In fact, a lot of matroid terminology is inherited
from graphs. Another typical example of a matroid is a finite set of vectors with
usual linear dependency. The two examples are both illustrated in Figure 1.

K4

a b

c

d

ef
→

a bc

d

e

f

[

1
0
0

] [

0
1
0

]

[

1
1
0

]

[

1
1
1

]

[

0
0
1

]

[

1
0
1

]

Fig. 1. An example of a vector representation of the cycle matroid M(K4). The matroid
elements are depicted by dots, and their (linear) dependency is shown using lines.

The dual matroid M∗ of M is defined on the same ground set E, and the
bases of M∗ are the set-complements of the bases of M . An element e of M is
called a loop (a coloop), if {e} is dependent in M (in M ∗). The matroid M \ e
obtained by deleting a non-coloop element e is defined as (E − {e},B−) where
B− = {B : B ∈ B, e 6∈ B}. The matroid M/e obtained by contracting a non-
loop element e is defined using duality M/e = (M ∗ \ e)∗. (This corresponds to
contracting an edge in a graph.) A minor of a matroid is obtained by a sequence
of deletions and contractions of elements.

3



The connectivity function λM of a matroid M is defined for all A ⊆ E by

λM (A) = rM (A) + rM (E −A) − r(M) + 1 .

Here r(M) = rM (E). Notice that λM (A) = λM (E − A). A subset A ⊆ E
is k-separating if λM (A) ≤ k. When equality holds here, A is said to be ex-
actly k-separating. An arbitrary partition (A,E−A) of M is called a separation
in M . A partition (A,E − A) is called a k-separation if A is k-separating and
both |A|, |E − A| ≥ k. Geometrically, the affine closures of the two sides of
an exact k-separation intersect in a subspace of rank k − 1 (such as, in a line
if k = 3).

2.1 Branch-Decomposition

A sub-cubic tree is a tree in which all nodes have degree at most three. (We do
not use the word ternary because such trees are actually sub-binary in the sense
of the next section.) Let `(T ) denote the set of leaves of a tree T . The next
definition of branch-width for matroids directly extends branch-width of graphs.

Let M be a matroid on the ground set E = E(M). A branch-decomposition of
M is a pair (T, τ) where T is a sub-cubic tree, and τ is an injection of E into `(T ),
called labeling. Let e be an edge of T , and T1, T2 be the connected components
of T − e. We say the e displays the partition (A,B) of E where A = τ−1(`(T1)),
B = τ−1(`(T2)). The width of an edge e in T is ωT (e) = λM (A) = λM (B).
The width of the branch-decomposition (T, τ) is maximum of the widths of all
edges of T , and the branch-width of M is the minimal width over all branch-
decompositions of M . If T has no edge, then we take its width as 0.

1 2 3

5
64

987
1

2
3

4 5

6
7

9

8

1
2

3

4 8

5
6

7

1

2

3

4

5

6

7

8

Fig. 2. Two examples of width-3 branch decompositions of the Pappus matroid (top
left, in rank 3) and of the binary affine cube (bottom left, in rank 4). The lines in
matroid pictures show dependencies among elements.

4



Examples of branch-decompositions are presented in Fig. 2. We remark that
the branch-width of a graph is defined analogously, using the connectivity func-
tion λG where λG(F ) is the number of vertices incident both with F and
E(G) − F . Clearly, the branch-width of a graph G is never smaller than the
branch-width of its cycle matroid M(G). It is still an open conjecture that these
numbers are actually equal. On the other hand, branch-width is within a con-
stant factor of tree-width on graphs [21], and also on matroids [15].

2.2 Represented Matroids

We now turn our attention to matroids represented over a fixed finite field
�

. This
is a crucial part of our introductory definitions. A representation of a matroid
M is a matrix A whose column vectors correspond to the elements of M , and
maximal linearly independent subsets of columns form the bases ofM . We denote
by M(A) the matroid represented by a matrix A.

We denote by PG(n,
�

) the projective geometry (space) obtained from the
vector space

�
n+1. See [19, Section 6.1,6.3] for an overview of projective spaces

and of (in)equivalence of matroid representations. For a set X ⊆ PG(n,
�

), we
denote by 〈X〉 the span (affine closure) of X in the space. The (projective) rank
r(X) of X is the maximal cardinality of a linearly independent subset of X.
A projective transformation is a mapping between two projective spaces over

�
that is induced by a linear transformation between the underlying vector

spaces. Clearly, the matroid M(A) represented by a matrix A is unchanged
when column vectors are scaled by non-zero elements of

�
. Hence we may view

a loopless matroid representation M(A) as a multiset of points in the finite
projective space PG(n,

�
), where n is the rank of M(A).

Definition. We call a finite multiset of points in a projective space over
�

a point configuration; and we represent a loop in a point configuration by the
empty subspace ∅. Two point configurations P1, P2 in projective spaces over

�

are equivalent if there is a non-singular projective transformation between the
projective spaces that maps P1 onto P2 bijectively. (Loops are mapped only to
loops.) We define an

�
-represented matroid to be such an equivalence class of

point configurations over
�

.

One may think that we do not have to include the word “bijectively” in the
previous definition since non-singular projective transformations are always in-
jective on the points, but, in fact, we have to do this to handle multiple-elements
in multisets. Two labeled point configurations over

�
are equivalent in our sense

if and only if, in the language of [19, Chapter 6], the matrix representations are
equivalent without use of

�
-automorphisms, otherwise called strongly equivalent

in matroid theory. However, notice that our represented matroids are unlabeled
in general.

Standard matroidal terms are inherited from matroids to represented ma-
troids. Obviously, all point configurations in one equivalence class belong to the
same isomorphism class of matroids, but the converse is not true in general since

5



matroids often have inequivalent representations. When we want to deal with an
�

-represented matroid, we actually pick an arbitrary point configuration from
the equivalence class.

3 Parse Trees for Matroids

In this section we introduce our basic formal tool — the parse trees for repre-
sented matroids of bounded branch-width. Loosely speaking, a parse tree shows
how to “build up” a matroid along the tree using only fixed amount of infor-
mation at each tree node, and so it forms a suitable background for dynamic
programming.

We are inspired by analogous boundaried graphs and parse trees known for
handling graphs of bounded tree-width (see for example [1] or [8, Section 6.4]):
A boundaried graph is a graph with a distinguished subset of labeled vertices.
(The purpose is that only the boundary vertices can be “accessed from outside”.)
Then, simply speaking, a graph has tree-width at most t−1 iff it can be composed
from small pieces by gluing them on boundaries of size at most t. We similarly
define boundaried represented matroids, in which the boundary is a distinguished
subspace of the representation, and composition operators that are used to glue
representations together. (The role of composition operators, however, differs
between tree-width and branch-width.)

A rooted ordered sub-binary tree is such that each of its nodes has at most
two sons that are ordered as “left” and “right”. (If there is one son, then it may
be either left or right.) A rooted subtree T0 of a rooted tree T is a subgraph of
T such that T0 is the connected component of T − e not containing the root for
some e ∈ E(T ). Let Σ be a finite alphabet. We denote by Σ∗∗ the class of rooted
ordered sub-binary trees with nodes labeled by symbols from Σ.

3.1 Boundaried Matroids

All matroids throughout this section are
�

-represented for some fixed finite
field

�
. Hence, for simplicity, if we say a “(represented) matroid”, then we mean

an
�

-represented matroid. If we speak about a projective space, we mean a
projective geometry over the field

�
. Let [s, t] denote the set {s, s+ 1, . . . , t}.

The following definition presents a possible way of formalizing the notion of
a “matroid with a boundary”. (Since matroids have no vertices unlike graphs,
we have to introduce some special elements that define the matroid boundary.)

Definition. A pair N̄ = (N, δ) is a t-boundaried (represented) matroid if the
following holds: t ≥ 0 is an integer, N is a represented matroid, and δ : [1, t] →
E(N) is an injective mapping such that δ([1, t]) is an independent set in N .

We call J(N̄) = E(N) − δ([1, t]) the internal elements of N̄ , elements of
δ([1, t]) the boundary points of N̄ , and t the boundary rank of N̄ . The represented
matroid N \ δ([1, t]), which is the restriction of N to J(N̄), is called the internal
matroid of N̄ . We denote by ∂(N̄ ) the boundary subspace spanned by δ([1, t]).

6



In particular, the boundary points are not loops. The basic operation we use is
the boundary sum ⊕̄ of the next definition, illustrated in Fig. 3.

⊕̄ →

Fig. 3. An example of a boundary sum of two 2-boundaried matroids. The internal
matroid elements are drawn as solid dots, the boundary points and the boundary
subspace of rank 2 are drawn in gray. Solid lines show matroid dependencies. The
resulting sum is a matroid represented on two intersecting planes in rank 4 (aka “3-
dimensional picture” on the right).

Definition. Let N̄1 = (N1, δ1), N̄2 = (N2, δ2) be two t-boundaried represented
matroids. We denote by N̄1 ⊕̄ N̄2 = N the represented matroid defined as fol-
lows: Let Ψ1, Ψ2 be projective spaces such that the intersection Ψ1 ∩Ψ2 has rank
exactly t. Suppose that, for i = 1, 2, Pi ⊂ Ψi is a point configuration represent-
ing Ni, such that P1 ∩ P2 = δ1([1, t]) = δ2([1, t]), and δ2(j) = δ1(j) for j ∈ [1, t].
Then N is the matroid represented by (P1 ∪ P2) − δ1([1, t]).

Informally, the boundary sum N̄1 ⊕̄ N̄2 = N on the ground set E(N) =
J(N̄1)∪̇J(N̄2) is obtained by gluing the representations of N1 and N2 on a com-
mon subspace (the boundary) of rank t, so that the boundary points of both are
identified in order and then deleted. Keep in mind that a point configuration is a
multiset. It is a matter of elementary linear algebra to verify that the boundary
sum is well defined with respect to equivalence of point configurations.

We write “≤t-boundaried” to mean t′-boundaried for some 0 ≤ t′ ≤ t. We now
define a composition operator (over the field

�
) which will be used to generate

large boundaried matroids from smaller pieces (Fig. 4).

Definition. A ≤t-boundaried composition operator is defined as a quadruple
� = (R, γ1, γ2, γ3), where R is a represented matroid, γi : [1, ti] → E(R) is an
injective mapping for i = 1, 2, 3 and some fixed 0 ≤ ti ≤ t, each γi([1, ti]) is an
independent set in R, and

(

γi([1, ti]) : i = 1, 2, 3
)

is a partition of E(R).
The ≤t-boundaried composition operator � is a binary operator applied to a
t1-boundaried represented matroid N̄1 = (N1, δ1) and to a t2-boundaried repre-
sented matroid N̄2 = (N2, δ2). The result of the composition is a t3-boundaried
represented matroid N̄ = (N, γ3), written as N̄ = N̄1 � N̄2, where a matroid N
is defined using boundaried sums: N ′ = N̄1 ⊕̄(R, γ1), N = (N ′, γ2) ⊕̄ N̄2.

7



Speaking informally, a boundaried composition operator is a bounded-rank
configuration with three boundaries distinguished by γ1, γ2, γ3, and with no other
internal points. For reference we denote by ti(�) = ti, by R(�) = R, and by
γi(�) = γi. The meaning of a composition N̄ = N̄1 � N̄2 is that, for i = 1, 2,
we glue the represented matroid Ni to R, matching δi([1, ti]) with γi([1, ti]) in
order. The result is a t3-boundaried matroid N̄ with boundary γ3([1, t3]). One
may shortly write the composition as N̄ =

((

N̄1 ⊕̄(R, γ1), γ2

)

⊕̄ N̄2, γ3

)

.

3.2 Parse Trees

The main purpose of introducing parse trees is in that they allow to formally
define how to construct a represented matroid of branch-width at most t + 1
using ≤t-boundaried composition operators.

Let Ω̄t denote the empty t-boundaried matroid (Ω, δ0) where t ≥ 0 and
δ0([1, t]) = E(Ω) (t will often be implicit in the context). If N̄ = (N, δ) is an
arbitrary t-boundaried matroid, then N̄ ⊕̄ Ω̄t is actually the internal matroid of
N̄ . Let Ῡ denote the single-element 1-boundaried matroid (Υ, δ1) where E(Υ ) =
{x, x′} are two parallel elements, and δ1(1) = x′. Let Ῡ0 denote the loop 0-
boundaried matroid (Υ0, δ0) where E(Υ0) = {z} is a loop, and δ0 is an empty
mapping. Let R �t denote the finite set of all ≤t-boundaried composition operators
over the field

�
. We set Πt = R �t ∪ {Ῡ , Ῡ0}.

Ῡ

Ῡ Ῡ Ῡ Ῡ0 Ῡ

∅

�1

�2 �4

�3 �5 �6

2 21 2

3 3

4

Fig. 4. An example of a boundaried parse tree. The ovals represent composition oper-
ators, with shaded parts for the boundaries and edge-numbers for the boundary ranks.
(E.g. �4 = (R4, γ4

1 , γ4

2 , γ4

3 ) where γ4

1 , γ4

2 : [1, 2] → E(R4), γ4

3 : [1, 3] → E(R4).)

Let T ∈ Π∗∗
t be a rooted ordered sub-binary tree with nodes labeled by the

alphabet Πt. Considering a node v of T ; we set %(v) = 1 if v is labeled by Ῡ ,
%(v) = 0 if v is labeled by Ῡ0, and %(v) = t3(�) if v is labeled by �. We call T
a ≤t-boundaried parse tree if the following are true:

– Only leaves of T are labeled by Ῡ or Ῡ0.
– If a node v of T labeled by a composition operator � has no left (no right)

son, then t1(�) = 0 (t2(�) = 0).

8



– If a node v of T labeled by � has left son u1 (right son u2), then t1(�) = %(u1)
( t2(�) = %(u2) ).

Informally, the boundary ranks of composition operators and/or single-element
terminals must “agree” across each edge. Notice that Ῡ or Ῡ0 are the only labels
from Πt that “create” elements of the resulting represented matroid P (T ) in the
next definition. See an illustration example in Fig. 4.

Definition. Let T be a ≤t-boundaried parse tree. The ≤t-boundaried repre-
sented matroid P̄ (T ) parsed by T is recursively defined as follows:

– If T is an empty tree, then P̄ (T ) = Ω̄0.
– If T has one node labeled by Ῡ (by Ῡ0), then P̄ (T ) = Ῡ ( = Ῡ0).
– If the root r of T is labeled �r, and r has a left rooted subtree T1 and a

right rooted subtree T2 (possibly empty), then P̄ (T ) = P̄ (T1)�
r P̄ (T2).

The composition is well defined according to the parse-tree description in the
previous paragraph. The represented matroid parsed by T is P (T ) = P̄ (T ) ⊕̄ Ω̄.

We say that a t-boundaried represented matroid M̄ is spanning if the bound-
ary subspace ∂(M̄ ) is contained in the span 〈J(M̄ )〉 of the internal points of M̄ .
We say that a ≤t-boundaried parse tree T is spanning if, for each nonempty
rooted subtree T1 of T , the boundaried matroid P̄ (T1) is spanning and nonempty.
The following natural result about parse trees of matroids is proved in [13].

Theorem 3.1. (PH [13]) An
�

-represented matroid M has branch-width at
most t+1 if and only if M is parsed by some spanning ≤t-boundaried parse tree.

It is easy to turn a boundaried parse tree into a branch-decomposition. Con-
versely, the proof of Theorem 3.1 shows a way how to construct a boundaried
parse tree from a given branch-decomposition. It is, however, more efficient to
construct a boundaried parse tree directly from scratch, and that is what we are
going to do in this paper.

4 Constructing a Parse Tree

We start with an overview of our algorithm for construction of a matroid parse
tree. We assume that a matroid M is given by a matrix A ∈

�
r×n of rank r over

a finite field
�

. The size of M is expressed in terms of the number n of elements,
i.e. the number of columns of A. Clearly, r ≤ n. Additionally, there are two
(so called) parameters – a finite field

�
and an integer t > 0. These parameters

form a separate part of the input in our algorithm, but they are considered as
constants for the purpose of complexity analysis of the algorithm. A more formal
description in the scope of parametrized complexity can be found in Section 5.2.

We call a labeled tree T a partial ≤t-boundaried parse tree if T satisfies all
properties of the parse tree definition (Subsection 3.2) except that some leaves
of T may be labeled by arbitrary t′-boundaried represented matroids for t′ ≤ t.
The matroid P̄ (T ) parsed by T is defined analogously to ordinary parse trees.

9



Notice that a 0-boundaried represented matroid is essentially an ordinary
represented matroid, and that the boundary sum of 0-boundaried represented
matroids is the ordinary direct sum of matroids. Let M �X denote the restriction
of a represented matroid M to a subset of elements X ⊆ E(M). Let Ir denote
the r × r identity submatrix.

Algorithm 4.1. Computing a spanning boundaried parse tree of a matroid:

Parameters: A given finite field
�

, and an integer t ≥ 1.
Input: A matrix A = [Ir |A

′] ∈
�

r×n given in the standard form over
�

, such
that the matroid M(A) represented by A has branch-width at most t+ 1.

1. Let M = M(A), and let E(M) = B ∪F where a basis B marks the columns
of Ir and F the columns of A

′. We initially set X = B, and T to be an
arbitrary 0-boundaried parse tree for the independent matroid M �B.

2. For an arbitrary element f ∈ F − X, we set X = X ∪ {f}, and we add a
new single-element leaf representing f in M �X to the parse tree T .

3. If the width of the parse tree T exceeds, say, 10t, or if X ⊇ F , then we
compute a new spanning ≤3t-boundaried parse tree T ′ for M �X using T :
(a) We start with T ′ equal to the trivial 0-boundaried partial parse tree

having one node labeled by M �X.
(b) Let ` be a leaf of T ′ labeled by a boundaried matroid N̄ with more than

one internal elements. If the boundary rank of N̄ is less than 3t, then
we choose an arbitrary internal element e in N̄ . We add to T ′ a new leaf
`1 representing a single-element e, another new leaf `2 labeled by N̄ \ e,
and we re-label ` with the corresponding composition operator.

(c) If the boundary rank of N̄ equals 3t, then there are two ≤3t-boundaried
matroids N̄1, N̄2 such that N̄ = N̄1 � N̄2 for some ≤3t-boundaried com-
position operator �. Using the decomposition T , we can find N̄1, N̄2

and � efficiently. Then we add two new leaves `1, `2 to T ′ labeled by
N̄1, N̄2, respectively, and we re-label ` with �.

(d) We repeat steps 3b–3c until T ′ is an ordinary parse tree.
Finally, we set T = T ′.

4. We repeat steps 2–3 until X ⊇ F .

Output: A spanning ≤3t-boundaried parse tree T ∈ Π∗∗
3t such that the repre-

sented matroid P (T ) parsed by T is equal to M(A).

Remark. If the above promise that the matroid M(A) has branch-width at
most t + 1 is false, then the step (3c) may fail to find N̄1 and N̄2. In such a
case, Algorithm 4.1 ends up with an error. The algorithm may be formulated in
a way that it always finds a spanning ≤3t-boundaried parse tree T for M(A) if
branch-width of M(A) is at most t + 1, but the output is (possibly) empty if
branch-width of M(A) exceeds t+ 1.

Remark. Another note concerns the given finite field
�

: A finite field is uniquely
determined by the number of its elements q = |

�
|. Moreover, it is easy to con-

struct addition and multiplication tables for
�

algorithmically from given q.

10



We claim that Algorithm 4.1 finds the ≤3t-boundaried parse tree T for M(A)
in time O(n3), where n is the number of columns of A. If the matrix A is not in
the standard form, we can easily get the standard form in time O(n3). The step
(2) can be implemented in time O(nr) ≤ O(n2). Each iteration of the cycle in
step (3) can be implemented in time O(n), and there are at most n−1 iterations.
Altogether, the main cycle in the algorithm is repeated n− r times.

We also note that the running time O(n3) of our algorithm refers to the
number n of columns of A, not to the real size of the input. The real input size
of the matrix A is O(n·r) which is typically of order up to n2. We do not attempt
to determine how Algorithm 4.1 running time depends on the parameters

�
and

t (which is at least an exponential function). However, we do care that the
algorithm is recursive in

�
and t — there is one algorithm running for all values

of the parameters, not a sequence of algorithms (cf. Section 5.2).

4.1 Step (2): Adding an Element to a Parse Tree

Step (1) in Algorithm 4.1 is easy to implement. We are going to describe the
implementation of step (2) of Algorithm 4.1. This is a surprisingly nontrivial task
despite that we are adding the element f to the parse tree T arbitrarily. The
main complication comes from necessity to recompute all boundary subspaces of
the separations in T — a straightforward implementation of which would require
us to solve systems of linear equations. All coming algorithms are parametrized
by a finite field

�
and integers t and t′ ≤ 10t, where

�
, t are as in Algorithm 4.1.

Let M = M(D) be a matroid represented by a matrix D ∈
�

r×n, and
consider a separation (E1, E2) in M (i.e. a partition of E(M) ). The projective
subspace 〈E1〉∩〈E2〉 spanned by both sides of the separation is called the guts of
the separation (E1, E2). The rank of the guts equals λM (E1)− 1 by modularity.
Naturally, one may compute a spanning set of generator vectors (with respect to
D) for the guts of (E1, E2) from the vectors in D. If the rank of the guts is less
than t′ which is a constant, then the combined size of its independent generator
vectors is O(r).

Algorithm 4.2. Adding a vector to a separation guts in a represented matroid.

Input: A matrix D = [Ir |D
′] ∈

�
r×n representing the matroid M = M(D); a

separation (F1, F2) of the matroid M \ f where f is the element represented
by the last column of D, and where λM\f (F1) ≤ t′ + 1; and independent
generator vectors for the guts of the separation (F1, F2) with respect to D\f .

Output: Independent generator vectors for the guts of the separation (F1 ∪
{f}, F2) of M with respect to D, computed in time O(r).

Proof. Notice that we cannot even read the whole matrix D in time O(r).
This is, however, not a big problem since we are going to use only the unit vectors
of Ir and the generator vectors of the guts in the algorithm. Let Ψ = 〈F1〉∩ 〈F2〉
be the given guts, and Ψ ′ = 〈F1∪{f}〉∩〈F2〉 be the guts we have to generate. Let
f denote the last column of D representing the element f , and let f 1 denote the

11



vector obtained from f by setting to 0 the coordinates corresponding to the unit
vectors of Ir appearing in F1. Then f 1 belongs to the span 〈F2〉 by definition.

We may easily compute f 1 in time O(r). Moreover, we may decide whether
f 1 ∈ Ψ in time O(r) since there is a bounded number of generator vectors for Ψ .
If f 1 ∈ Ψ , then f belongs to the span 〈F1〉 and so Ψ ′ = Ψ . Otherwise, since f 1

belongs to the span 〈F1 ∪ {f}〉, we get Ψ ′ = 〈Ψ ∪ f 1〉.

Let M = M(D) be a matroid represented by a matrix D ∈
�

r×n, and
let T be a spanning ≤t′-boundaried parse tree for M . A coordinatization (with
respect to D) of the parse tree T is assignment of the appropriate vectors to
the boundary points of the matroids P̄ (T1) for all rooted subtrees T1 of T , as
computed from the vectors of D. Similarly as above, the combined size of the
vectors for each boundary subspace is O(r).

Algorithm 4.3. Computing the coordinatization of a spanning ≤t′-boundaried
parse tree T for the represented matroid M(D) over

�
.

Input: A matrix D ∈
�

r×n, and a spanning ≤t′-boundaried parse tree T for the
represented matroid M(D).

Output: The coordinatization of T with respect to D, computed in time O(nr).

Proof. If T0 is a rooted subtree of T with one node, then the coordinati-
zation of T0 is trivial. So assume that the root r0 of T0 has the left and right
rooted subtrees T1 and T2, and that r0 is labeled by a composition operator �.
(Hence P̄ (T0) = P̄ (T1)� P̄ (T2). One of the subtrees may be empty.) Since T is
a spanning parse tree, the boundary of P̄ (T0) is spanned by the boundaries of
P̄ (T1) and P̄ (T2).

Thus the vectors assigned to the boundary points of P̄ (T0) with respect
to D are linear combinations of the vectors of the boundary points of P̄ (T1)
and P̄ (T2). There are finitely many ≤t′-boundaried composition operators for a
fixed t′, and so the scalars of these linear combinations can be precomputed for
the parameter t′ and each �. Then, at each node of T , we have to compute a
bounded number of linear combinations from a bounded number of vectors of
length r, which can be accomplished in time O(r). There are O(n) nodes in T .

Consider three sequences U1, U2, U3 ⊂
�

s of vectors where each Ui, i = 1, 2, 3
is formed by independent vectors. Then these sequences represent the composi-
tion operator (U, γ1, γ2, γ3); where U = U1 ∪ U2 ∪ U3 is the point configuration,
and γi maps the elements of the sequence in order Ui = {γi(1), γi(2), . . . , γi(ti)}
for i = 1, 2, 3.

Algorithm 4.4. Computing the composition operator from given vectors.

Input: Three independent sequences U1, U2, U3 ⊂
�

s of vectors where each se-
quence has at most t′ members.

Output: The ≤t′-boundaried composition operator represented by the vectors of
U1, U2, U3, computed in time O(s).

12



Proof. There is a bounded number of ≤t′-boundaried composition operators
for each t′; and since each one is nothing else than a labeled point configura-
tion, it may be identified by a bounded number of homogeneous linear vector
equations and inequations. (The equations are invariant under nonsingular lin-
ear transformations.) Hence we find the composition operator represented by
(U1, U2, U3) in parametrized time O(s) even by brute force.

Lemma 4.5. Step (2) in Algorithm 4.1 is implemented in time O(n ·r) for fixed
parameters t′ and

�
.

Proof. Let N = M �X in the step (2) of Algorithm 4.1 (before adding f
to X). We first compute the coordinatization of the parse tree T for N using
Algorithm 4.3. Let T1 be a rooted subtree of T , and let F1 = J

(

P̄ (T1)
)

, F2 =
E(N) − F1. Then, since the parse tree T is spanning, the boundary subspace
of P̄ (T1) is the guts of the separation (F1, F2). We denote by T ′ the rooted
sub-binary tree obtained from T by adding arbitrarily a new leaf ` representing
the element f . To turn T ′ into a parse tree for N ′ = M �X ∪ {f}, we have to
re-compute all composition operators in T ′.

Let T ′
1 be the rooted subtree of T ′ corresponding to T1 above, and let F ′

1 =
J
(

P̄ (T ′
1)

)

, F ′
2 = E(N ′)−F ′

1. Then F ′
1 = F1 ∪{f} and F ′

2 = F2 for ` ∈ V (T ′
1), or

F ′
2 = F2∪{f} and F ′

1 = F1 otherwise. We denote by D = [Ir |D
′] the submatrix

of the matrix A from Algorithm 4.1 representing the matroid N ′. We apply
Algorithm 4.2 to D, the separation (F1, F2) and f , and to the generator vectors
of the boundary points of P̄ (T1) computed above, obtaining generator vectors
of the boundary of P̄ (T ′

1). We repeat the same procedure for all O(n) rooted
subtrees of T ′. Finally, we use Algorithm 4.4 to determine the new composition
operators to label all internal nodes of T ′.

4.2 Step (3): Getting a better Parse Tree

The heart of the implementation of step (3) in Algorithm 4.1 is the next claim.
(We remark that the proof of this claim implicitly uses a so called “tangle” [21]
– a notion dual to a branch-decomposition.)

Lemma 4.6. Let t ≥ 1 and N̄ be a spanning 3t-boundaried represented matroid
such that the branch-width of the internal matroid N̄ ⊕̄ Ω̄ is at most t+ 1. Then
there are two ≤3t-boundaried matroids N̄1, N̄2 such that N̄ = N̄1 � N̄2 for some
≤3t-boundaried composition operator �.

Proof. Recall that the internal matroid N ′ = N̄ ⊕̄ Ω̄ is the restriction of N̄
to the internal elements J(N̄) = E(N ′). We define a function g : 2E(N ′) →

�
, for

a subset F ⊆ E(N ′), as g(F ) = r
(

∂(N̄)∩ 〈F 〉
)

, i.e. as the projective rank of the
intersection of the span of F with the boundary of N̄ . Clearly, g(E(N ′)) = 3t
since N̄ is spanning.

Let (U, τ) be a width-(t + 1) branch-decomposition of N ′. For an edge e ∈
E(U), we define Fi(e) = τ−1

(

V (Ui)
)

for i = 1, 2 where U1 and U2 are the

connected components of U−e. Note that g
(

F1(e)
)

+g
(

F2(e)
)

≥ g
(

E(N ′)
)

= 3t.

13



Claim. There is an edge e ∈ E(U) such that both g
(

F1(e)
)

, g
(

F2(e)
)

≥ t.

For a contradiction, we assume that no such edge e exists in U . Let (arbitrary)
e = w1w2 where wi ∈ Ui, i = 1, 2 as above, and a = min

{

g(F1(e)), g(F2(e))
}

.

If a < t, then, say, a = g
(

F1(e)
)

< g
(

F2(e)
)

. In such a case we direct the
edge e from w1 to w2. Since U is a cubic tree, there is a node w0 of U such
that all three edges incident with w0 are directed towards it. Then, denoting by
U ′

1, U
′
2, U

′
3 the connected components of U − w0 and by F ′

i = τ−1
(

V (U ′
i)

)

, we

get g
(

F ′
1

)

+ g
(

F ′
2

)

+ g
(

F ′
3

)

< t+ t+ t which is a contradiction to g
(

E(N ′)
)

= 3t.
So we consider further the edge e from the claim. The rank of 〈F1(e)〉∩〈F2(e)〉

is at most t since (U, τ) is a width-(t + 1) branch-decomposition. Together for
i = 1, 2 we get, by modularity of the rank in projective spaces,

r
[〈

Fi(e)
〉

∩
〈

F3−i(e) ∪ ∂(N̄ )
〉]

= r
[〈

Fi(e)
〉

∩
〈

F3−i(e)
〉]

+

+r
[〈

Fi(e)
〉

∩ ∂(N̄ )
]

− r
[〈

Fi(e)
〉

∩
〈

F3−i(e)
〉

∩ ∂(N̄)
]

≤ t+ 2t− 0 = 3t .

Hence the partition
(

F1(e), F2(e)
)

decomposes the internal elements into two
≤3t-boundaried matroids N̄1, N̄2 which are glued together by a suitable ≤3t-
boundaried composition operator �.

The task now is to find the partition (F1, F2) of J(N̄ ) inducing the boundaried
matroids N̄1, N̄2, and the composition operator � from Lemma 4.6 efficiently.
We use the ≤t′-boundaried parse tree T previously constructed in Algorithm 4.1.
Unlike in the implementation of step (2), we do not work with the vectors rep-
resenting M(A) — instead, we obtain all necessary information from the parse
tree T . This results in a more complicated but faster implementation. Again, all
algorithms in this section are parametrized by a finite field

�
and integers t and

t′ ≤ 10t. We first present the following two simple algorithms.

Algorithm 4.7. Computing the connectivity function of a separation.

Input: An ≤t′-boundaried parse tree T parsing the matroid N = P (T ), and a
partition (F1, F2) of E(N).

Output: The connectivity value λN (F1)−1 of the separation (F1, F2), computed
in time O

(

|V (T )|
)

.

Proof. In other words, we are computing the projective rank of the guts
of separation (F1, F2) in N . This is a straightforward application of dynamic
programming over T . Let x be a node of T , and let Tx be the rooted subtree
of T with the root x. Denote by M̄x = P̄ (Tx), and by T ′

x, T
′′
x the left and right

rooted subtrees of x in T .
For M̄x as above and for Ei = Fi ∩ J(M̄x), we call boundary data the triple

(Σ1, Σ2, g) where Σi = ∂(M̄x) ∩ 〈Ei〉 for i = 1, 2 is the intersection of the span
〈Ei〉 with the boundary of M̄x, and where g is the projective rank of the guts
〈E1〉 ∩ 〈E2〉 of the subseparation (E1, E2). Clearly, one may compute boundary
data of M̄x = P̄ (Tx) from boundary data of P̄ (T ′

x) and P̄ (T ′′
x ), and from the

composition operator labeling x in (parametrized) constant time. Hence the
whole algorithm is implemented in linear time.

14



Algorithm 4.8. Computing a good partition (F1, F2) for Lemma 4.6.

Input: A ≤t′-boundaried parse tree T parsing the represented matroid N =
P (T ), and a subset F0 ⊆ E(N) such that λN (F0) = 3t.

Output: A partition (F1, F2) of the set E(N)−F0 such that λN (F1), λN (F2) ≤ 3t,
or an answer NO if no such partition exists; computed in time O

(

|V (T )|
)

.

Proof. This is a straightforward extension of the dynamic program imple-
mented in Algorithm 4.7. Moreover, for each instance of boundary data in this
case, we record one representative of the partition which we compute. Since the
ground set of N can be easily implemented so that the operation of a set union
(of the representatives) takes constant time, the overall computing time is still
linear in T . We leave details to the reader.

Now we get to the hard part — computing a valid composition operator for
the new node of the parse tree T ′ in step (3b) or (3c). We (implicitly) know
the three boundaries of the composition operator from a defining tri-partition of
the matroid elements. We, however, have to choose independent spanning sets
of generator points for the boundaries in such a way that the two matching
boundaries of adjacent composition operators in the parse tree T ′ get the same
generator points. For a parse tree U , we call a virtual point of U any point
which is contained in the span of some composition operator in the tree U . The
concept of virtual points of the parse tree U allows us to determine relative
positions of certain points with respect to the elements of the matroid P (U),
without necessity to use absolute vectors in a particular matroid representation.

If (F1, F2) is a separation in the represented matroid P (U) parsed by U , then
we are going to express spanning generator points for the guts of (F1, F2) as a
sequence of virtual points of the parse tree U . We naturally say that a set Z
of virtual points in U is independent if Z is linearly independent in the point
configuration parsed by U . Next is the corresponding extension of Algorithm 4.7:
The fact that the guts is always spanned by some virtual points of U is implicitly
proved in the algorithm.

Algorithm 4.9. Computing virtual points spanning the guts of a given sepa-
ration over a parse tree.

Input: An ≤t′-boundaried parse tree T parsing the matroid N = P (T ), and a
partition (F1, F2) of E(N) such that λN (F1) ≤ 3t. (The partition is sym-
metric, i.e. (F1, F2) is considered the same as (F2, F1).)

Output: A uniquely determined sequence {x1, x2, . . . , xk}, k = λN (F1) − 1, of
independent virtual points of the parse tree T which span the guts of the
separation (F1, F2). This is computed in time O

(

|V (T )|
)

.

Proof. Let x be a node of T labeled by �, and let Tx be the rooted subtree
of T with the root x. Denote by M̄x = P̄ (Tx), and by T ′

x, T
′′
x the left and right

rooted subtrees of x in T . Analogously to Algorithm 4.7, we call boundary data of
M̄x the quadruple (Σ1, Σ2, g, Z) where Ei = Fi ∩J(M̄x) and Σi = ∂(M̄x)∩〈Ei〉

15



for i = 1, 2, where g = r
(

〈E1〉 ∩ 〈E2〉
)

, and where Z = {z1, . . . , zg} is a sequence
of independent virtual points of T which spans the guts of (E1, E2) in M̄x.
Moreover, we require that the points of Z ∩ ∂(M̄x) contained in the boundary
span the set Σ1 ∩Σ2 (boundary-span condition).

We denote by M̄ ′
x = P̄ (T ′

x), M̄ ′′
x = P̄ (T ′′

x ), and by E′
i = Fi ∩ J(M̄ ′

x), E′′
i =

Fi∩J(M̄ ′′
x ). The guts 〈E1〉∩〈E2〉 is clearly spanned by the four sets 〈E ′

1〉∩〈E′
2〉,

〈E′′
1 〉 ∩ 〈E′′

2 〉, 〈E′′
1 〉 ∩ 〈E′

2〉, 〈E′
1〉 ∩ 〈E′′

2 〉. The latter two sets 〈E′′
1 〉 ∩ 〈E′

2〉 and
〈E′

1〉 ∩ 〈E′′
2 〉 are contained in the span of the composition operator � labeling

x in the parse tree T by definition. Hence, using the boundary-span condition
above, we can compute boundary data of M̄x from boundary data of M̄ ′

x and of
M̄ ′′

x , and from the composition operator � in a canonical way.
Since the guts of (E1, E2) has bounded rank g ≤ 3t in M̄x, boundary data

carry only limited amount of information. One node x of the parse tree T is
processed in time depending on

�
and t, but not depending on the size of T . So

the whole algorithm is implemented in (parametrized) linear time.

Lastly, we present an analogue of Algorithm 4.4 computing the composition
operator from sequences of virtual points. Consider three sequences Z1, Z2, Z3

of virtual points in a common parse tree T , each Zi, i = 1, 2, 3 formed by
gi independent points. Then these sequences represent the composition op-
erator (Z, γ1, γ2, γ3); where Z = Z1 ∪ Z2 ∪ Z3 is the ground point configu-
ration as parsed by T , and γi maps the elements of the sequence in order
Zi = {γi(1), γi(2), . . . , γi(gi)} for i = 1, 2, 3.

Algorithm 4.10. Computing the composition operator from the given virtual
points in a parse tree.

Input: Three independent sequences Z1, Z2, Z3 of virtual points in a common
≤t′-boundaried parse tree T , where each sequence has at most 3t members.

Output: The ≤3t-boundaried composition operator represented by the virtual
points of Z1, Z2, Z3, computed in time O

(

|V (T )|
)

.

Proof. We argue similarly as in Algorithm 4.4. There is a bounded number
of ≤t′-boundaried composition operators, and each one of them may be identified
by a bounded number of linear vector equations and inequations. Moreover, these
equations are homogeneous and so invariant under nonsingular vector transfor-
mations by the definition of a composition operator. Thus we can decide their
validity for the input from information given in the parse tree T .

Let x be a node of T labeled by �x, and let Tx be the rooted subtree of T
with the root x. Denote by T ′

x, T
′′
x the left and right rooted subtrees of x in T ,

by M̄x = P̄ (Tx), and by Zx ⊆ Z1 ∪ Z2 ∪ Z3 those of given virtual points of T
which are contained in the composition operators in the subtree Tx. We use the
following dynamic program:

We call boundary-combination data of M̄x the list of all linear combinations of
the virtual points Zx which result in a point in the boundary ∂(M̄x). This is a well
defined notion according to the definition of a parse tree and to elementary linear
algebra; and one can determine boundary-combination data of M̄x = P̄ (Tx) from

16



boundary-combination data of P̄ (T ′
x) and of P̄ (T ′′

x ), and from the composition
operator �x labeling x. Since boundary-combination data carry limited amount
of information at each tree node, the whole parse tree T can be processed in
linear parametrized time.

Consider a homogeneous linear (in)equation EQ over the points Z1∪Z2∪Z3.
Then, obviously, we can decide validity of EQ from boundary-combination data
at the node y of T in which the last point involved in EQ gets encountered in the
set Zy. This takes constant time. Therefore, for any ≤3t-boundaried composition
operator �, we can decide whether the virtual points of Z1, Z2, Z3 represent �.
In this way we find out the ≤3t-boundaried composition operator represented by
Z1, Z2, Z3 in total linear (parametrized) time O

(

|V (T )|
)

.

Lemma 4.11. Step (3) in Algorithm 4.1 is correctly implemented in time O(n2)
for fixed parameters t, t′ ≤ 10t, and

�
.

Proof. LetM = M(A) be the given matroid on n elements, and let the setX
and the ≤t′-boundaried parse tree T be as in Algorithm 4.1. (So P (T ) = M �X.)
Notice that the size of the partial parse trees considered in the algorithm is at
most linear in |X| ≤ n. The important point of the implementation of step (3)
in Algorithm 4.1 is that the boundaried matroids labeling the partial spanning
tree T ′ are not explicitly described: Instead of a boundaried matroid N̄ , we
record only the set J(N̄ ) of its internal elements. The boundary subspace of N̄
is then implicitly given by the guts of the separation

(

J(N̄), X−J(N̄)
)

, and the
boundary points are handled as virtual points in the parse tree T .

Part (3a) of Algorithm 4.1 is trivial to implement. Let us look at part (3b):
The boundary rank of the boundaried matroid N̄ labeling a chosen leaf ` of
T ′ is computed in time O(n) by Algorithm 4.7. Suppose that the computed
rank is less than 3t. Let e ∈ J(N̄) be an arbitrary element. Then the new
composition operator being added to the parse tree T ′ corresponds to a tri-
partition X1 = J(N̄) − {e}, X2 = {e}, and X3 = X − J(N̄ ). Rest is described
below.

Suppose that the above computed boundary rank of N̄ equals 3t. Then we
are in part (3c): We call Algorithm 4.8 for F0 = X3 = X − J(N̄ ) over the parse
tree T . The result is a partition (X1, X2) of the set X −X3 = J(N̄ ), which does
exist by Lemma 4.6 if branch-width of M is at most t+1. The whole tri-partition
of X to X1, X2, X3 then determines the new composition operator and the new
leaf labels which will be added to T ′. On the other hand, if branch-width of M
exceeds t+1, then this part may possibly fail, and then Algorithm 4.1 ends with
no parse tree and an error message. Computing time is O(n) here.

So far, we have constructed a tri-partition (X1, X2, X3) of the set X such
that λM�X(Xi) ≤ 3t for i = 1, 2, 3, and we are going to find the composition
operator that would “glue” these three parts together in an enlarged parse tree
T ′

1: We call Algorithm 4.9 for the separation (Xi, X −Xi) over the parse tree T ,
for each i = 1, 2, 3. Then we call Algorithm 4.10 for the resulting three sequences
Zi, i = 1, 2, 3 of virtual points over the parse tree T to construct a composition
operator �′. We construct the new tree T ′

1 from T ′ by adding two new leaves

17



`1, `2 as sons of `. We label `i, i = 1, 2 by the boundaried matroid N̄i induced
on the elements Xi and the boundary Zi, and we re-label ` with �′. (Rest of T ′

1

is unchanged.) This is all done in time O(n) again.
It remains to prove correctness of the above construction by induction on

|V (T ′)|. At the beginning, when T ′ has one node, the matroid N̄ has bound-
ary rank 0, and X3 = ∅ so Z3 is an empty sequence. Otherwise, the sequence
Z3 coincides with the set of boundary points of N̄ since they were both deter-
mined uniquely by Algorithm 4.9 for the same separation

(

X3, J(N̄ )
)

. Therefore,
N̄1 �

′ N̄2 = N̄ , and so P̄ (T ′
1) = P̄ (T ′) and P (T ′

1) = P (T ) = M �X.

Since each iteration of step (3) adds a new leaf to the constructed parse tree
T ′, there are at most |X|− 1 = O(n) iterations. Thus step (3) is finished in time
O(n2). We remark that our implementation works for an arbitrary finite field

�

and an integer t ≥ 1 given as parameters.

4.3 Conclusion: Implementation of Algorithm 4.1

Using Lemmas 4.5 and 4.11, and the preceeding description, we immediately
conclude:

Theorem 4.12. Let us fix an integer t ≥ 1 and a finite field
�

, and consider a
given n-element

�
-represented matroid M = M(A).

(a) If branch-width of M is at most t + 1, then Algorithm 4.1 computes a
spanning ≤3t-boundaried parse tree T for M in time O(n3).

(b) If branch-width of M exceeds t + 1, then Algorithm 4.1 (possibly) ends
with no output parse tree, but the computation is also finished in time O(n3).

5 Parametrized Complexity of Branch-Width

There are many connections between tree-width of graphs and parametrized
complexity of hard graph problems [8, Chater 6]. A large class of natural graph
problems, including those notoriously hard ones like hamiltonicity or 3-colouring,
can be expressed in monadic second-order logic. By a classical result of Cour-
celle [5, 6], et al., all such MSO-definable problems can be solved quickly for
(incidence) graphs with a tree-decomposition of bounded width. A similar phe-
nomenon occurs for represented matroids, and we can use that to determine the
exact value of branch-width of a represented matroid, in addition to an approx-
imation following from Algorithm 4.1.

5.1 MSO Logic of Matroids

The monadic second-order logic (MSOL) of matroids is defined as follows: The
syntax includes variables for matroid elements and element sets, the quantifiers
∀,∃ applicable to these variables, the logical connectives ∧,∨,¬, and the next
predicates:

18



1. =, the equality for elements and their sets,
2. e ∈ F , where e is an element and F is an element set variables,
3. indep(F ), where F is an element set variable, and the predicate tells whether
F is independent in the matroid.

In our paper, we follow a tree-automata formalization of Courcelle’s result,
as in [1].

Theorem 5.1. (PH [13]) Let t ≥ 1, and let
�

be a finite field. Assume M is
a set of represented matroids over

�
described by a sentence in the monadic

second-order logic of matroids. Then there is a finite tree automaton accepting
exactly the ≤(t − 1)-boundaried parse trees of members of M (of branch-width
bounded by t).

We remark that the proof [13] of Theorem 5.1 is constructive — there is an
algorithm that computes the accepting tree automaton for the given field

�
, the

formula φ describing M, and t.

5.2 Parametrized Complexity

When speaking about parametrized complexity, we closely follow [8]. Here we
present only the basic definition of parametrized tractability. For simplicity, we
restrict the definition to decision problems, although an extension to computa-
tion problems is straightforward. Let Σ be the input alphabet. A parametrized
problem is an arbitrary subset Ap ⊆ Σ∗× � . For an instance (x, k) ∈ Ap, we call
k the parameter and x the input for the problem. (The parameter is sometimes
implicit in the context.)

Definition. We say that a parametrized problem Ap is (non-uniformly) fixed-
parameter tractable if there is a sequence of algorithms {Ai : i ∈ � }, and a
constant c; such that (x, k) ∈ Ap iff the algorithm Ak accepts (x, k), and that
the running time of Ak on (x, k) is O(|x|c) for each k.
We say that a parametrized problem Ap is uniformly fixed-parameter tractable
if there is an algorithm A, a constant c, and an arbitrary function f : � → � ;
such that (x, k) ∈ Ap iff the algorithm A accepts (x, k), and that the running
time of A on (x, k) is O(f(k) · |x|c).

In our context, the input X is an
�

-represented matroid, and the parameter
k is an upper bound on the branch-width of X. (Notice that correctness of the
assumed branch-width bound is implicitly checked in Algorithm 4.1.) In a more
general setting, we may even consider the parameter as a pair (

�
, k) encoded as

an integer.

5.3 Computing Branch-Width Exactly

We use Theorem 5.1 to determine branch-width in the following way. We remark
that, unlike for graph minors, it is not known how to test for a fixed matroid
minor in polynomial time.

19



Lemma 5.2. For every matroid N there is an MSOL formula ψN such that
ψN |= M (i.e. ψN is true on a matroid M) if and only if N is a minor of M .

Proof. We include a short proof here, more details can be found in [14].
Matroid N is a minor of M if there are two sets C,D such that N = M \D/C.
Suppose that N = M \D/C holds. Then a set X ⊆ E(N) is dependent in N if
and only if there is a dependent set Y ⊆ E(M) in M such that Y −X ⊆ C.

Since N is fixed, we may identify the elements of an N -minor in M by
variables x1, . . . , xn in order, where n = |E(N)|. For each J ⊆ [1, n], we write

mdep(xj : j ∈ J ;C) ≡ ∃Y
[

¬ indep(Y ) ∧ ∀y
(

y 6∈ Y ∨ y ∈ C ∨
∨

j∈J
y = xj

)]

.

Now, M \ D/C is isomorphic to N iff the dependent subsets of {x1, . . . , xn}
exactly match the dependent sets of N . Hence we express ψN as

ψN ≡ ∃C ∃x1, . . . , xn

[

∧

1≤i<j≤n
xi 6= xj∧

∧

J∈J+

¬mdep(xj : j ∈ J ;C) ∧
∧

J∈J−

mdep(xj : j ∈ J ;C)

]

,

where J+ is the set of all J ⊆ [1, n] such that {xj : j ∈ J} actually is independent
in N , and where J− is the complement of J+.

The class Bk of matroids of branch-width at most k is closed under taking
minors, and so membership in Bk can be tested by looking for the so called
excluded (or forbidden) minors for Bk. By the result of [10], the excluded minors
for the class Bk have size at most (6k+1 − 1)/5, and hence their number is finite
and they can all be found by a brute force algorithmic search.

Corollary 5.3. For every k ≥ 1, there is a computable MSOL formula φk such
that φk |= M if and only if M has branch-width at most k (i.e. shortly φk(M) ≡
M ∈ Bk).

Theorem 5.4. Let
�

be a finite field, and let t ≥ 1 be a constant. There is an
algorithm that, given a rank-r matrix A ∈

�
r×n such that the branch-width of

the matroid M(A) is at most t + 1, finds the exact branch-width of M(A) in
time O(n3).

Proof. For k = 2, 3, . . . , t + 1, the algorithm first pre-computes all the
excluded minors for the class Bk, and the formulas φk from Corollary 5.3. Then
the algorithm computes the finite tree automaton Ak from Theorem 5.1, which
accepts the parse trees for represented matroids described by φk. (This pre-
computation is done in time not depending on M .)

Given an n-element matroid M(A) represented over
�

, the algorithm calls
Algorithm 4.1 to produce an ≤3t-boundaried parse tree T ofM(A) in time O(n3).
Then it finds the smallest k0 ≤ t+ 1 such that the parse tree T is accepted by
Ak0

, where each automaton Ak is emulated in time O(n). The branch-width of
M(A) is k0.

20



Corollary 5.5. For a finite field
�

, the branch-width of an
�

-represented ma-
troid is a uniformly fixed-parameter tractable problem.

Remark. We may analogously argue in the case of matroid tree-width, which
has been defined in [15]: The tree-width of a matroid represented over a finite
field is non-uniformly fixed-parameter tractable. However, we do not have a size-
bound analoguous to [10] at hand, and so we have to use a non-constructive well-
quasi-ordering argument of [9] to establish existence of a finite list of excluded
minors for represented matroids of tree-width at most k. Since the definition of
matroid tree-width is not easy, we include no formal statements here.

6 Concluding Remarks

Using Theorem 4.12, one may easily derive the following corollary of Theo-
rem 5.1.

Corollary 6.1. Let t ≥ 1, let
�

be a finite field, and let φ be a sentence in
the monadic second-order logic of matroids. Consider a given n-element

�
-

represented matroid M = M(A) of branch-width at most t. The question whether
φ is true for the matroid M(A) is uniformly fixed-parameter tractable with re-
spect to the combined parameter (

�
, t, φ). If

�
, t, and φ are fixed, then the

answer can be computed from the matrix A in time O(n3).

More similar algorithmic applications, including recognition of any minor-
closed matroid family, can be found in [14]. Besides applications based directly on
Theorem 5.1, we may use the machinery of matroid parse trees from Sections 3,4
for solving other problems. For example, we provide a straightforward recursive
formula and an algorithm for computing the Tutte polynomial of a represented
matroid in [12].

Theorem 6.2. (PH [12]) Let t ≥ 1, let
�

be a finite field. Consider a
given n-element

�
-represented matroid M = M(A) of branch-width at most t.

Then the Tutte polynomial T (M(A); x, y) of M(A) can be computed in time
O(n6 log n log log n).

Morever, a recent research of Oum shows that our matroid results are of in-
terest also in graph theory — he uses Algorithm 4.1 to approximate the clique-
width of a graph in parametrized cubic time [18]. That application uses impor-
tant notion of rank-width [17], defined by the matrix rank function on adjacency
matrices of graphs. (There had been no efficient approximation algorithms for
graph clique-width known before introduction of rank-width.) In particular, the
clique-width of a graph of rank-width r is between r and 2r+1−1, and the rank-
width of a bipartie graph G equals the branch-width minus one of the matroid
represented over GF (2) by the bipartite adjacency matrix of G. Oum’s result is
shortly stated as follows:

21



Theorem 6.3. (Oum [18]) For every fixed r > 0, there is an algorithm checking
whether the rank-width of a given graph G is at most r in time O(n3). Moreover,
the algorithm outputs a rank-decomposition of with at most 24r in the “yes” case.

It is interesting to watch the radical structural change when we move from
represented matroids over finite fields to general abstract matroids, or even to
matroids over infinite fields. For example, Theorem 5.1 [13] is provably false
even for matroids that are represented over the integers by matrices with entries
from {−1, 1, 3}. Also, the problems of 6.1 and 6.2 become NP -hard for matroids
of branch-width 3 over the integers. The computational borderline is even more
clear when considering decidability of matroid theories [16]: While MSO theories
of the matroids of bounded branch-width are decidable over finite fields (and,
conversely, decidability of such a theory implies a bound on branch-width), the
MSO theory of all matroids of branch-width 3 is undecidable.

The situation seems to be slightly different for the problem of branch-width
itself, at least when branch-width is 3. We present in [11] an easy algorithm
that decides whether a matroid has branch-width at most 3 in polynomial time.
(The algorithm also has a fast practical implementation.) This algorithm is not
restricted to represented matroids — it works for all matroids for which the
rank function can be efficiently determined. Unfortunately, there seems to be
no straightforward way how to extend the algorithm to higher values of branch-
width.

Problem 6.4. What is the parametrized complexity of the problem to determine
the branch-width of a matroid M ;
(a) if M = M(A) is given by a matrix representation over an infinite field,
(b) if M is given by a rank oracle?

Acknowledgments

We would like to thank Geoff Whittle for valuable discussions about matroid
representations and branch-width, and the anonymous referee for helpful sug-
gestions to improve the presentation of our results. We also acknowledge generous
research support by the NZ Marsden Fund (a research grant to Geoff Whittle)
in 2001–2002, and partial support by Czech research grant GAČR 201/05/050.

References

1. K.A. Abrahamson, M.R. Fellows, Finite Automata, Bounded Treewidth, and Well-

Quasiordering, In: Graph Structure Theory, Contemporary Mathematics 147,
American Mathematical Society (1993), 539–564.

2. H.L. Bodlaender, A Tourist Guide through Treewidth, Acta Cybernetica 11 (1993),
1–21.

3. H.L. Bodlaender, A Linear Time Algorithm for Finding Tree-Decompositions of

Small Treewidth, SIAM J. Computing 25 (1996), 1305–1317.

22



4. H.L. Bodlaender, D.M. Thilikos, Constructive Linear Time Algorithms for Branch-

width, Proceedings 24th ICALP, Lecture Notes in Computer Science 1256, 1997,
627–637.

5. B. Courcelle, The decidability of the monadic second order theory of certain sets

of finite and infinite graphs, LICS’88, Logic in Computer Science, Edinburg, 1988.
6. B. Courcelle, The Monadic Second-Order Logic of Graphs I. Recognizable sets of

Finite Graphs Information and Computation 85 (1990), 12–75.
7. R. Diestel, Graph theory, Graduate Texts in Mathematics 173, Springer-Verlag,

New York 1997, 2000.
8. R.G. Downey, M.R. Fellows, Parametrized Complexity, Springer-Verlag New York,

1999, ISBN 0-387-94833-X.
9. J.F. Geelen, A.H.M. Gerards, G.P. Whittle, Branch-Width and Well-Quasi-

Ordering in Matroids and Graphs, J. Combin. Theory Ser. B 84 (2002), 270–290.
10. J.F. Geelen, A.H.M. Gerards, N. Robertson, G.P. Whittle, On the Excluded Minors

for the Matroids of Branch-Width k, J. Combin. Theory Ser. B 88 (2003), 261–265.
11. P. Hliněný, On the Excluded Minors for Matroids of Branch-Width Three, Elec-

tronic Journal of Combinatorics 9 (2002), http://www.combinatorics.org, #R32.
12. P. Hliněný, The Tutte Polynomial for Matroids of Bounded Branch-Width, Com-

binatorics, Probability and Computing, to appear (2005).
13. P. Hliněný, Branch-Width, Parse Trees, and Monadic Second-Order Logic for Ma-

troids, submitted.
Extended abstract in: STACS 2003, Lecture Notes in Computer Science 2607,
Springer Verlag (2003), 319–330.

14. P. Hliněný, On Matroid Properties Definable in the MSO Logic, In: Math Founda-
tions of Computer Science MFCS 2003, Lecture Notes in Computer Science 2747,
Springer Verlag Berlin (2003), 470–479.

15. P. Hliněný, G.P. Whittle, Matroid Tree-Width, submitted (2003).
Extended abstract in: Eurocomb’03, ITI Series 2003–145, Charles University,
Prague, Czech Republic, 202–205.

16. P. Hliněný, D. Seese, Trees, Grids, and MSO Decidability: from Graphs to Matroids,
submitted (2004).
Extended abstract in: IWPEC 2004, Lecture Notes in Computer Science 3162,
Springer Verlag Berlin (2004), 96–107.

17. Sang-Il Oum, P. Seymour, Approximation Algorithm to the Clique-Width of a

Graph, manuscript, 2003.
18. Sang-Il Oum, Approximating Rank-width and Clique-width Quickly, manuscript,

2005.
19. J.G. Oxley, Matroid Theory, Oxford University Press, 1992,1997, ISBN 0-19-

853563-5.
20. N. Robertson, P.D. Seymour, Graph Minors – A Survey, Surveys in Combinatorics,

Cambridge Univ. Press 1985, 153–171.
21. N. Robertson, P.D. Seymour, Graph Minors X. Obstructions to Tree-Decompo-

sition, J. Combin. Theory Ser. B 52 (1991), 153–190.

23


