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Abstract

Besides the very successful concept of tree-width (see [H. Bodlaender,
A. Koster: Combinatorial optimisation on graphs of bounded treewidth.
These special issues on Parametrized Complexity]), many concepts and
parameters measuring the similarity or dissimilarity of structures com-
pared to trees have been born and studied over the past years. These
concepts and parameters have proved to be useful tools in many applica-
tions, especially in the design of efficient algorithms. Our presented novel
look at the contemporary developments of these “width” parameters in
combinatorial structures delivers — besides traditional tree-width and
derived dynamic programming schemes — also a number of other useful
parameters like branch-width, rank-width (clique-width), or hypertree-
width. In this contribution we demonstrate how “width” parameters of
graphs and generalized structures (like matroids or hypergraphs), can be
used to improve the design of parameterized algorithms and the structural
analysis in other applications on an abstract level.

1 Introduction and Overview

We organize our contribution as follows: After this chapter with motivating
introduction, key examples, and notations, Chapter 2 brings some basic tools
from logic which are the key to some later applications. (Readers not interested
in the logic part may safely skip Chapter 2.) The following three chapters, that
are relatively independent of each other, survey interesting and currently active
areas of structural width parameters in computer science.

Chapter 3 is devoted to the notion of branch-width and several of its gen-
eralizations. There we discuss connectivity functions, branch-width concepts
for graphs and matroids, and parameterized algorithms. Chapter 4 describes
rank-width and clique-width and many related concepts. Most of these concepts
are quite recent and not widely known, though they bring interesting new al-
gorithmic applications. Subsequently, in Chapter 5, hypergraphs are discussed
through hypertree-width and related concepts, which are of particular interest
for databases. (The Constraint Satisfaction Problem is a representative issue
that will be addressed in this context.) Finally, in Chapter 6, we make some
concluding remarks and give some directions for future research. All concepts
in this article are strong generalizations of the “traditional” tree-width concept
which is covered in [BK07].

To make this paper accessible to the majority of computer scientists, each
chapter gradually moves from a (quite) informal content description and applica-
tions to more formal (and mathematically involved) concepts. While we assume
some basic knowledge concerning graphs and different parametrized complexity
topics which are covered in [These special issues on Parametrized Complexity]
(see also [DF99, FG06]), the chapters are generally self-contained. Thus an in-
terested reader can pick up his favorite topic at an accessible level without the
need for extensive study.

Since graphs represent the basic mathematical structures that we demon-
strate our idea upon, we briefly introduce their terms and notation. The graphs
used throughout this contribution are (mostly) finite, and undirected unless
stated otherwise. A graph G has the vertex set V (G) and the edge set E(G).
Graph edges can be simply regarded as (unordered) pairs of vertices, however we
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sometimes also consider multigraphs (which may have parallel edges or loops).
An edge with ends u and v is shortly written as uv. A complete graph on n
vertices is denoted by Kn, a cycle of length n by Cn, and a path of length n
by Pn+1. A graph is connected if every pair of its vertices is connected by a
path. A connected graph is a tree if it contains no cycles.

For missing basic notation and terminology on graphs and algorithms we
refer the reader to classical text books, like [CLRS01] and [Die05] for instance.

1.1 Tree-shaped structures: Motivation

Many algorithmic problems of practical or theoretical interest are NP-hard and
to date efficient solutions in polynomial time have not been found yet. Due to
the globalization of business, algorithmic problems to be solved become larger
and larger and therefore the significance of complexity is ever increasing. Ex-
amples that contribute to the rapid growth are for instance: The complexity
of products and production, the necessity to manage modern technologies (as
VLSI circuit production, nano technology or modern robotics), the necessity
to solve computational problems in biology or medicine, and the necessity to
handle the information flood in globally growing networks.

A basic observation is that complexity of computational problems often de-
pends on structural parameters of the components, i.e. the participating objects,
of the problem. To efficiently solve problems of practical interest, it is neces-
sary to study possible parameters and structural properties of the participating
objects and their influence on the complexity of the considered problems.

Trees and structures. With respect to the previous observations, the most
prominent classes of structures are those closely related to trees. In the history
of graph theory, trees have always been regarded as the most simple objects.
Trees, connected graphs without a cycle (see Figure 1), have simple structure
and hence many results can be proved quite easily for them.

Figure 1: Examples of trees (left and middle), and a cycle (right).

On the algorithmic side, trees are also one of the best-known data structures.
Many algorithmic problems can be solved efficiently by arranging or organizing
the considered data in a tree-shaped manner. Examples of algorithms making
essential use of tree properties can be found in any algorithm textbook.

The similarity of a structure to a tree is often measured by a parameters, such
as tree-width, path-width, branch-width, clique-width, or rank-width. Such
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a “width”-parameter measures how much an object differs from a tree, or in
other words how “thick” its “tree-like” structure is. While these parameters
can be used to analyze the structure of input objects in algorithmic problems,
the structural analysis can simultaneously serve as an accurate tool to design
efficient algorithms for solving the problem of interest. It is the main goal of
this paper to present the core ideas of recent developments in this promising
area and to provide basic techniques to use this toolbox in applications.

Partial k-trees. The above quoted and some related convenient properties of
trees were the reason to search for generalizations of trees in many application
areas and also to look for classes of structures with similar properties. An easy
way to generalize trees is to notice that a tree can be defined inductively from
a vertex by adding new vertices one by one, each next one adjacent to just one
previous vertex.

This idea led to the definition of k-trees already in 1968, see [BP68, BP69]
and [Ros74]. One can start with a clique on k vertices, which itself is defined
to be a k-tree, and then proceed via induction: If T is a k-tree, then one can
extend T by selecting a clique K of at most k vertices in T creating a new
vertex b adjacent to all vertices of K. (See Figure 2, where this principle is
demonstrated for k = 2.)

Figure 2: An illustration: Construction of a 2-tree.

Here k-trees can be viewed as a straight generalization of trees, which are
1-trees for parameter k = 1. Many algorithmic graph problems for graphs
have been proved to be solvable in polynomial or even linear time for k-trees
and for partial k-trees, i.e. subgraphs of k-trees, if the parameter k is fixed
(see [AP89, AP86b, AP86a]). An elimination order, the inverse of an order in
which the vertices are added when constructing a k-tree, can be used to find
efficient algorithms for many problems using a “dynamic programming” scheme.
This is demonstrated for instance in Section 1.3, through Algorithm 1.2. (Briefly
speaking, such an algorithm keeps certain information based on a strictly local
check of the structure, and processes it along a decomposition defined by the
elimination order.)

Tree-width. Partial k-trees can be used to define the first widely-known
“width” parameter, the tree-width:
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Figure 3: An example of a tree-decomposition of the cube graph of width 3,
where the vertex bags are listed at the tree nodes.

Definition. The tree-width twd(G) of a graph G is the smallest parameter k such
that G is a partial k-tree.

There is an equivalent definition given by Robertson and Seymour, originat-
ing in 1983 [RS83, RS86] in connection with their Graph Minors Project [RS85]
(see also Section 1.4): First, a tree-decomposition of a graph G is a pair (T,X )
where T is a tree and X is a family of vertex sets Xt ⊆ V (G), called the bags,
indexed by the vertices t of T such that the following hold: (i) for each edge
e of G there is a vertex t of T such that both ends of e belong to Xt; (ii) for
all vertices v of G the subtree of T induced by {t : v ∈ Xt} is connected (the
interpolation property); (iii) the union of all Xt in X equals the vertex set of
G. The width of a tree-decomposition (T,X ) is the maximum of |Xt| − 1 over
all t ∈ V (T ). The tree-width of a graph G is subsequently the minimum k such
that G has a tree-decomposition of width k.

Obviously, the two definitions are equivalent. Other possible ways of defining
tree-width include an indirect definition via an elimination ordering of graph
vertices, or a new “vertex-free” definition as in Section 6.1. In general, we
refer the reader to a current survey of tree-width and of principles to design
efficient algorithms for structures of bounded tree-width by Bodlaender and
Koster [BK07]. A sample tree-decomposition is given in Figure 3.

Besides the notion of tree-width, other closely related concepts have been
found and studied in this context, such as path-width or strong tree-width. The
definition of the former only differs in substituting the underlying tree by a
path (see [RS83, Pro84]), while in the latter case the bags of vertices of the
tree-decomposition have to be pairwise disjoint and the edges of the graph have
either both their ends inside a bag or there are two neighboring bags such that
the ends belong to the neighbors (see [See85b, See85a, See86] where such graphs
are called tree-partite graphs). The latter part of our survey is devoted to new
interesting additions in the area.

1.2 On the borderline of complexity: trees, grids, and

information flow

In almost all areas of algorithmic applications one can find huge amounts of
problems which do not seem to be solvable efficiently due to their high com-
plexity. (Hence, in most cases, heuristic algorithms are then used to approach
these problems of practical concern.) Often, the only indication that an effi-
cient solution is probably not possible, is a proof that the considered problem
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is NP-hard. However, since these problems have to be solved because of their
practical importance, one often tends to investigate whether a problem remains
difficult if the class of inputs is restricted to have a (potentially) more simple
structure. Hence, in the literature there are many hundreds of articles proving
that specifically selected NP-hard problems can be solved in polynomial time
for specially selected classes of input objects. It seems more beneficial to try to
describe large classes of problems in a logical or algebraic calculus, and to show
that all such problems can be solved more efficiently for structures with special
properties (see the monographs [BLS99, DF99]).

Unification of approaches. It is one of the goals of this section to find an
idea for a unified structural classification approach. We propose a heuristic
criterion which can give a first hint to classify some of the known approaches
and which can serve as a guideline to interesting open problems in this area. To
get a feeling how structural properties influence the complexity of a problem, we
look at the computational complexity of (some) decision problems for graphs,
i.e. problems where one just has to decide, whether a given graph has a property
or not. Examples of such properties are:

Planarity

Instance: A graph G.

Question: Does G have an embedding without edge-crossings in the Euclidean
plane?

Hamiltonian cycle

Instance: A graph G.

Question: Does G contain a Hamiltonian cycle, i.e. a subgraph of G which is a
cycle containing each vertex of G?

While the first problem can be solved in linear time for all graphs, the latter
one is a standard example for an NP-complete problem for which no polynomial
time solution has been found until now — and none is expected to exist.

Various problems have been investigated with respect to their complexity
in [GJ79, DF99, ACG+99, BLS99], and many of them are interesting for real
world engineering applications. There are different attempts to make a complex
decision problem tractable by restricting the class of problem instances to graphs
with a specific structure, say, to planar graphs or trees instead of the class of
all graphs. It is a surprising observation that a lot of NP-complete problems
remain NP-complete for almost all structural restrictions of the input, except
for structures that are closely related to trees. (See a scheme in Figure 4.)

For graphs with a structure “close to trees”, most practical algorithmic prob-
lems are solvable in polynomial time or even in linear time. Thus, the obvious
question is to search for a characterization of the borderline between these differ-
ent kinds of behavior by finding a structural reason for high and low complexity.
To shape the idea of such a criterion, it is useful to look at the basic idea to
prove that a given problem, say P, is NP-hard. The usual way to prove this is
to choose a known NP-hard problem P ′, and to show that P ′ has a polynomial
time reduction to the given problem P.
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Figure 4: The borderline between P and NP

Tiling problem. For our purposes we introduce a special “master” reduction
problem which has already proved to be useful in different applications.

Tiling

Instance: D = t0, . . . , tk, a set of square tile types together with two relations
H,V ⊆ D×D (the horizontal and vertical compatibility relations, respec-
tively), and a natural number n.

Question: Is there an n×n tiling, i.e. a function f : {1, . . . , n}×{1, . . . , n} → D
such that (a) f(1, 1) = t0, and (b) for all i, j : (f(i, j), f(i + 1, j)) ∈ H,
and (f(i, j), f(i, j + 1)) ∈ V ?

One can imagine the horizontal and vertical compatibility relations as “colors”
given to the tile edges. These colors are required to match with neighboring tiles.
There are many variants and applications of the tiling problem in complexity,
decidability, picture recognition and physics (see, for instance [AD96, Pap94]).
It is not difficult to generalize tilings to covering and coloring problems for ar-
bitrary structures with local conditions. For instance other geometric shapes
(e.g. triangles, hexagons or even irregular shapes) can be used instead of unit
squares. More generally the problem can be regarded as a graph coloring prob-
lem. Here the coloring of the vertices has to fulfill certain local conditions (i.e.
the colored neighborhood has to be of a previously specified isomorphism type).
For our applications the following result is important.

Theorem 1.1 ([Pap94, Ber66, Han74, AD96]). Tiling is NP-complete if n
is given in unary representation; it becomes NEXP-complete if n is given in
binary representation; the problem becomes undecidable if asking for existence
of an n× n-tiling for all n > 0, even when the origin constraint, condition (a),
is omitted.

Assume now that we are regarding a decision problem P for a class K of
input structures for which we are not able to find a polynomial time solution. In
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this case it is often conjectured that the problem is NP-hard. If we need a proof
for this conjecture the only thing to do is to find a polynomial time reduction of
the Tiling problem to the original problem, i.e. we have to find an algorithm
F which transforms each tiling problem (D,V,H, n) in polynomial time into an
input structure F ((D,V,H, n)) = G ∈ K such that: There exists an n×n-tiling
of (D,V,H) if and only if F ((D,V,H, n)) has the property P.

Usually, this is accomplished by showing that

(A) some structures G ∈ K contain a large grid-structure (in a definable way),
representing the positions of the tiles in the n× n-square,

(B) the local structure of these G permits coding of the tiles, and

(C) the local structure of G allows (via the problem definition) a “flow of
information” along the grid edges in a way that it can be verified whether
two neighboring tiles match together (horizontally and vertically).

Figure 5: A picture of the 7-grid graph Q7 on the left, and an illustration how
to define a tiling inside a problem P (using the grid-structure) on the right.

A simple illustration of this idea is shown in Figure 5. Detailed examples
can be found in [vEB83, Har83].

Reducing problem complexity. An analysis of the above idea leads us to
three canonical possibilities to reduce the complexity of a problem P on a class
K of structures; either by (A) avoiding the possibility to find or define large
grids inside the input structures, or by (B) preventing the possibility to code
the tiles, or by (C) restricting the flow of information between those parts of
the structure that code tiles.

This can be achieved by

• explicitly disallowing (A) input structures which “contain” large grids (in
a definable way), or by

• restricting (B) the local structure of the input in such a way that it looks
locally homogeneous (disallowing to code distinct tiles), or by

• simply limiting (C) the flow of information, say by limiting the “expressive
power” of the problem P on our structure.
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This criterion is of course not precise. However, even the imprecise formulation
of this approach (see also [SS02]) can serve as a good guideline to search for
more clearly stated approaches to reduce complexity, by giving the imprecise
notions a clear mathematical meaning.

For instance, stating the condition “disallow input structures with large
grids” in a more precise way as “there is a fixed integer k such that the input
graph does not have a k-grid Qk (Figure 5) as a minor” leads to the class of
graphs of bounded tree-width, see [RS91] and Theorem 1.4. This theorem, and
also its newer generalizations to matroids [GGW07] (Section 3.4) or to vertex-
minors [Oum05c] (Section 4.2), provide the structural basis to explain why the
exclusion of a containment of large grids leads to problems with “tree-shaped”
input structures such as those of bounded tree-width.

Furthermore, ad (B), a “homogeneous local structure” of input instances
can be formally achieved by considering, for instance, graphs of bounded clique-
width as discussed in Chapter 4. Another possibility, ad (B), is when input
structures are defined by hierarchical expressions, for which several algorithmic
problems can be solved efficiently, see [HLW92, Len82, Len89, Len87, LW92,
LW88, LW87, See07, Wag84]. These results have interesting applications in the
area of VLSI circuits [Len86, Len90]. One of the most prominent developments,
which one could at least partially subsume to branch (B) are graphs generated
by graph grammars (see e.g. [CE95, CER93, DKH97, GM03, Eng97, Kim97]),
which are also closely related to clique-width (see [CM00, CM02]).

Ad (C), “limiting the flow of information”, here large grids and inhomoge-
neous structures are allowed, but the flow of information (“communication”)
between different parts of the structure is restricted. Problems expressible by
first order logic are examples where such communication is inherently forbid-
den. Such problems are solvable in polynomial time over all finite structures,
and can be solved in linear time for structures of finite degree [See96, Lib04]
and for structures of locally bounded tree-width [FG01, FG04].

A further strong general result, in this context, can be obtained in combina-
tion with (A). If we restrict the input to graphs of bounded tree-width, and only
consider problems definable in simple extensions of monadic second-order logic,
then we get the ideas presented in Chapter 2 and [ALS91, BPT92, Cou92a,
CM93, CMR00]. These ideas explain why the majority of practical algorithmic
problems can be solved in polynomial time or even linear time for structures
close to trees.

Related to our (A,B,C)-approach there are many open problems. This idea
needs further refinement and certainly a more precise reformulation to transform
it into a collection of more precise questions and problems. Other ways to code
tilings have to be considered (arbitrary polynomial time transformations). Even
though it represents a heuristic approach that has not reached the state of full
maturity yet, its rough ideas can still guide the reader through our topic of
“width” parameters and efficient algorithm design quite naturally. Some of these
ideas, especially ad (A), will be refined by discussing other width parameters
and their applications in the subsequent parts of this paper.
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1.3 Example: Dynamic programming approach

The natural question a computer practitioner would like to ask at this point
is; how can one practically use a “tree-shaped” structure (or bounded “width”)
of, say a graph in designing more efficient algorithms? To give an illustrating
answer, we present two really simple examples of applying the dynamic program-
ming technique in such situations, for solving problems which are otherwise very
hard (NP-complete).

Independent set for bounded tree-width. A set of vertices in a graph is
independent if no two of them are adjacent. We also refer to the definition of tree-
width (Section 1.1 or [BK07]). Imagine now a given tree-decomposition (T,X ) of
a graph G; and choose an arbitrary root of T . A natural dynamic programming
scheme processes the bags X of vertices of G in the decomposition from leaves to
the root, and takes advantage of the fact that only restricted information about
vertices in the current (fixed-size) bag has to be kept for further processing up
in the tree. Note that the size of T is linear in the number of vertices of G.

Algorithm 1.2. Finding the size of the largest independent set in a graph G
of tree-width at most fixed k, assuming a rooted tree-decomposition is given, in
time O(2k · n).

We define functions IX on the subsets of X for each bag X ∈ X of the
decomposition as follows: Let Y ⊆ X, and let W ⊆ V (G) denote the union of
X and all the bags below X in the decomposition T . Then IX(Y ) equals the
maximum cardinality of an independent set S ⊆ W in G such that S ∩X = Y .
(Note that IX(Y ) = 0 if Y itself is not independent.)

• For each leaf bag X of the decomposition we can compute IX in time
O(2k) by brute force.

• Suppose that s is a node of T , having children t1, . . . , tm. Let Xi be the
bag at ti in T , Xs be the bag at s, and Wi ⊆ V (G) be defined as above.
By the interpolation property of a tree-decomposition, Wi ∩Wj ⊆ Xs for
i 6= j, and moreover there are no edges in G between Wi \Xs and Wj \Xs.
Hence it is enough to combine the information of IXi

, i = 1, . . . ,m to
construct IXs

in time O(2k ·m).

• Finally, we extract the size of the largest independent set max{IXr
(Y ) :

Y ⊆ Xr} from the root bag Xr.

Chromatic number for cographs. A k-coloring of a graph G is an assign-
ment of colors numbered 1, 2, . . . , k to the vertices of G in such a way that no two
adjacent vertices get the same color. A graph is a cograph if it can be composed
from single vertices by means of the following recursive definition (a composition
scheme): A disjoint union of two cographs is a cograph again, and so is a dis-
joint union with added all edges between the two graphs. See also Section 4.3.
Information restriction in this case is achieved by observing that, whenever two
parts of a cograph are merged together at a node of the composition scheme,
their vertices become mutually equivalent in all further operations.

Algorithm 1.3. Finding the minimum number of colors k needed to k-color a
cograph G with a given composition scheme in time O(n).

We simply proceed along the composition scheme from singletons up to G.
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• A single vertex requires one color.

• If a subgraph H is composed as a disjoint union of H1 and H2 which
require c1 and c2 colors, respectively, then H needs exactly max(c1, c2)
colors.

• If, similarly, a subgraph H is composed as a disjoint union of H1 and H2

with adding all edges between, then H needs exactly c1 + c2 colors.

Bounded width or a grid. Finally, we mention that a dynamic approach
with restricted decomposition can be sometimes successfully used in general
cases. Consider for instance the following advanced idea: We are asking whether
it suffices to remove k vertices from a graph G to make it acyclic (the feedback
vertex set problem). If the tree-width of G is large enough (in k), then G
contains a large grid (see Figure 5 and further Theorem 1.4) which itself defines
more than k vertex-disjoint cycles in G, and so the answer is NO. Otherwise,
we can construct a tree-decomposition of G of bounded width, and then use a
dynamic programming scheme on the decomposition to find the right answer.

1.4 Graph minors in a shortcut

The aforementioned Graph Minors Project of Robertson and Seymour [RS85,
RS83, RS84, RS86, RS91, RS95, RS04] undoubtedly presents a milestone in
modern structural graph theory. (See [http://www1.cs.columbia.edu/~sanders-
/graphtheory/research/05C83.html].) Because of its strong points of concur-
rence with our subject we think it deserves a closer sketch here. The grand
nature of the whole project is probably best illustrated by the fact that the first
paper of the series (of 23 currently out) has been published in 1983 while the
most recent ones are being refereed and published only these days. Each of the
papers delivers a number of deep mathematical results. We also refer to a recent
survey [Lov06] of Lovász on this topic. For our audience it is most important
to understand their deep and vast (sometimes really unexpected) algorithmic
applications.

Minors in graphs. The Graph Minors Project is centered around solving
an old conjecture of Wagner, that finite graphs are “well-quasi-ordered” by the
minor inclusion. A graph H is a minor of a graph G if H is obtained from G by
deleting vertices and by deleting or contracting edges. Contracting an edge e in
a graph means to identify the ends of e into one vertex (with all their incident
edges) and removing e, see Figure 6. Notice that if H or a subdivision of H are
subgraphs of G, then they are also minors of G, but the converse is not always
true.
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Figure 6: What results by contracting the dashed edges, and then deleting the
hollow vertices, in a graph.
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It turns out that various graph properties are inherited by all minors of
a graph, such as being acyclic, being series-parallel, or being planar. Such
properties are called minor-closed. Importantly, the “width” parameters we
study are usually minor-closed, and in relation with the material of Section 1.2
it holds:

Theorem 1.4 (Robertson and Seymour [RS91]). A class K of graphs has uni-
versally bounded tree-width if and only if there is k such that the grid Qk is not
isomorphic to a minor of any graph in K.

Moreover, many graph properties can be described by forbidding minors in a
certain list of graphs, called the forbidden minors. For instance, the Kuratowski-
Wagner theorem states that a graph G is planar if and only if G has no minor
isomorphic to K5 or K3,3, or a graph G is series-parallel if and only if K4 is not
a minor of G. The celebrated result of Robertson and Seymour [RS04] can be
stated as follows:

Theorem 1.5 (Robertson and Seymour [RS04]). Every minor-closed class of
finite graphs can be characterized by a finite list of forbidden minors.

Minors and efficient algorithms. There is yet another very deep outcome of
the Graph Minors Project—that testing presence of a minor in a graph is fixed-
parameter tractable. (Obviously, testing whetherG contains a minor isomorphic
to H with both G,H on the input is NP-hard since one can test, say, the
existence of a Hamiltonian cycle in G in this way.)

Theorem 1.6 (Robertson and Seymour [RS95]). For each fixed H, there is
an algorithm testing in time O(n3) whether an n-vertex graph G has a minor
isomorphic to H. Hence, from Theorem 1.5, every minor-closed property of
graphs can be decided efficiently in cubic time.

The last conclusion is incredibly strong, but somehow impractical. First,
the lists of forbidden minors are usually very long even for simple properties,
and there is no algorithmic way how to construct them in general. Second,
even if the forbidden minors are eventually found, the algorithm for minor test-
ing contains such a large “hidden constant” that it is not usable for practical
implementation. Hence the importance of Theorem 1.6 is mainly theoretical.
(Imagine, for instance, that someone would manage to prove NP-hardness of
some minor-closed graph property!)

Yet there are many algorithmic ideas in the whole project that are practically
usable, for instance those associated with graphs drawn on surfaces, or with
graphs of bounded ???-width (such as tree-width). We shall present some of the
latter ideas throughout our survey.

2 Role of Logic in Width Decompositions

Mathematical logic can be considered as one of the building blocks of modern
computer science for developing the propositional and predicate calculi as ways
to formally describe and handle problems in mathematics and also in a digital
world. Moreover logic has created the notion of an algorithm which is the funda-
mental notion of modern programming. Of special importance for our problems
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on bounded “width” instances is a calculus denoted as monadic second-order
(MSO) logic. It is the objective of this chapter to give a thorough introduction
into this calculus and to present some key algorithmic results in this area.

2.1 Second-order logic

Describing problems in a formal calculus and trying to find an efficient method
of solving the problems described in this calculus sets contradicting goals. On
the one hand, the calculus should have a large expressive power to be able to
express as many problems as possible, and on the other hand its expressive
power should not be too large, so that the calculus has a nice model theory
and that it is possible to find efficient solutions for all the problems in it. It is
commonly accepted that the complexity class NP (containing those problems
for which a positive answer can be verified efficiently) contains a large number
of problems that are of practical interest. To identify the right language, the
following result is important.

Theorem 2.1 (Fagin [Fag74], see also [Lib04, Imm98]). NP ⊆ ∃SO. That
means each problem Q in NP can be described in the following way: G has
property Q if and only if G |= ∃X1 . . . ∃Xnϕ, for a formula ϕ of the usual
first-order predicate calculus (FO). Here X1, . . . , Xn are variables for arbitrary
finite-ary relations.

We assume the reader is familiar with the most basic notions of syntax
and semantics of first-order or predicate logic, to be found in any elementary
textbook of logic, for instance [EFT94, Lib04, Bar77].

This result states that all problems in NP can be expressed by asking for
the global existence of certain relations X1, . . . ,Xn, so that these relations have
a certain property ϕ over the structure G which can be expressed in first order
predicate logic FO. This is one of the key results of descriptive complexity theory
(see [Imm87, Imm98]), which tries to capture complexity classes, like P or NP,
through the expressive power of special logical languages. We call a decision
problem Q L-definable over the class K of structures if there is an L-formula
ϕQ so that, for all structures G ∈ K, the following equivalence is true: G has
the property Q if and only if G |= ϕQ.

With respect to our master problem, to study the trade-off between struc-
tural, descriptional and computational complexity, we have to impose some
restrictions on the classes of structures and on the languages (The master prob-
lem is unsolvable in a general setting). Considering the topic of this paper,
the first decision — the structural one — has already been made. For a width
parameter w (which will later be specified as, say, the tree-width), a class K of
structures is of (universally) bounded w-width if there is a positive integer k so
that each structure G ∈ K has w-width ≤ k.

In the next step, we select a logical calculus. We know from Theorem 2.1,
that ∃SO is too strong for our purpose, since NP -hard problems exist for very
simple trees (the band-width problem for caterpillars with a hair length ≤ 3, for
example [Mon86]). Hence we need a language with a more restricted expressive
power. The main problem with ∃SO is its ability to quantify over arbitrary
relations. Hence we should restrict our attention to unary or monadic relations,
or equivalently to sets. This leads to the calculus which is suitable for large
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classes of applications and which is the basis for many generalizations — the
monadic second-order logic (MSO logic) [EFT94, EF99, Gur85]:

Definition. MSO logic is an extension of the usual first order logic (FO) by
variables (usually capital letters X1,X2, . . . ) running over subsets of the domain,
and by the relational symbol ∈ for membership. The usual definition of the
semantics for FO-formulas is extended by the clauses

• G |= ∃Xϕ(X) ←→ there exists a subset A of the domain of G so that
G |= ϕ[A],

• G |= ∀Xϕ(X) ←→ for all subsets A of the domain of G: G |= ϕ[A] holds.

G is an arbitrary structure for ϕ, and ϕ[A] results from ϕ(X) by replacing the
variable X with a constant, which is interpreted as the set A.

A decision problem Q is an MSO-decision problem (short: MSO-problem)
over a class K of structures if there is an MSO-formula ϕQ so that G has the
property Q if and only if G |= ϕQ for all structures G ∈ K.

2.2 MSO logic on graphs

An example of a simple MSO-property is the property that a graph can be
properly colored with two colors (no two adjacent vertices receive the same
color). This can readily be expressed by:

∃X1∃X2

[

∀x (x ∈ X1∨x ∈ X2)∧∀x∀y
(

edge(x, y)→ ¬(x, y ∈ X1∨x, y ∈ X2)
)]

.

Colors are represented here as sets X1,X2, hence the existential quantifier block
at the beginning states the existence of a coloring. The first part of the formula
states that each vertex is colored, while the second part expresses that for each
pair x, y of adjacent vertices their color has to be different. One can readily
extend to express the property that a graph can be colored with three colors,
which is an NP-complete problem on all graphs: ∃X1∃X2∃X3

[

∀x (x ∈ X1∨x ∈

X2 ∨ x ∈ X3) ∧ ∀x∀y
(

edge(x, y)→ ¬(x, y ∈ X1 ∨ x, y ∈ X2 ∨ x, y ∈ X3)
)]

.
Another MSO-property is the connectivity of a graph. A graph G is con-

nected if and only if the following MSO-formula is true on G: ∀X∀Y
[

∃x ∈

X ∧∃x ∈ Y ∧
(

∀x(x ∈ X ∨x ∈ Y )∧¬∃x(x ∈ X ∧ x ∈ Y )
)

→ ∃x∃y
(

x ∈ X ∧ y ∈

Y ∧ edge(x, y)
)]

. This formula states that for every nonempty partition of the
vertices of G into X,Y , there is an edge connecting a vertex from X with a
vertex from Y . Connectivity is an MSO-property which has ben proven not to
be expressible in first-order logic, i.e. it is not an FO-property.

Two kinds of graphs. In all these examples we assumed that graphs are
coded as adjacency structures, i.e. with a binary relation edge coding the ver-
tices’ adjacency. There is another way to code graphs, using two-sorted struc-
tures (V,E, I), where V represents the vertices, E represents the edges and I
represents the incidence relation between vertices and edges. For this kind of
structure a suitable monadic second-order logic can be built, too. Besides the
usual variables for vertices and sets of vertices, it also allows variables for edges
and sets of edges, and contains a symbol inc for the incidence relation. All the
other logical parts, like connectives and quantifiers for all kinds of variables and
the corresponding semantics are unchanged. To distinguish both kinds of graph
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logic, we denote the first as MS1 and the latter as MS2. (Of course, the real
difference is not in logic, but in the classes of structures that are considered.)

It turns out that MS2 has a higher expressive power than MS1. In MS2 for
instance you can speak about arbitrary subgraphs H of a graph G by selecting
the vertices and the edges of H as subsets, which is not possible in MS1. (MS1

can only speak about induced subgraphs; for instance, any MS1 expression on
complete graphs is trivial, since only complete substructures are considered,
whereas MS2 can select an arbitrary subset of edges.) Using this idea, it is easy
to express in MS2 the existence of the edge set of a Hamiltonian cycle C in a
graph G (each vertex of C is of degree two, C is connected, and C covers all
vertices of G). Courcelle has shown [Cou90, Cou94b] that this property cannot
be expressed in MS1.

In particular, the property that a graph H is isomorphic to a minor of an
arbitrarily given graph G is MS2-expressible by a formula ϕH : ϕH only needs
to state that for each vertex v ∈ V (G), there is a connected subgraph Xv of G,
so that all these subgraphs are pairwise disjoint, and for each edge e = uv ∈
E(H) there is an edge e′ in G so that e′ connects Xu with Xv. (See [Die05].)
Consequently, each property definable by exclusion of a finite number of minors
is expressible in MS2, and hence each class of graphs closed with respect to
taking minors can be defined as an MS2-property via the structural result of
Robertson and Seymour in Theorem 1.5. This fact was used in [APS91] to show
that for MSO-definable classes of graphs of bounded tree-width, the minimal
forbidden minors can be computed in linear time.

In addition to the problems presented here, many other NP-hard decision
problems for graphs and networks are expressible as MS1 or MS2 properties
(see [ALS91, BPT92, Cou92a, Cou97, CMR00, CMR01]).

2.3 Solving MSO properties efficiently

So far, we have demonstrated that the monadic second-order calculus has a
sufficiently high expressive power, and now we have to think about solving
problems in such a calculus in an efficient way. We are going to use the so-called
interpretability method (Figure 7) as the key tool. This method is basically a
translation of formulas ϕ of one language L into formulas ϕI of another language
L′, combined with an efficient transformation of the structures corresponding
to these languages. The translation starts with the atomic formulas of the first
language L, which are substituted by formulas of the second language L′. One
then proceeds via induction on the structure of formulas (see [Rab65, ALS88,
ALS91, See92] for details). The L′-formulas, which are used in the interpretation
to define the atomic formulas of L, can be used in a canonical way to define an
L-structure HI in an arbitrary L′-structure H.

Such a translation is called an O(f(n))-interpretation of a class K of L-
structures into a class K

′ of L′-structures if there is an algorithm A transforming
each structure G ∈ K in time O(f(|G|)) into a structure A(G) ∈ K

′ in such a
way that G ∼= A(G)I . This last condition guarantees that the switch from one
language to the other via interpretability is truth-preserving. If f(n) = n, we
speak of linear-time interpretability.

Lemma 2.2 (Rabin [Rab65]). For each sentence ϕ of L and each structure
G ∈ K

′ it holds: G |= ϕI if and only if GI |= ϕ.
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ϕ ∈ L

G ∈ K

I
−−−−−→

ϕI ∈ L′

H ∈ K
′

HI ≃ G
I

←−−−−− H

Figure 7: An illustration of the concept of an interpretation I.

We cannot give a formal description of this method here due to space re-
strictions, but we refer interested readers to the references. The interpretability
method was originally developed to prove the decidability or undecidability of
theories in mathematical logic by Rabin [Rab65, Rab77]). Compton and Hen-
son [CH87] used it to deduce lower bounds for the complexity of theories. It has
later been adapted to linear and polynomial time computable decision and opti-
mization problems in [ALS88, ALS91, See92]. See also [CM93, Cou94a, Cou97],
where a variant of it is called a transduction. A key result for interpretability is
the following:

Theorem 2.3 ([ALS88, ALS91]). Let L, L′, K and K
′ be as described above. If

there exists an O(f(n))-time interpretation of K into K
′ with respect to L and

L′, and if each L′-definable problem for K
′ can be solved in time O(f(n)), then

each L-definable problem can be solved in time O(f(n)).

The reason for usefulness of this method is that one does not have to look
for a special algorithm for each special problem P defined by a formula ϕ in a
language L. Instead, one just shows that the regarded class K of structures is
efficiently interpretable into another class K

′ of structures with respect to L and
a corresponding language L′, for which efficient algorithms are already known.

We build on the following result:

Theorem 2.4 (Courcelle [Cou92a], also [ALS88, ALS91], implicitly [TW68]).
Each MSO-problem can be solved in linear time for the class of binary trees.

Here, a slightly modified variant of trees, called binary trees, is used: The
full binary tree is the structure ({0, 1}∗ , sc0, sc1), where {0, 1}∗ is the set of all
finite words over the alphabet {0, 1}, and the successor functions sc0 and sc1
are defined as sc0(w) = w0 and sc1(w) = w1 for each word w ∈ {0, 1}∗. Then
a binary tree is a restriction of the full binary tree to an arbitrary set of words
Σ ⊆ {0, 1}∗, which has to be closed under initial segments (see Figure 8).

The basic idea to prove Theorem 2.4 is to use the result of [TW68]; for
each MSO-formula ϕ there is a constructible tree-automaton Aϕ so that for
each binary tree T , T |= ϕ if and only if Aϕ accepts T . Speaking informally, a
tree-automaton is a finite automaton working on a tree in such a way that it
starts from the leaves of the tree, and computes on its way down to the root
λ an evaluation of the vertices of the tree with elements from its finite state
set. This evaluation is called a run of the automaton. If the state computed
for the root is in the set of final or accepting states, the automaton accepts the
tree, otherwise it does not accept it. In a way this process follows the scheme
of dynamic programming, and a run can easily be emulated in linear time.
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Figure 8: An example of a binary tree with root λ.

Now we combine Theorem 2.4 with a suitable linear-time interpretation,
Theorem 2.3. This is in fact a combination of the translation of the problem
description in MSO logic (from a description for the input graphs to a corre-
sponding description for binary trees - see [ALS88, ALS91]), with a construction
of the tree-decomposition for an arbitrary graph of bounded tree-width in linear
time (see Bodlaender [BK07]). All these ideas together lead to a proof of the
following theorem, explaining why all MSO-problems (MS1, to be accurate) can
be solved in linear time via a dynamic programming scheme in these settings:

Theorem 2.5 (Courcelle [Cou92a], also [ALS88, ALS91]). Every MSO-problem
can be solved in linear time for an arbitrary graph class of universally bounded
tree-width.

Extensions of MSO properties. Theorem 2.5 can easily be generalized to
other extensions of monadic second-order logic, to EMSO-problems which are
more adapted to optimization problems for evaluated graphs and networks, and
to counting monadic second-order logic. We first describe these EMSO-problems
which have been introduced in [ALS88, ALS91]. Note that we consider graphs
as two-sorted incidence structures (i.e. we refer to the stronger language MS2).

Let K be a class of structures, and assume that the regarded structures are
additionally provided with m functions fG

1 , . . . , f
G
m, assigning vertices or edges

with rational numbers. These evaluations have canonical extensions to subsets
A of the domain (in case of graphs to sets of vertices or edges) by defining
fG

i (A) =
∑

a∈A f
G
i (a).

From these functions, arithmetic expressions can be built using the opera-
tions +,− and ×. Linear expressions are built by using + and − only. These ex-
pressions are denoted as (linear) evaluation terms. A (linear) evaluation relation
results from comparing such (linear) evaluation terms with rational constants
via =,≤ or <.

Definition. A linear EMSO-problem over K is a decision problem, definable for
all structures G ∈ K, in the form “there are subsets A1 . . . Ak of the domain of G
such that G |= ϕ[A1, . . . , Ak] and ψ(A1, . . . , Ak) holds”, where ϕ is an arbitrary
MSO-formula for K and ψ is a Boolean expression built from linear evaluation
relations.
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These problems are called LinEMSO-problems over K. EMSO-problems over
K are defined in the same way by dropping the word linear.

Definition. A problem is a (linear) EMSO-optimization problem over K

( (Lin)EMSOopt for short) if it can be stated as “max
{

ψ1(A1, . . . , Ak) : G |=
ϕ[A1, . . . , Ak] and ψ2(A1, . . . , Ak) holds, where A1, . . . , Ak are subsets of the do-
main of G

}

”. Here ψ1 is a (linear) evaluation term, ψ2 is a (linear) evaluation
relation and ϕ is an MSO formula for the language corresponding to G.

The operator min can also be allowed in such problems, since it is expressible
in terms of maximization and negation which both are allowed in evaluation
terms. The LinEMSOL optimization problems over K, introduced in [CMR00],
essentially follow the definition of linear EMSO optimization problems from
[ALS88, ALS91], but restrict the constants to integers and do not allow arbitrary
evaluation relations.

A problem to compute the cardinality
∣

∣{(A1, . . . , Al) : G |= ϕ [A1, . . . , Al]}
∣

∣

for an MSO formula ϕ(X1, . . . ,Xl) and a given structure G ∈ K, is called an
MSO enumeration problem over K (MSOenum). Furthermore, CMSO-properties
are the properties formulated in counting monadic second-order logic (CMSO
logic), which was introduced in [Cou92a] and which extends MSO logic by al-
lowing the counting of the cardinality of sets (of vertices or edges) modulo k
for positive integers k. We will write LinECMSOopt, ECMSOopt, ECMSO,
CMSOenum if CMSO logic is used instead of MSO.

The following theorem is the key result for a general reduction of algorithmic
problems on graphs, the structure of which is closely related to trees:

Theorem 2.6 (Arnborg, Lagergren, and Seese [ALS88, ALS91]). For each nat-
ural number m, every class K of graphs of tree-width bounded by m is evaluation-
preserving linear-time interpretable into the class of binary trees. Hence each
MSO-, LinEMSO-, LinEMSOopt-, MSOenum-, LinECMSO-, LinECMSOopt-,
and CMSOenum-definable problem can be solved in linear time for graphs in K.

This approach carries the advantage that it is sufficient to describe a prob-
lem in a suitable language to solve it. The algorithm for the solution then
comes out automatically from translating the formulas describing the prob-
lem into equivalent formulas describing an equivalent problem for binary trees
(via interpretation), and solving the problem via dynamic programming. This
result originally was proven for graphs using a slightly different terminol-
ogy in [ALS88, ALS91]. But literally the same proof can be used to prove
Theorem 2.6. One additional remark must be added for the CMSO cases:
In [Cou92a] Courcelle stated that CMSO logic is provably a strict extension
of MSO logic, since it is not definable in pure MSO for arbitrary structures.
But nevertheless, CMSO-problems for structures of bounded tree-width can
be reduced to MSO-problems for binary trees (also see [See96]), since CMSO
logic is definable in MSO logic for binary trees. For graphs of bounded tree-
width a proof in [Cou92a] shows that every MSO- and CMSO-problems can
be solved in linear time. This approach basically generalizes many approaches
from [TNS82, SS89, Wim87, BLW87, Bod88, FL89, HR89, HR90].

Additional remarks. The results of this chapter give a theoretical expla-
nation to why so many practical problems for input structures without large
grids (cf. Section 1.2) can be solved efficiently: graphs without large grids have
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bounded tree-width (Theorem 1.4), and hence we can usually apply Theorem 2.6
to find solutions. Moreover, the proof ideas using the relation to tree automata
explain why a dynamic programming scheme on a tree-decomposition is the best
choice for the practical implementation of these solutions.

It is surprising that these ideas even work for other classes of structures which
do contain large grids in the usual sense, but which still have “no large grids”
with a different meaning of containment. For instance, the usual grid minors
(in the meaning of Robertson and Seymour) are generally not MS1-definable,
but there is another recent notion of a containment (a vertex-minor) which is
CMS1-definable, and it corresponds to bounding “clique-width / rank-width” of
a graph. This is further discussed in Chapter 4.

3 Graph Branch-Width and its Generalizations

One should surely note that the Graph Minors Project [RS84, RS85] (see Sec-
tion 1.4) of Robertson and Seymour, which first formally used the graph tree-
width notion, brought also a new definition of a so-called branch-width [RS91].
These two width notions on graphs are closely related to each other (Theo-
rem 3.1), and they both have their advantages. Undoubtedly, it is the tree-
width that got much more attention among computer scientists over the past
two decades, which we consider a pity. The main purpose of this chapter is to
show the beauty, advantages, and extensions of the branch-width parameter.

3.1 Connectivity and branch-width

We gradually introduce the notion of branch-width from a simple view on graphs
to a general abstract definition. We briefly recall that the notion of tree-width
is related with an “ordinary view” of graph connectivity considering (the size
of) vertex cuts separating components: The bag at a tree-decomposition node
forms a vertex cut separating vertices appearing in different branches of the
node. (This is the crucial property that allows us to design efficient dynamic
algorithmic schemes along tree-decompositions.)

Considering the branch-width, it is helpful to show the readers another,
very similar though not exactly the same, view of connectivity in graphs. Now
instead of asking for a vertex cut separating two parts of a graph from each
other, we look for a partition of the graph edges (called an edge separation)
such that the two parts share small number of vertices in common (called the
guts of the separation). Mathematically, let G be a graph with the edge set E,
and consider a separation (F,E \ F ) of the edges. (Of course, the separation
is symmetric and it is determined by one of its sides, say F .) The connectivity
value λG(F ) of the separation is defined as the number of vertices of G that are
incident both with an edge in F and with an edge in E \ F .

Branch-decompositions. A tree is sub-cubic if every node has degree 1 or 3.
Imagine that the edges of a graph G are “decomposed” into the leaves of a
sub-cubic tree; precisely each leaf of the sub-cubic tree T holds one edge of G.
Such is called a branch-decomposition T of G. Then an edge x of T divides T
into two components, and hence x defines a separation (X,E \X) of the edges
of G where X are the edges mapped to one component of T − x and E \X to
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width(x) := λG(X) = λG(E \X) = 4

Figure 9: An illustration of the definition of a branch-decomposition.

the other one. We say that the width of the edge x in T is the connectivity value
λG(X) = λG(E \X). See Figure 9. The width of whole T is the maximum over
widths of its edges.

The branch-width bwd(G) of a graph G is the minimum width over all
branch-decompositions of G. Some properties of branch-width are summarized
here [RS91]:

• Branch-width of G is 0 if and only if G has no component with more than
one edge.

• Branch-width of G is at most 1 if and only if G is a forest of stars.

• Branch-width of G is at most 2 if and only if G is a “series-parallel”
graph. Series-parallel graphs can be characterized as graphs with no minor
isomorphic to K4, and they are exactly graphs of tree-width at most 2.

• The same definition of branch-width can be immediately applied to hyper-
graphs (i.e. structures in which an edge may have more than two vertices),
and many of the properties remain true.

Moreover, the basic result relating branch-width to tree-width is proved
in [RS91, Theorem 5.1]. We present a simplified formulation:

Theorem 3.1 (Robertson and Seymour [RS91]). Let G be a graph of tree-width
t and branch-width b > 1. Then

b ≤ t+ 1 ≤

⌊

3

2
b

⌋

.

Sketch of proof. Let us have a branch-decomposition of G of width b. For a
node u of the decomposition, denote by W 1

u ,W
2
u ,W

3
u ⊆ V (G) the guts of the

separations displayed by the three incident edges to u. It is easily seen that a
vertex of G occuring in one of W 1

u ,W
2
u ,W

3
u has to appear also in another one

of those, and hence the cardinality of Bu = W 1
u ∪W

2
u ∪W

3
u is at most ⌊3b/2⌋.

So the tree-decomposition formed by the same tree with the bags Bu has width
at most ⌊3b/2⌋− 1. In the other direction, start with a tree-decomposition of G
of width t. The decomposition can be “split” by duplicating bags to get a sub-
cubic underlying tree, with one leaf for each edge of G. That, in turn, provides a
branch-decomposition of G of width at most t+1 by the interpolation property.
�
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Figure 10: A branch-decomposition of width 4 of the complete graph K6.

It is useful to understand why the both bounds are best possible in Theo-
rem 3.1: For the right-hand inequality, the complete graph K3r has tree-width
3r−1 and branch-width only 2r (using a decomposition sketched in Figure 10).
On the other hand, the complete bipartite graph Ks,s has branch-width s and
tree-width also s. A little modification — removing the edges of a perfect match-
ing from Ks,s results in a graph of tree-width s− 1 and branch-width s if s > 2.
So also the left-hand inequality is generaly best possible.

Branch-width of connectivity functions. One of the attractive properties
of branch-width is that it can be readily extended to all combinatorial structures
possessing a reasonable measure of connectivity. We make this abstract idea
mathematically precise now.

Let E be a finite set and λ be an integer-valued function defined on the
subsets of E. Then, following Robertson and Seymour [RS91, Section 3], we say
that λ is a connectivity function if, for all X,Y ⊆ E,

1. λ(X) = λ(E \X) (symmetric), and

2. λ(X) + λ(Y ) ≥ λ(X ∩ Y ) + λ(X ∪ Y ) (submodular).

Note that a graph G has a natural connectivity function λG defined on edge
separations above. It is easily seen that λG is a connectivity function in the
sense defined here.

Definition. Let λ be a connectivity function on a ground set E. A branch-
decomposition of λ is a pair (T, ω) where T is a sub-cubic tree, and ω is a
bijection of E onto the leaves of T . For an edge x of the tree T , we denote by
Tx one of the connected components of T − x and by X = ω−1

(

V (Tx)
)

, i.e.
X are those points of E that are mapped to the leaves of Tx. We say the x
displays the partition (X,E \X), and define the width of x as λ(X). (Figure 9.)
The width of the decomposition (T, ω) is the largest width over all edges of T ,
and the smallest width over all branch-decompositions of λ is the branch-width
bwd(λ) of the function λ. If |E| ≤ 1, then we define branch-width of λ as λ(∅).
(Notice that λ(∅) may be nonzero.)

3.2 Properties and advantages

Recall (Section 1.4) that a graph H is a minor of a graph G if H is obtained
from a subgraph of G by contracting edges. Likewise tree-width, branch-width
is also a minor-monotone property as we sketch for an illustration:

Proposition 3.2. bwd(H) ≤ bwd(G) for all minors H of a graph G.
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Sketch of proof. It is clearly enough to prove the claim in the cases when H
results by deleting, or by contracting, one edge e in G. We use the tree of the
decomposition of G, but with the leaf of e removed (and its neighbor changed
to an edge). One may easily verify that no separation displayed by this branch-
decomposition of H contains more vertices in its guts than the corresponding
displayed separation in G. �

Hence, in particular, there is a finite list of obstructions for a graph having
branch-width at most k for each k by Theorem 1.5. It is an easy exercise to find
the obstructions for k = 0, 1.

K5 Q3 O6 V8

Figure 11: The four forbidden minors for the graphs of branch-width at most 3.

Graphs of small branch-width. The graphs of branch-width 0, 1 or 2 are
quite easy to describe, as we have seen in Section 3.1. Thus the smallest non-
trivial value for branch-width of a graph is 3. Quite a lot is known nowadays
about structure of the branch-width-3 graphs. First, they can be character-
ized by just four simple obstacles — the forbidden minors in Figure 11. The
obstacles appear published first in [BT99], but they have been known already
to Dharmatilake, Chopra, Johnson, and Robertson [Dha94]. Second, [BT99,
Theorem 6] a graph has branch-width at most 3 if and only if it has tree-width
at most 3 and contains no minor isomorphic to the cube Q3. Hence we may re-
gard the cube as the “minimal” graph showing a nontrivial structural difference
between the notions of tree-width and branch-width.

Figure 12: [BT99] Reduction rules for the graphs of branch-width at most 3.
(Hollow vertices have all neighbors shown, and they are removed in the reduc-
tion.)

Third, Bodlaender and Thilikos have given [BT99, Theorem 9] a small set
of reduction rules (Figure 12) that fully characterizes all the graphs of branch-
width at most 3, and one can construct a branch-decomposition for such graphs
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in linear time. Naturally, one would like to extend such nice structural charac-
terizations to higher values of branch-width. Unfortunately, only weaker partial
results in the case of branch-width 4 are known so far, for instance, see [Rig01]
for a set of reduction rules and some planar obstructions. Interesting new struc-
tural results that lead to an exhaustive generation algorithm for all maximal
branch-width-k graphs appear in [PPT06].

General algorithms. Testing if the branch-width of a graph is at most k is
NP-complete for k on the input [ST94, Theorem 8.10]. On the other hand, graph
branch-width is a fixed-parameter tractable property [BT97], but the algorithm
is not easy and likely not practically usable:

Theorem 3.3 (Bodlaender and Thilikos [BT97]). For each fixed k, there is
a constructible algorithm that in linear time checks whether a given graph has
branch-width at most k, and, if so, outputs an optimal branch-decomposition.

Miraculously, for planar graphs there is an algorithm [ST94, Algorithm 7.3,9.1]
for computing the branch-width in fully polynomial time.

Theorem 3.4 (Seymour and Thomas [ST94]). There is an algorithm that,
given a planar graph G and an integer k, decides in time O(m2) whether G has
branch-width at most k (where m = |V (G)| + |E(G)|). If so, then an optimal
branch-decomposition of G is computed in time O(m4).

It is worth to mention that, unlike many other involved algorithms asso-
ciated with the Graph Minors Project, this algorithm is really implementable
and practical. Note some recent branch-width implementation and computing
experiments by Hicks [Hic05a, Hic05b]. Theorem 3.4 gives us one clear reason
why to use branch-width instead of tree-width; since complexity of the tree-
width problem on planar graphs is long-time open. This fact, and some nice
structural properties of branch-width for planar graphs, are used for instance
in [FT03, DPBF05] to obtain better (subexponential) exact algorithms for hard
problems on planar graphs.

Another reason why to use branch-width instead of tree-width may come out
in some dynamic programming schemes, taking an advantage of the fact that
a branch-decomposition does not explicitly refer to graph vertices which makes
processing simpler. For instance, Noble [Nob98] computes the (notoriously hard)
Tutte polynomial of a graph of bounded tree-width using ideas that are actually
much better suited for branch-decompositions, as one can see also in [Hli06c].

3.3 Dynamic programming and parse trees

In this section we return to the topic of Section 1.3 — use of a dynamic program-
ming scheme to solve problems more efficiently — from a formal perspective of
branch-width and of graph “parse trees”. This is a useful (and reasonably sim-
ple) mathematical formalism for handling tree-like decomposition schemes. For
a nice thorough introduction to graph parse trees with relation to tree-width
we refer to [DF99, Chapter 6]. We remark that this topic is also very close to
so-called “graph grammars” which we are not able to cover here due to space
restrictions (Section 1.2).

Imagine a graph G with designated (labeled) subset B of k ordered vertices;
hence B ⊆ V (G) is actually a sequence of length k. (The size of whole G is
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Figure 13: A simple illustration of a (boundaried) parse tree of a branch-
decomposition. The guts (boundaries) are shaded.

arbitrary with respect to k.) We call such G a k-boundaried graph, and B is
the boundary of G. We write (G,B) for a reference. Then we can naturally
introduce (k-boundaried) composition operators over boundaried graphs, that
specify which pairs of boundary vertices (labels) are identified in a composition.

Under this simple formal view, we easily transform an (arbitrarily rooted)
branch-decomposition of a graph G into a rooted parse tree T , whose leaves keep
the edges of G and internal nodes specify composition operators used to “glue”
the edges together to form G (Figure 13). If the width of the decomposition is k,
that means if the guts of each separation of G displayed by an edge of T contains
at most k vertices, then k-boundaried composition operators are clearly enough
to define the parse tree T , and vice versa.

Example: Enumeration of matchings. A set M of edges in a graph is a
matching if no two edges of M share a common vertex. Although one can find
the size of a maximum matching in a graph efficiently, the task to compute the
total number of matchings in a given graph is one of prominent #P-complete
problems. (This task plays quite important role, say, in statistical physics.) For
a brief explanation, the class #P [Val79] is the enumerative counterpart of the
class NP. Hence an efficient algorithm for computing the number of matchings
is desirable even in special cases.

For a boundaried graph (G,B), we denote by mG(A) the number of such
matchings in G that hit the boundary B in a subset A ⊆ B. Then we formally
define a multivariate polynomial P(G,B)(xA : A ⊆ B) =

∑

A⊆B mG(A) ·xA. The
number of matchings in G is evaluated as P (1, . . . , 1). We apply the following
easy dynamic procedure:

Algorithm 3.5. Computing the above polynomial P(G,B) (and so the number
of perfect matchings) in a graph G of branch-width at most fixed k, assuming
the corresponding parse tree T is given, in O(22k · n) steps.

• For each leaf of the parse tree T , holding an edge e = uv, the subgraph
formed by e has boundary {u, v}, and Pe = x{u,v} + x∅ since there are
precisely those two matchings in a one-edge graph.

• Let, at an internal node of the parse tree T , the left subtree define a
boundaried subgraph (H1,D1) and the right one a boundaried subgraph
(H2,D2) of G, and let the composition at this node result in a bound-
aried subgraph (H,D). We simply multiply the (recursively obtained)

24



polynomials P(H1,D1) and P(H2,D2)

Q = P(H1,D1) · P(H2,D2) ,

and we define the polynomial P(H,D) by substitutions (A1 ⊆ D1, A2 ⊆ D2)

xA1
· xA2

=

{

0 if A1 ∩A2 6= ∅

x′A where A = (A1 ∪A2) ∩D, otherwise.

We leave verification of this straightforward algorithm to the readers. (No-
tice how much simpler is this formal setting than if one considered a tree-
decomposition of the graph G in the dynamic scheme.)

3.4 Extending branch-width to matroids

Matroids present a wide combinatorial generalization of graphs towards their
“geometric essence”. Such generalization is not purposeless since, in some situ-
ations, a “matroidal view” of a problem can bring new ideas or solutions even to
ordinary graph problems. That is also the case of the branch-width parameter
which has an immediate natural meaning on matroids. Since matroids (be-
sides the greedy algorithm) are not much known among computer scientists, we
include all necessary matroid definitions here.

Matroids. We follow Oxley [Oxl92] in our matroid terminology. A matroid
is a pair M = (E,B) where E = E(M) is the finite ground set of M (elements
of M), and B ⊆ 2E is a nonempty collection of bases of M . Moreover, matroid
bases satisfy the “exchange axiom”; if B1, B2 ∈ B and x ∈ B1 \ B2, then
there is y ∈ B2 \ B1 such that (B1 \ {x}) ∪ {y} ∈ B. Subsets of bases are
called independent sets, and the subsets of E which are not independent are
called dependent. Minimal dependent sets are called circuits. The rank function
rankM (X) in M assigns to each X ⊆ E(M) the maximum cardinality of an
independent subset of X.

If G is a graph, then its cycle matroid on the ground set E(G) is denoted
by M(G). The independent sets of M(G) are the forests of G, and the circuits
of M(G) are the cycles of G. In fact, a lot of matroid terminology is inherited
from graphs. Another typical example of a matroid is a finite set of vectors with
usual linear dependency. The two examples are jointly illustrated in Figure 14.

The dual matroid M∗ of M has the same ground set E, and the bases of
M∗ are the set-complements of the bases of M . (This corresponds to usual
topological duality of planar graphs.) An element e of M is called a loop (a
coloop), if {e} is dependent in M (in M∗). The matroid M\e obtained by
deleting a non-coloop element e is defined as (E \ {e},B−) where B− = {B :
B ∈ B, e 6∈ B}. The matroid M/e obtained by contracting a non-loop element
e is defined using duality M/e = (M∗\e)∗. (This corresponds to contracting an
edge in a graph.) A minor of a matroid is obtained by a sequence of deletions
and contractions of elements.

Matroid connectivity. The connectivity function λM of a matroid M is
defined for all A ⊆ E by λM (A) = rankM (A) + rankM (E \A)− rankM (E) + 1 .
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Figure 14: An example of a vector representation of the cycle matroid M(K4).
The matroid elements (edges of K4) are depicted by dots on the right, and their
linear dependency is shown by lines.

Geometrically, the affine closures of the two sides of a separation (A,E \A)
intersect in a subspace of rank λM (A) − 1 = λM (E \ A)− 1 (such as, in a line
if λ = 3). It is remarkable that the matroid connectivity function is preserved
under duality, λM ≡ λM∗ . Recalling the graph connectivity function λG from
Section 3.1, we note that these two function are equal λG(A) = λM(G)(A) over
a graph G only if the edges of both sides A and E \A form connected subgraphs
in G.

Definition. The branch-width of a matroid M is the branch-width of its connec-
tivity function λM .

As one can see, the matroid branch-width definition corresponds to graph
branch-width, but it is not an exact generalization due to possible differences
between graph and its matroid connectivity functions. The concept is illustrated
in Figure 15.
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Figure 15: An example of a branch-decomposition of width 3 of a rank-4 ma-
troid.

Properties of branch-width. We now summarize some folklore simple prop-
erties of matroid branch-width that are closely related to graph branch-width.

• Branch-width of a matroid M is always at least λM (∅) = 1.

• Branch-width of M is 1 if and only if M has no dependent set or, dually,
if M has rank 0.

• Branch-width of M is at most 2 if and only if M is the cycle matroid of a
graph of branch-width at most 2.
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• Branch-width of M equals the branch-width of its dual M∗.

• Branch-width of M is minor-monotone, i.e. bwd(N) ≤ bwd(M) for all
minors N of M .

One can see here a small difference between the branch-width notions of a graph
and of its cycle matroid. For instance, the branch-width of a tree that is not
a star is 2, while the cycle matroid of a tree has branch-width 1. Surprisingly,
a general relation between graph and matroid branch-widths has been open for
long time. The (expected) answer has been proved only recently by Hicks and
McMurray [HMJ05], and independently by Mazoit and Thomassé [MT05].

Theorem 3.6 ([HMJ05], [MT05]). Branch-width of a bridgeless graph (every
edge contained in a cycle) is equal to the branch-width of its cycle matroid.

In particular, Theorem 3.6 provides a simple reason why the branch-width
of a planar graph containing a cycle equals the branch-width of its topological
dual. (This nontrivial corollary follows already from [RS91] or [ST94], although
it is not explicitly stated there.) Note that the tree-width of a planar graph
may differ from the tree-width of its dual, as an example of the cube and the
octahedron shows.

Forbidden minors. Analogously to Section 3.2, we may ask about the for-
bidden minors for matroids of branch-width ≤ k. The answer, however, gets
complicated already for k = 3. For binary matroids (those representable over
GF (2)) only, a list of 10 forbidden minors for branch-width ≤ 3 has been found
by Dharmatilake [Dha94], and proved to be complete by Hliněný [Hli02]. But,
over thousand more non-binary forbidden minors for the matroids of branch-
width ≤ 3 have been constructed [Hli04] subsequently. That leaves little hope
for finding a complete answer in general.

Although matroid branch-width is minor-monotone, we remark that no ana-
logue of Theorem 1.5 is true over all matroids [GGW02]. Hence it is a question
whether the list of forbidden minors for the matroids of branch-width ≤ k is
finite after all. The affirmative answer for all k’s is given by Geelen, Gerards,
Robertson, and Whittle [GGRW03], showing an explicit size bound of at most
(6k+1 − 1)/5 elements for such forbidden minors. So it is a matter of a finite,
although currently infeasible, computer search to determine the lists for all k’s.

Regarding matroidal generalizations of Theorem 1.5, Geelen, Gerards, and
Whittle [GGW02] have proved that each minor-closed class of matroids of
bounded branch-width which are representable over a fixed finite field has a
finite list of forbidden minors. The more general case of minor-closed classes
among all matroids representable over a finite field is, still, an important open
question in structural matroid theory. (Recall that the cycle matroids of graphs
are representable over every field.)

3.5 Some parametrized algorithms on matroids

Thinking about computational complexity of matroid algorithms, a computer
scientist soon recognizes a complication. In order to give a complete information
about an n-element matroid M , it is necessary to say something about each
subset of the ground set and the amount of information is exponential in n.
Since accepting that as the input size would ruin usual complexity measures,
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one has to find another resolution. For example, it is possible to give just the
ground set E on the input, together with an oracle (black box) answering queries
about independence or rank of subsets of E in M .

Another possibility is to give a suitable, polynomially-sized representation of
the matroid M . The most common method is to input a matrix as a represen-
tation of M . A matrix A over a field F is a vector representation of a matroid
M if the elements of M are the column vectors of A and independent sets of M
are the linearly independent sets of vectors. See again Figure 14. We remark
that GF (q) denotes the finite field with q elements where q = pr is a prime
power, and p is the characteristic of the field. With a vector representation,
the elements of a matroid become “real points” in the projective geometry over
the field F. Note, however, that not all matroids can be represented by vec-
tors / matrices. (The situation with representable matroids somehow resembles
graphs embeddable on surfaces.)

Computing matroid branch-width. As with graphs, the first nontrivial
value of branch-width of matroids is 3. There is a simple and practical algorithm
[Hli02] which tests whether a matroid (given by an oracle) has branch-width at
most 3, and provides the decomposition if so. For k on the input, it follows
from the graph case and Theorem 3.6 that testing whether the branch-width of
a matroid is at most k, is NP-hard. At this moment we do not know about any
FPT algorithm for computing exact matroid branch-width when the matroid is
given via an independence oracle. Currently the best known general result in
this direction is:

Theorem 3.7 (Oum and Seymour [OS07]). Given an n-element matroid M via
an independence oracle, it is possible to test whether bwd(M) ≤ k in polynomial
time for each fixed k (exponent depending on k).

It is worth to mention that this theorem holds for any connectivity function.
In the special case of matroids that are representable by vectors over finite

fields, an efficient parametrized algorithm exists.

Theorem 3.8 (Hliněný [Hli05]). Let F be a finite field, and an n-element ma-
troid M be given via a vector representation over F. There is an FPT algorithm
testing in time O(n3) whether the branch-width of M is at most k for fixed k.
If so, then the algorithm also outputs a branch-decomposition of M of width at
most 3k.

The algorithm is mainly of theoretical interest due to its complexity and hidden
constants, but it has a remarkable application to computing graph rank-width
in Chapter 4. Moreover, a recent work of Hliněný and Oum [HO07] shows that
it is possible to find a branch-decomposition of M of width k in Theorem 3.8
with the same asymptotic time complexity.

MSO properties of matroids. Let us consider matroids as structures
formed by the elements and a predicate (unary relation) for independent subsets.
The monadic second-order logic MSM of matroids results when the language of
MSO logic (Section 2.1) is applied to such matroid structures.

The syntax of MSM includes variables for matroid elements and element
sets, the quantifiers ∀,∃ applicable to those, the logical connectives ∧,∨,¬, and
the predicates:
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1. =, the equality for elements and their sets,

2. e ∈ F , where e is an element and F is a variable for sets of elements,

3. indep(F ), where F is a variable for sets of elements, and the predicate is
true if and only if F is an independent set in the matroid.

To give readers a better feeling for the expressive power of the MSM lan-
guage, we show a few additional basic matroid predicates.

• We write basis(B) ≡ indep(B) ∧ ∀D
(

B 6⊆ D ∨ B = D ∨ ¬ indep(D)
)

to
express the fact that a basis is a maximal independent set.

• Similarly, we write circuit(C) ≡ ¬ indep(C) ∧ ∀D
(

D 6⊆ C ∨ D = C ∨

indep(D)
)

, saying that C is dependent, but all proper subsets of C are
independent.

It is, of course, possible to define an MSO theory of matroids using any one
of indep,basis, circuit as the atomic predicate, and to express the other two
predicates similar as done above. We remark that, concerning its expressive
power, the language of MSM is close related to the MS2 language of graphs (see
[Hli06a, HS06]).

The main algorithmic result in [Hli06a] reads (cf. Theorem 2.3):

Theorem 3.9 (Hliněný [Hli06a]). Let F be a finite field, and φ be a sentence
in MSM . Suppose an n-element matroid M is given via a vector representation
over F together with a branch-decomposition (parse tree) of width k. Then there
is an algorithm testing whether M |= φ in linear FPT time with respect to F,
φ, and k.

Also using Theorem 3.8, we get a general tool for efficient parametrized testing
of all MSO-definable properties of matroids of bounded branch-width which are
represented over finite fields. Since the minor relation is expressible in MSM

[Hli03], this result and, in particular, [GGW02] imply FPT solvability of all
minor-closed properties on such matroids.

Some hardness results. Altogether, there are many nice algorithmic prop-
erties of graph branch-width that generalize to matroids, at least to those repre-
sentable over finite fields. It appears, however, that the branch-width is not as
universally applicable parameter on matroids as it is on graphs. There are sev-
eral interesting problems which are easy on graphs of bounded branch-width, but
they are NP-hard on matroids of branch-width 3 represented by vectors over
the rational numbers: [Hli07] the Tutte polynomial and some MSO-definable
properties, or [Hli06b] minor testing. A more involved discussion of this topic
can be found in [HS06, Section 8].

4 Rank-Width and Clique-Width

Clique-width is a graph “width” parameter, defined by Courcelle and Olariu
[CO00]. Informally speaking, clique-width measures the complexity of describ-
ing cutsets when a graph is obtained by gluing its subgraphs recursively. Clique-
width is defined by so-called k-expressions, which are algebraic expressions on

29



labeled graphs with four operations. A k-expression expresses a graph by de-
scribing how to glue two induced subgraphs. Clique-width has been attracting
researchers mainly because it provides another unified framework to solve gen-
erally NP-hard graph problems in polynomial time when restricting inputs.

How hard is it to determine clique-width of graphs? Fellows, Rosamond,
Rotics, and Szeider [FRRS06] proved that determining clique-width is NP-
complete. It is, however, open whether, for fixed k ≥ 4, there is a polynomial-
time algorithm to decide that clique-width of graphs is at most k. Motivated
by clique-width, Oum and Seymour [OS06] defined rank-width as branch-width
of the cut-rank function. They showed that a graph class has bounded clique-
width if and only if it has bounded rank-width. Due to virtues of branch-width
described in the previous chapter, rank-width has a few advantages over clique-
width. For instance, it is in P to decide that a graph has rank-width at most k
for fixed k, as shown by Oum and Seymour [OS07].

Most papers on clique-width mainly focus the following research directions.

(i) Classify graph classes having bounded or unbounded clique-width.

(ii) Identify graph problems that can be answered in polynomial time if the
input graph has clique-width at most k for fixed k. Like tree-width, many
graph problems have been shown to be solvable in polynomial time if the
input graph has bounded clique-width.

In the following sections, we will first review definitions of clique-width and
rank-width and their properties, discuss (i) and (ii), and then discuss relations
to other parameters. In this chapter, all graphs are assumed to have no loops,
no parallel edges, and at least one vertex, unless noted otherwise.

4.1 Definitions

Clique-width. Clique-width is defined for both directed and undirected
graphs [CO00], but we will mainly focus on undirected graphs. Let k be a
positive integer. We call (G, lab) a k-graph if G is a graph and lab : V (G) →
{1, 2, . . . , k} is a mapping. We call lab(v) be the label of a vertex v.

(1) For i ∈ {1, . . . , k}, let •i denote an isolated vertex labeled by i.

(2) For i, j ∈ {1, 2, . . . , k} with i 6= j, we define a unary operator ηi,j such that

ηi,j(G, lab) = (G′, lab)

where V (G′) = V (G), and E(G′) = E(G) ∪ {vw : v,w ∈ V (G), lab(v) =
i, lab(w) = j}. This adds all edges between vertices of label i and vertices
of label j.

(3) We let ρi→j be the unary operator such that

ρi→j(G, lab) = (G, lab′)

where

lab′(v) =

{

j if lab(v) = i,

lab(v) otherwise.

This mapping relabels every vertex labeled by i into j.
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(4) Finally, ⊕ is a binary operation that makes the disjoint union. Note that
G⊕G 6= G.

A k-expression is a well-formed expression t written with these symbols. The
k-graph produced by performing these operations in order therefore has vertex
set the set of occurrences of the constant symbols in t; and this k-graph (and
any k-graph isomorphic to it) is called the value val(t) of t. If a k-expression t
has value (G, lab), we say that t is a k-expression of G. The clique-width of a
graph G, denoted by cwd(G), is the minimum k such that there is a k-expression
of G. For directed graphs, we simply replace, in the definition of a k-expression,
ηi,j by ηi→j that creates directed edges from vertices of label i to vertices of
label j.

For instance, η1,2(ρ1→2(η1,2(ρ1→2(η1,2(•1⊕•2))⊕•2))⊕•2) is a 2-expression
of K4, the complete graph with four vertices. It is clear that the clique-width
of Kn is 2 if n ≥ 2. See Figure 16 for another examples.
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Figure 16: 3-expressions of C5 and C6

Rank-width. Oum and Seymour [OS06] defined rank-width of undirected
graphs. We recall that branch-width is defined for arbitrary symmetric sub-
modular functions (Section 3.1). We will define the cut-rank function of graphs,
which is symmetric submodular, and then use it to define rank-width as the
branch-width of the cut-rank function.

To describe the cut-rank function, we need a few notations. Let A(G) stand
for the adjacency matrix of a graph G, that is a 0-1 V (G)×V (G) matrix where
an entry is 1 if and only if the column vertex is adjacent to the row vertex.
We assume that the underlying field of A(G) is GF(2), the field with just two
elements, 0 and 1. For an R×C matrix M = (mij)i∈R,j∈C and subsets X ⊆ R,
Y ⊆ C, we denote by M [X,Y ] the X × Y submatrix (mij)i∈X,j∈Y .

The cut-rank function of a graph G is defined as a function ρG : 2V (G) → Z

such that
ρG(X) = rank(A(G)[X,V (G) \X]),

where rank() is the linear rank function of matrices over GF(2). Rank-
decomposition and rank-width of a graph G are defined as the branch-
decomposition and the branch-width of the cut-rank function ρG of G, respec-
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tively. We denote rwd(G) for the rank-width of a graph G. Rank-width is
specifically designed to be strongly related to clique-width as follows [OS06]:

Theorem 4.1 (Oum and Seymour [OS06]). rwd(G) ≤ cwd(G) ≤ 21+rwd(G)−1.
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Figure 17: Illustration of rank-decompositions

Remark: other related parameters. Wanke [Wan94] defined an NLC-width

of graphs. NLC-width is defined in a similar way as clique-width; it uses one joining
operation instead of η and ⊕ in the k-expressions. A nice property of NLC-width is that
a graph G and its complement G have the same NLC-width. Johansson [Joh98, Joh01]
showed that NLC-width of a graph G is at least cwd(G) but at most 2 cwd(G).

Courcelle [Cou04] defined symmetric clique-width. For a subset X of vertices and
v, w ∈ X, we define an equivalence relation ∼X such that v ∼X w if every vertex out of
X is either adjacent to both v and w or to none of v and w. Let iG(X) be the number
of equivalence classes of ∼X . In the definition of rank-width, we replace the cut-rank
functions by max(iG(X), iG(Y )) to obtain the definition of symmetric clique-width.
Courcelle [Cou04] showed that if clique-width is k, then symmetric clique-width is at
most 2k and at least 1

2
k.

Sequential clique-width [FRRS05] (or linear clique-width [GW05]) is analogous to

path-width in relation with tree-width; in sequential clique-width, we only consider

k-expressions of which each ⊕ operation has an operand with exactly one vertex.

Similarly linear NLC-width and linear symmetric clique-width are discussed in [GW05]

and [Cou04], respectively.

4.2 Properties of rank-width and clique-width

Graph operations. There are many graph operations that do not change
clique-width or rank-width much. We cover some of them.

Deleting a vertex v of a graph G = (V,E) is an operation to obtain a graph
G \ v = (V \ {v}, E′) simply by removing v and all its incident edges from G. It
is easy to show that cwd(G \ v) ≤ cwd(G) and rwd(G \ v) ≤ rwd(G). Moreover
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Figure 18: Deletion, local complementation, and Seidel switching

rwd(G \ v) ≥ rwd(G) − 1. By the similar argument, one can easily show that
adding or deleting k edges may increase or decrease rank-width by at most k.

The complement of a graph G = (V,E) is a graph G = (V,E′) such that
two vertices in G are adjacent if they are not adjacent in G. Courcelle and
Olariu [CO00] showed that cwd(G) ≤ 2 cwd(G). It is easy to observe that
rwd(G) − 1 ≤ rwd(G) ≤ rwd(G) + 1, because for G we can take the rank-
decomposition of G and then the width may increase by at most 1.

The local complementation at a vertex v of a graph G is the operation on
G to add an edge xy or remove xy if it already exists, for every pair x, y of
neighbors of the vertex v. We write G∗v for the graph obtained from G by local
complementation at v. It is easy to observe that local complementation preserves
cut-rank functions [Bou89] and therefore rwd(G ∗ v) = rwd(G) [Oum05c]. For
an edge uv of G, the graph obtained by pivoting uv at G is G∧uv = G∗v∗u∗v.
A pivoting is well-defined because G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v if u and v are
adjacent in G. Pivoting does not change rank-width at all.

For a subset X of vertices of a graph G = (V,E), the Seidel switching of G
by X is the operation to construct a graph GX = (V,E′) from G by removing
all edges between X and V \X and adding edges vw for all v ∈ X, w ∈ V \X
if v and w are not adjacent in G. This operation was introduced by van Lint
and Seidel [vLS66]. Note that (GX)Y = G(X\Y )∪(Y \X) and (GX)X = G. It is
straightforward to prove that rwd(G)− 1 ≤ rwd(GX) ≤ rwd(G) + 1.

Graph relations. An induced subgraph of a graph G is a graph obtained from
G by deleting some vertices. As we have seen already, deleting a vertex does not
increase clique-width and rank-width and therefore for every induced subgraph
H of G, we have cwd(H) ≤ cwd(G) [CO00] and rwd(H) ≤ rwd(G).

We say that H is a vertex-minor of G if H is obtained by applying a sequence
of local complementations and vertex deletions. Similarly H is a pivot-minor of
G if H is obtained by applying a sequence of pivoting and vertex deletions. It
is straightforward to see that if H is a vertex-minor or a pivot-minor of G, then
the rank-width of H is at most the rank-width of G.

Compositions. Let G and H be a graph. From the definition of clique-
width, the disjoint union G ⊕ H of two graphs G and H has clique-width
max(cwd(G), cwd(H)). Similarly rwd(G⊕H) = max(rwd(G), rwd(H)). There-
fore, clique-width and rank-width of a graph G is equal to the maximum of
clique-width and rank-width, respectively, of its connected components.

For v ∈ V (G) and w ∈ V (H), the 1-sum of G and H at v and w is the
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operation to create a graph G ⊕v=w H from G ⊕ H by identifying v and w.
Then

rwd(G ⊕v=w H) = max(rwd(G), rwd(H)). (1)

In particular, the rank-width of a graph is equal to the maximum of rank-
width of its blocks (maximal connected subgraphs without a cutvertex). To
prove (1), we do 1-sum of two trees in rank-decompositions of G and H at
leaves representing v and w, and then create a new leaf at the identified ver-
tex in the tree representing the identified vertex of G ⊕v=w H. Notice that
max(rwd(G), rwd(H)) ≤ rwd(G ⊕v=w H) because both G and H are induced
subgraphs of G⊕v=w H.

For v ∈ V (G), the substitution of v in G by H is an operation to create a
graph G[H \ v] by substituting the vertex v by H. This means that in G[H \ v],
every vertex from H is adjacent to its neighbors in H as well as neighbors of v
in G. Courcelle and Olariu [CO00] showed that

cwd(G[H \ v]) = max(cwd(G), cwd(H)). (2)

By a similar argument to the 1-sum, one can show that max(rwd(G), rwd(H)) ≤
rwd(G[H \ v]) ≤ max(rwd(G), rwd(H) + 1). A modular decomposition is a tree
representation of obtaining a graph recursively by substitution. A prime graph
with respect to modular decomposition is a graph that can not be obtained
by nontrivial substitution. McConnell and Spinrad [MS99] gave a linear-time
algorithm for a modular decomposition. From (2), we deduce the following:

Theorem 4.2 (Courcelle and Olariu [CO00]). The clique-width of a graph G is
equal to the maximum of the clique-width of all prime (with respect to modular
decomposition) induced subgraphs.

In fact, it is enough to consider prime subgraphs appearing in the modular
decomposition. In particular, in order to show that a certain set of graphs has
bounded clique-width, it is enough to prove that all prime graphs in the set
have bounded clique-width. This technique has been used in several papers, for
instance [BLM05].

For v ∈ V (G) and w ∈ V (H), the 1-join of G and H with v and w is the
operation to create a graph from G⊕H by adding all edges from the neighbors
of v to the neighbors of w and then deleting v and w. It is an easy exercise to
show that

rwd(1-joinv,w(G,H)) = max(rwd(G), rwd(H)). (3)

(The proof is similar to that of 1-sum.) The split decomposition [Cun82] is a
tree representation, expressing how to obtain a graph recursively by 1-joins. A
graph that can not be obtained by a nontrivial 1-join is called a prime graph
with respect to the split decomposition. (Be warned that primeness may refer
to several decompositions.) Ma and Spinrad [MS94] showed an O(n2)-time
algorithm to find a split decomposition of an n-vertex graph. From (3), we
deduce the following.

Theorem 4.3. The rank-width of a graph is the maximum of the rank-width of
all prime induced subgraphs with respect to split decomposition.

Two special cases of 1-sum and substitution are interesting. The 1-sum of G
and K2 creates a pendant vertex to G. The substitution of a vertex in G by K2

or P2 creates a twin to G. Creating pendant vertices or twins does not change
rank-width of G if G has at least one edge [Oum05c].
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Figure 19: Compositions

Upper bounds. It is easy to see that cwd(G) ≤ |V (G)| and rwd(G) ≤
⌈|V (G)|/3⌉. Johansson [Joh98] showed that if G is an n-vertex graph and
2k + k ≤ n− k, then cwd(G) ≤ n− k.

Clique-width and interpretability in binary trees. Courcelle [Cou92b]
stated the following theorem.

Theorem 4.4 (Courcelle [Cou92b]). A set of graphs has bounded clique-width
if and only if it is MS1-interpretable into a class of binary trees.

This theorem is a quick and powerful tool to prove that a set of graphs has
bounded clique-width. For instance, if we want to show that another set B of
graphs has bounded clique-width, we find a set A of graphs having bounded
clique-width and show that B is MS1-interpretable into A. (In the terminol-
ogy of Courcelle, B is the image of a monadic second order transduction (MS
transduction) of A.) [CO00, Cou06, CO07] are some sample applications of this
theorem.

Connections to other parameters. Graphs of bounded tree-width have
bounded clique-width but not vice versa. This was first shown by Courcelle and
Olariu [CO00] and the following refinement was shown by Corneil and Rotics
[CR05]. (Let twd(G) be the tree-width of G.)

Theorem 4.5 (Corneil and Rotics [CR05]). cwd(G) ≤ 3(2twd(G)−1).

They also showed that for any k, there is a graph G with tree-width k such
that cwd(G) ≥ 2⌊k/2⌋−1. We remark that no inequalities of the form twd(G) ≤
f(cwd(G)) is possible, because cwd(Kn) = 2 and twd(Kn) = n − 1. However,
Gurski and Wanke [GW00] have showed the following. (The implicit existence
of such an inequality was shown before by Courcelle and Olariu [CO00].)

Theorem 4.6 (Gurski and Wanke [GW00]). If a graph G has no Kt,t subgraph
for some t > 1, then twd(G) ≤ 3(t− 1) cwd(G)− 1.

We write L(G) for the line graph of G, whose vertices are the edges of G,
and two vertices of L(G) are adjacent if they are adjacent in G. Gurski and
Wanke [GW06, GW07] showed that

1

4
(twd(G) + 1) ≤ cwd(L(G)) ≤ 2 twd(G) + 2.
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Branch-width of matroids is closely related to rank-width. We will first
define the fundamental graph of a binary matroid M. Let B be a base of M.
The fundamental graph of M with respect to B, denoted by F (M, B), is a
bipartite graph on vertices E(M) where two vertices e, f ∈ E(M) are adjacent
if e ∈ B, f ∈ E(M) \ B, and (B \ {e}) ∪ {f} is independent in M. Oum
[Oum05c] showed that, for every binary matroid M and its base B, we have

bwd(M) = rwd(F (M, B)) + 1,

which means that the branch-width bwd(M) of a binary matroidM is exactly
one more than the rank-width of a fundamental graph of M.

The incidence graph I(G) of a graph G is a graph obtained by subdividing
every edge exactly once. Oum [Oum06b] showed that rwd(I(G)) = bwd(G) or
rwd(I(G)) = bwd(G) − 1 unless G has no edges. This implies that rwd(G) ≤
max(bwd(G), 1) ≤ twd(G)+1 and rwd(L(G)) ≤ bwd(G) ≤ twd(G)+1. The last
inequality on the rank-width of a line graph was also shown by Oum [Oum06a].

4.3 Clique-width of graph classes

For a given set of graphs, it is interesting to know whether there is a finite
upper bound on the clique-width of a graph in the set; if there is such an upper
bound, then many graph problems are solvable quickly, which we will discuss in
the next section.

Basic graph classes. The most basic classes of graphs are graphs of clique-
width at most 2 and graphs of rank-width at most 1. Note that clique-width is
1 or rank-width is 0 if and only if the graph has no edges.

A cograph (or a complement reducible graph) is defined in Section 1.3. Equiv-
alently, cographs are P4-free graphs, graphs with no induced P4 (a path of four
vertices) [CLB81]. It is easy to observe, from the definition, that cographs are
exactly graphs of clique-width at most 2.

A graph G is called distance-hereditary if, in every connected induced sub-
graph of G, the distance between every pair of vertices in the subgraph is equal
to the distance in G. For example, C5 is not distance-hereditary. Bandelt and
Mulder [BM86] characterized distance-hereditary graphs; their characterization
implies that distance-hereditary graphs are exactly graphs of rank-width at
most 1 [Oum05c]. By Theorem 4.1, we deduce that clique-width of a distance-
hereditary graph is at most 3, which was shown first by Golumbic and Rotics
[GR00].

For the cycle graph Cn of n vertices,

cwd(Cn) =











2 if n = 3, 4,

3 if n = 5, 6,

4 if n ≥ 7,

rwd(Cn) =

{

1 if n = 3, 4,

2 if n ≥ 5.

Golumbic and Rotics [GR00] showed that clique-width of the n × n grid
(having n2 vertices) is exactly n + 1 if n ≥ 3. Rank-width of the n × n grid is
at most n− 1 and at least ⌈2n/3⌉ if n ≥ 3 (Oum [unpublished]), but the exact
value is not yet known.
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Unbounded clique-width. To verify that a certain class of graphs has un-
bounded clique-width, grids are sometimes useful because the class has un-
bounded clique-width if it contains grids of arbitrary large size. For instance,
the set of bipartite C6-free graph has unbounded clique-width because it con-
tains grids of arbitrary large size. Moreover, any sequence H1,H2, . . . of
graphs such that limn→∞ cwd(Hn) = ∞ will help us to verify that a cer-
tain graph class has unbounded clique-width. Here is a list of some papers
[MR99, GR00, BL02, BELL06] having such sequences of graphs.

Boliac and Lozin [BL02] counted the number of n-vertex graphs of bounded
clique-width:

Theorem 4.7 (Boliac and Lozin [BL02]). For fixed k > 1, the number of graphs
having n vertices and clique-width at most k is 2Θ(n log n).

Consequently, bipartite graphs, co-bipartite graphs (complement of bipartite
graphs), and split graphs (graphs that can be partitioned into an independent
set and a clique) have unbounded clique-width, because the number of n-vertex

graphs in each of them is at least 2n2/4.

Clique-width and forbidden induced subgraphs. Cographs can be de-
fined as P4-free graphs and as we discussed earlier, their clique-width is at most
two. Distance-hereditary graphs can be also defined by forbidding four small
graphs [BM86] and have rank-width at most one and clique-width at most three.

What else can we say if we exclude other small graphs? Brandstädt, En-
gelfriet, Le, and Lozin [BELL06] answered this question completely up to four
vertices, characterizing all graph classes having bounded clique-width defined by
forbidding small graphs up to four vertices as an induced subgraph. Brandstädt,
Dragan, Le, and Mosca [BDLM05] answered the question when excluding 5-
vertex graphs extending P4.

There are variations of cographs, such as P4-reducible graphs [JO89], P4-
sparse graphs [Hoà85], P4-tidy [GRT97], partner-limited graphs [RRT99], and
(q, t) graphs [BO95]. Upper bounds of clique-width for some of those graph
classes have been obtained in [CMR00, MR99, Van04]

There are miscellaneous graph classes defined by forbidding small induced
subgraphs that are shown to have either bounded or unbounded clique-width.
We refer readers to the Information System on Graph Class Inclusions (ISGCI)
of University of Rostock at http://wwwteo.informatik.uni-rostock.de/isgci/

which has references on clique-width for most interesting graph classes.

Rank-width and forbidden vertex-minors. Graphs of rank-width at
most 1 are exactly distance-hereditary graphs [Oum05c], and they are the graphs
with no vertex-minors isomorphic to C5 [Bou87, Bou88]. Since vertex-minors of
a graph of rank-width k have rank-width at most k, it is possible to describe the
set of graphs of rank-width at most k by a list of forbidden vertex-minors, such
that a graph has rank-width at most k if and only if none of its vertex-minors
is isomorphic to one of the forbidden vertex-minors. What is interesting is that
this list is always finite. Oum [Oum05c] has shown the following:

Theorem 4.8 (Oum [Oum05c]). For fixed k ≥ 1, the set of graphs having
rank-width at most k is characterized by forbidden vertex-minors with at most
(6k+1 − 1)/5 vertices.
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In another paper [Oum05d], he has proved a more general theorem; graphs
of bounded clique-width are well-quasi-ordered by pivot-minors which means
the following:

Theorem 4.9 (Oum [Oum05d]). For every infinite sequence G1, G2, . . . of
graphs having bounded clique-width, there are i < j such that Gi is isomor-
phic to a pivot-minor of Gj.

This theorem implies that the list of forbidden vertex-minors characterizing
graphs of rank-width at most k is finite for each k. As an example, let us consider
cycles having at least t vertices. Clearly Ct is isomorphic to a vertex-minor of
Ct+1 and therefore cycles Ct, Ct+1, Ct+2, . . . are well-quasi-ordered by vertex-
minors. We can deduce the same conclusion from the above theorem since they
have rank-width at most 2. Cycles are, however, not well-quasi-ordered by the
induced subgraph relation; no proper induced subgraph of a cycle is a cycle.

4.4 Algorithms on graphs of bounded clique-width

Major interest in clique-width is due to the fact that many NP-hard problems
can be solved in polynomial time if the input is restricted to graphs of bounded
clique-width. Not only there is an irregular list of solvable problems on graphs of
bounded clique-width, but also there is a general theorem stating that all graph
problems expressible in monadic second-order logic are solvable. Tree-width
surely has an analogous property, but every set of graphs of bounded tree-width
has bounded clique-width and in this sense clique-width is more powerful. The
trade-off here is that the set of problems for which we know an efficient solution
on graphs of bounded tree-width is (at present) significantly larger than that
for bounded clique-width.

To solve those graph problems, most algorithms based on bounded clique-
width use dynamic programming with the k-expression of the input graph. To
provide the k-expression of the input graph to the main routine using dynamic
programming, a necessary step is to generate a k-expression from the input
graph given in the form of the adjacency list.

Solvable problems on graphs of bounded clique-width. Courcelle,
Makowsky, and Rotics [CMR00] showed the following theorem that can be ob-
tained also using Theorem 4.4 and Theorem 2.3. (Compare this with Theo-

rems 2.5 and 2.6 where the stronger logic MS2 is used instead of MS1)̇

Theorem 4.10 (Courcelle, Makowsky, and Rotics [CMR00]). Every MS1 de-
cision problem (a graph problem expressible in MS1 logic) is solvable in linear
time for graphs having clique-width at most k for fixed k if the k-expression
defining the graph is given with the input.

We will describe how to find a k-expression later. In their next paper
[CMR01], they showed that MS1 counting problems, enumerating the truth
assignments of a fixed MS1 logic formula, are solvable in linear time as well
under the same condition.

Not only MS1 problems, but also many other graph problems are solvable.
Here is a partial list of papers [Wan94, EGW01, KR03, Tod03, Joh03]. Ex-
cept [Joh03], all known algorithms use dynamic programming with the given
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k-expression and thus require the k-expression of the input graph to be given
as an input. (Johnson [Joh03] used recursive programs.) For instance, testing
whether a graph is Hamiltonian is solvable in polynomial time for graphs of
clique-width at most k [Wan94]. It is also possible to output the chromatic
number of the input graph in polynomial time if the input graph has clique-
width at most k for fixed k [KR03]. However, these are not fixed-parameter
tractable algorithms.

Not all graph problems can be solved easily on graphs of bounded clique-
width. Gurski and Wanke [GW06] found a graph problem that is solvable in
linear time on graphs of clique-width at most 2 but NP-complete on graphs of
clique-width at most 6.

Determining clique-width and rank-width. Fellows, Rosamond, Rotics,
and Szeider [FRRS06] proved that determining clique-width is NP-complete:
they showed that if a graph G and an integer k are given as an input, it is NP-
complete to decide whether the clique-width of G is at most k. In addition, they
proved the following: unless P = NP , for each 0 < ǫ < 1, there is no polynomial-
time algorithm that, with an n-vertex graph, outputs a (cwd(G)+nǫ)-expression
of the input graph.

The situation is different if we fix k and wish to know whether clique-width
or rank-width is at most k. We summarize known results in Table 1.

k clique-width≤ k rank-width ≤ k
1 Graphs with no edges.Triv-

ial.
Distance-hereditary graphs [Oum05c].
Linear [HM90, DHP01]

2 Cographs. Linear [CPS85]
3 [CHL+00] O(n2m) [Oum05a, CO07, Oum05b, HO07]

O(n3)
≥ 4 Open

Table 1: Fixed parameter algorithms to test clique-width and rank-width

Even if we are able to determine cwd(G) ≤ k or rwd(G) ≤ k, we do not
necessarily get the k-expression or rank-decomposition of width at most k. In
particular, the algorithm in [CO07] does not provide rank-decomposition of
width at most k even if it confirms that rwd(G) ≤ k, because it tries to find
a forbidden vertex-minor to test rank-width. The result of Oum and Seymour
[OS07] (see Theorem 3.7) implies that there is a polynomial-time algorithm
to construct a rank-decomposition of width at most k if rwd(G) ≤ k. Their
algorithm is, however, not a fixed parameter algorithm. The recent algorithm
of Hliněný and Oum [HO07] provides a rank-decomposition of width at most k
in an FPT time.

If we assume that an input graph has bounded tree-width, then the task
becomes easy. Espelage, Gurski, and Wanke [EGW03] showed a linear-time
algorithm for deciding whether a graph of bounded tree-width has clique-width
at most k for some fixed k. Since cwd(G) ≤ 3 · 2twd(G)−1, we can determine the
clique-width in polynomial time if the input graph has bounded tree-width.
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5 Hypertree-Width and other Hypergraph In-

variants

The structure of the instances of many NP-hard problems is best described by
graphs. This is either because the problem description itself contains a graph as
a main element, or because a graph is easy to be associated with each instance.
As already noted, many of such problems are tractable on instances whose asso-
ciated graphs are acyclic or have bounded tree-width. A hypergraph H = (V,E)
consists of a finite set V of vertices and a set E of hyperedges, where a hyper-
edge is a subset of V . There is a number of important problems whose structure
is better described by hypergraphs than by graphs. For these problems, we can
obtain tractable classes by imposing restrictions on the instance hypergraphs.

5.1 CSP and other hypergraph-structured problems

A typical problem that falls into this category is the Constraint Satisfaction
Problem (CSP) (cf. [DP87, Dec92, GLS01]). A CSP instance I consists of a
set V ar of variables, a domain D of possible values for these variables, and
a set C = {c1, . . . , cm} of so-called constraints. Each constraint ci = 〈Si, Ri〉
consists of a list Si of ai variables from V ar, called the scope of ci, and a relation
Ri ⊆ D

ai , called the constraint relation of ci. The number ai of variables in Si,
which corresponds to the number of columns of Ri is referred to as the arity of
Si and of Ri. A solution for instance I is a mapping h : V ar −→ D, such that
for each 1 ≤ i ≤ m, h(Si) ∈ Ri. If a solution exists, then the instance is solvable.
We want to decide whether an input CSP instance is solvable. Note that the
arities a1, . . . , am of the scopes and constraint relations can be unbounded in
general.

Many important problems equivalent to CSPs have been identified in the
literature (see [KV00, GLS01] for examples and references). Among these are
the problem of answering Boolean conjunctive queries [CM77], which is a cen-
tral database problem, the problem of clause subsumption in theorem proving,
and the problem of checking whether there exists a homomorphism between
two finite structures. These problems, which belong to different domains, can
actually be identified with the CSP.

To each instance I of a CSP, we can associate a hypergraph H(I) = (V,H)
whose set V of vertices coincides with V ar, and whose set H of hyperedges
contains for each scope Si of I, a hyperedge Hi consisting of the set of all
variables of Si. For examples of CSPs or conjunctive queries and there associated
hypergraphs, see [Dec92, DP87, GLS00, GJC94, GLS01].

5.2 CSP with acyclic hypergraphs is tractable

It is well-known that CSP is NP-complete, even in case of bounded arities.
NP-hardness can be seen, for instance, by a rather trivial transformation from
graph 3-colorability into CSP (left to the reader). On the other hand, it is
rather easy to see [Yan81, Dec92] that CSP restricted to instances I such that
H(I) is acyclic is tractable. As shown in [GLS01] CSP restricted to instances
with acyclic hypergraphs is even highly parallelizable and complete for the low
complexity class LOGCFL, in other words, the class of all decision problems that
can be transformed by a logarithmic space reduction to a context-free language

40



(cf. [Joh90]). Here, by acyclicity, we refer to the most general (most liberal)
notion of hypergraph acyclicity studied in the literature, namely, α-acyclicity
(cf [Fag83]).

A hypergraph H is acyclic if the repeated application of the following oper-
ations (in any applicable order) will eventually lead to the empty hypergraph:

– If H contains a vertex v that is isolated or contained in a single hyperedge,
then eliminate v from H.

– If H contains a hyperedge E that is a subset of another hyperedge E′ of
H, then eliminate E from H.

– If H contains the empty hyperedge, then eliminate it from H.

Since α-acyclicity is the most liberal notion of acyclicity, the same favorable
complexity results are easily seen to hold in the same way for classes of CSPs
associated to acyclic hypergraphs according to other notions of hypergraph
acyclicity [Fag83].

Note that there are several different ways to associate a graph to a hyper-
graph H, and thus also to a CSP instance:

• The primal graph Gp(H) of H (sometimes also referred to as the Gaifman
graph of H) is a graph whose vertices are the nodes of H and such that
two vertices a and b are adjacent in Gp(H) when there is a hyperedge of
H containing both a and b.

• The bipartite incidence graph Gin(H) of H is a graph, whose vertices
consist of both the vertices of H and the edges of H, such that a vertex a
and an edge e is adjacent in Gin(H) if a ∈ e.

• The dual graph Gd(H) is a graph whose vertices are the hyperedges of
H, such that two hyperedges e1 and e2 are adjacent in Gd(H) if they
intersect.

For a CSP instance I, we denote by Gp(I), Gin(I), and Gd(I) the graphs
Gp(H(I)), Gin(H(I)), and Gd(H(I)), respectively.

It is very easy to find a class H of acyclic hypergraphs such that for each k
there exists a hypergraph H ∈ H such that all of Gp(H), Gin(H), and Gd(H)
have tree-width larger than k in other words, all three graphs associated with H
have unbounded tree-width. This means that there is something genuine in the
notion of hypergraph acyclicity that cannot be captured via graph acyclicity or
bounded graph tree-width. Another way to see that hypergraph acyclicity is
genuinely different from graph acyclicity is to notice that unlike graph acyclicity,
hypergraph acyclicity is not preserved under hyperedge deletion. For example,
each hypergraph that contains a hyperedge covering all vertices is acyclic. Ob-
viously, when deleting this edge, the resulting hypergraph is not necessarily
acyclic.

5.3 Early Width parameters for hypergraphs

It has been observed by many researchers that a large number of practical
problem instances of CSP and related hypergraph-based problems have corre-
sponding hypergraphs that are in some sense “nearly acyclic”. Thus, researchers

41



have been searching for a parameter akin graph tree-width that would appropri-
ately express the degree of cyclicity of a hypergraph. The following hypergraph
invariants are examples for early approaches for measuring hypergraph cyclic-
ity. These approaches were mainly considered in artificial intelligence, and, in
particular, in the area of constraint processing.

Biconnected Components (BICOMP) [Fre85]. Any graph G = (V,E) can be
decomposed into a pair (T, χ) of a tree T and a labeling function χ associating
to each vertex of T a biconnected component of G. The biconnected width
of a hypergraph H, denoted by BICOMP-width(H), is the maximum number of
vertices over the biconnected components of the primal graph Gp(H) of H.

Cycle Cutset and Hypercutset (CUTSET) [Dec92]. A cycle cutset of a
hypergraph H is a set S ⊆ V (H) such that the subhypergraph of H induced by
V (H)\S is acyclic. The CUTSET-width of H is the minimum cardinality over all
its possible cycle cutsets. A generalization of this is the method is the method
of hypercutsets, in short, HYPERCUTSET (for a definition, see [GLS00]).

Tree Clustering (TCLUSTER) [DP89]. The tree-clustering method is based
on a triangulation algorithm which transforms the primal graph Gp(H) of any
hypergraph H into a chordal graph G′. The maximal cliques of G′ are then
used to build the hyperedges of an acyclic hypergraph H ′. The tree-clustering
width (TCLUSTER-width) of H is 1 if H is an acyclic hypergraph; otherwise it is
equal to the maximum cardinality of the cliques of the chordal graph G′.

The Hinge Method (HINGE) [GP84, GJC94]. This is an interesting decom-
position method generalizing acyclic hypergraphs. For space reasons, we omit
a formal definition. The hinge-width of a hypergraph can be computed in poly-
nomial time [GP84, GJC94]. One can also combine the methods HINGE and
TCLUSTER, yielding a more general method HINGETCLUSTER.

5.4 Generalized Hypertree-Width

A more recent group of hypergraph decompositions is based on the idea of
covering the bags of a tree-decomposition of a hypergraph H. Before defining
such decompositions, let us extend the notion of tree-decomposition from graphs
to hypergraphs.

Definition. Let H = (V,E) be a hypergraph on vertices V and hyperedges E.
A tree-decomposition (T, χ) of H consists of a tree T = (VT , ET ) and a node
labeling function χ : VT −→ 2V for T which associates to each vertex t of T a
bag χ(t), such that the following three conditions hold:

1. For each hyperedge e ∈ E, there is a vertex t of T such that e ⊆ χ(t).

2. For all vertices v ∈ V , the subgraph of T induced by {t : v ∈ χ(t)} is
connected. (The interpolation or connectedness property.)

3. The union of all χ(t) for all vertices t of T equals the vertex set V of H.

Example 5.1. Figure 20 shows a hypergraph H (consisting of 12 hyperedges
and 13 vertices) and a tree-decomposition of H.

In general, unless stated otherwise, we assume the tree T of a tree-
decomposition (T, χ) is unrooted and undirected.
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Figure 20: A hypergraph H (left) and tree-decomposition of H (right).

Note that by this definition, a tree-decomposition of a hypergraph is defined
just like a tree-decomposition of a graph, except for condition 1, which now re-
quires that each hyperedge is contained in at least one bag of the decomposition.
When H is a graph, the definitions coincide. Also note that the tree-width of a
hypergraph H coincides with the tree-width of its primal graph Gp(H).

We are now ready for defining the concept of generalized hypertree decompo-
sition [GLS02].

Definition. [GLS02] Let H = (V,E) be a hypergraph on vertices V and hyper-
edges E. A generalized hypertree decomposition T = (T, χ, λ) for H consists of
a tree-decomposition (T, χ) and a node labeling function λ which associates to
each vertex t of T a set of edges λ(t) ⊆ E, such that for each node t of T , the
hyperedges in λ(t) cover χ(t), in other words, χ(t) ⊆ ∪e∈λ(t)e. The width of such
a general hypertree decomposition is defined by the maximum of all cardinali-
ties |λ(t)| when t ranges over all nodes of T . The generalized hypertree-width
ghw(H) of H is the smallest possible width of a hypertree decomposition of H.

Example 5.2. A generalized hypertree decomposition of width 2 of the hyper-
graph H in Figure 20 is given in Figure 21. At each decomposition node, the
left set within each rectangle represents the λ-labels and the right set represents
the χ-labels.{ h 2 , h 3 } { 3 , 4 , 5 , 6 , 7 , 8 }{ h 9 , h 1 0 } { 1 1 , 1 2 , 1 3 }{ h 8 , h 9 } { 1 , 1 1 , 1 2 } { h 6 } { 7 , 9 , 1 0 }{ h 4 , h 5 } { 5 , 6 , 7 , 8 , 9 }{ h 1 , h 2 } { 1 , 2 , 3 , 4 , 5 , 6 } { h 2 , h 3 } { 1 , 3 , 4 , 5 , 6 , 7 , 8 } { h 1 } { 1 , 2 , 3 }{ h 4 , h 5 } { 5 , 6 , 7 , 8 , 9 }{ h 8 , h 1 0 } { 1 , 1 1 , 1 2 , 1 3 } { h 6 } { 7 , 9 , 1 0 }
Figure 21: Generalized hypertree decomposition of hypergraph H (left) and
hypertree decomposition of hypergraph H (right).

Note that for each hypergraph H, we have ghw(H) ≤ tw(H). Moreover,
for each acyclic hypergraph H with nonempty set of hyperedges, we have
ghw(H) = 1. Thus there are classes of hypergraphs of unbounded tree-width
whose generalized hypertree-width is 1. The “paradigm shift” in the transition
from tree-width to hypertree-width consists in counting the covering hyperedges
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rather than counting the number of vertices in a bag. This parameter seems to
be more appropriate, especially with respect to constraint satisfaction problems.
We have the following result, where the size of a data structure A is denoted by
‖A‖:

Theorem 5.3 (Gottlob, Leone, and Scarcello [GLS02, GLS00]). For a CSP
instance I and a generalized hypertree decomposition D of width k of H(I),
it takes time O(‖I‖k+1 log(‖I‖) + ‖D‖) to check whether I is solvable, and to
compute a solution if so.

Roughly, to prove this theorem, we first transform D in a normal form
that eliminates potential redundancy from D, and then transform instance I in
time ‖I‖k into a CSP instance I ′ whose associated hypergraph is acyclic (by
performing cartesian products or joins of the constraint relations corresponding
to each node of the decomposition) and then solve the acyclic instance ‖I ′‖ by
the algorithm of Yannakakis [Yan81].

Generalized hypertree-width would be a very nice width parameter if for
each fixed positive integer k, one could recognize in polynomial time for each
hypergraph H whether ghw(H) = k. Unfortunately, this does not seem to be
the case.

Theorem 5.4 ([GMS07]). Deciding whether ghw(H) = 3 is NP-complete.

5.5 Query Width

A width parameter for hypergraphs that was actually introduced before general-
ized hypertree-width is the notion of query-width (qw) [CR00]. We have defined
generalizd hypertree-width berfore query width in this paper because now query
width can be easily defined as a restricted version of the former concept.

Definition. [CR00] A generalized hypertree decomposition (T, χ, λ) of a hyper-
graph H is called a query decomposition if for each vertex t of T , χ(t) is equal
to the union of all edges in λ(t). The query-width qw(H) of H is the smallest
width of a query decomposition of H.

Since query decompositions are special cases of generalized hypertree decom-
positions, it clearly holds for each hypergraph H that ghw(H) ≤ qw(H). There
are, however, hypergraphs H for which ghw(h) < qw(H) (cf. [GLS02]).

Chekuri and Rajaraman [CR00] asked whether for each constant k, qw(H) =
k can be decided in polynomial time. Unfortunately, this does not seem to be
the case.

Theorem 5.5 ([GLS02]). Deciding whether qw(H) = 4 is NP-complete.

5.6 Hypertree Width

A rooted ghd is a generalized hypertree decomposition (T, χ, λ) whose decom-
position tree T is rooted at some vertex p0 = root(T ). In case of such a rooted
ghd, we conceive all edges of T as directed in the direction from the root to the
leaves.

For a rooted ghd (T, χ, λ) of a hypergraph H, and a node p of the decompo-
sition tree T , we denote by var(λ(p)) the set of all vertices that appear in some
edge in λ(p). Moreover, we denote by Tp the subtree of T rooted at p, and by
χ(Tp) the union of all sets χ(p′) for all vertices p′ of Tp.
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Definition. A hypertree decomposition (hd) of a hypergraph H is a rooted ghd
(T, χ, λ) of H such that

var(λ(p)) ∩ χ(Tp) ⊆ χ(p).

The hypertree-width of H denoted by hw(H) is the smallest width of a hypertree
decomposition of H.

An intuitive explanation of the special condition in the above definition
is given in Section 5.7, when discussing a game theoretic interpretation of
hypertree-width.

Example 5.6. The generalized hypertree decomposition of Example 5.2 violates
the special condition in the root node. A hypertree decomposition for hyper-
graph H, equally of width 2, is given in the right part of Figure 21.

As proven in [GLS02], hypertree-decompositions and hypertree-width enjoy
the following nice properties.

Theorem 5.7 (Gottlob, Leone, and Scarcello [GLS02]). For each fixed con-
stant k, checking whether a hypergraph H has hypertree-width k, can be tested
in polynomial time. This problem actually lies in the parallel complexity class
LOGCFL. If hw(H) = k, then a hypertree decomposition of width k can be
computed in polynomial time.

The currently best known upper bound for checking whether, for a hy-
pergraph H = (V,E), hw(H) = k is the one of the opt-k-decomp algo-
rithm [GLS99], which runs in time O(|E|2k|V |k). (The code of some hypertree
decomposition algorithms is currently available on the Web [Web, Sca04].) It
is currently unclear, whether this bound can be improved significantly, say, to
O(nk+c), for some constant c, where n is the size of the input hypergraph.

Recall that deciding “tw(G)=k” is fixed-parameter tractable (FPT) with
respect to the parameter k, and is actually feasible in linear time for each fixed
k by Bodlaender’s algorithm [Bod96]. It is thus natural to ask, whether similar
results hold for hypertree-width. Unfortunately, this seems to be highly unlikely:

Theorem 5.8 ([GGM+05]). Checking whether hw(H) = k for input hyper-
graphs H is NP-complete and fixed-parameter intractable with respect to the
parameter k. In particular, the parameterized problem is W[2]-hard. The same
results hold for the problem of checking ghw(H) = k.

The above fixed-parameter intractability result is not completely unex-
pected, given that both generalized and plain hypertree decompositions are
tightly connected to set covering. In fact, one can conceive generalized
hypertree-decompositions as a mixture of tree-decomposition and set covering.
Now, the set covering problem is well-known to be W[2]-hard, see [DF99].

Since every hypertree decomposition (when forgetting the root of the tree
T ) is also a generalized hypertree decomposition, we have ghw(H) ≤ hw(H),
and thus, by Theorems 5.7 and 5.3, we have:

Theorem 5.9 ([GLS02]). The solvability of CSP instances whose associated hy-
pergraphs have bounded hypertree-width is decidable in polynomial time. More-
over, for a CSP instance I and a generalized hypertree decomposition D of width
k of H(I), it takes time O(‖I‖k+1 log(‖I‖)+‖D‖) to check whether I is solvable,
and to compute a solution if so.
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Hypertree-width compares favorably to all other discussed hypergraph width
parameters for which “width = k” is known to be tractable.

Theorem 5.10 ([GLS00]). For each width parameter X in {BICOMP, CUTSET,
TCLUSTER, HINGE, HINGETCLUSTER, TREEWIDTH}, where TREEWIDTH denotes hyper-
graph tree-width as defined, the following holds:

– Each class of hypergraphs of bounded X-width has also bounded hypertree-
width.

– There is a class of hypergraphs having bounded hypertree-width but un-
bounded X-width.

Recall that a graph with n vertices may be of tree-width up to n− 1. This
naturally leads to the question about the maximum hypertree-width (or gener-
alized hypertree-width, or query width) of a hypergraph with n vertices.

Theorem 5.11 (Gottlob [Got05]). Let H be a hypergraph having n vertices.
Then hw(H) ≤ ⌊n/2⌋+ 1, ghw(H) ≤ ⌊n/2⌋ + 1, qw(H) ≤ ⌊n/2⌋ + 1.

Examples can be found for showing that for each n the bounds in the above
theorem are attainable.

The relationship between hypertree-width, query-width, and generalized
hypertree-width is more subtle. As shown in [AGG07], hypertree-width and
query-width approximate generalized hypertree-width by a factor of three.

Theorem 5.12 (Adler, Gottlob, and Grohe [AGG07]). For each hypergraph H,
ghw(H) ≤ hw(H) ≤ qw(H) ≤ 3ghw(H) + 1.

In particular, this means that each class of hypergraphs has bounded gener-
alized hypertree-width if and only if it has bounded hw. In addition to the fact
that “hw(H) = k” can be decided in polynomial time for each fixed constant k,
this is, of course, a very nice property of hypertree-width.

Recently, a comparison between hypertree-width and clique-width was
made [GP04]. Given that clique-width is defined for graphs, it had to be suit-
ably adapted to hypergraphs. Defining the clique-width of a hypergraph H
as the clique-width of its primal graph Gp(H) makes no sense in the context
of CSP-tractability, because then CSPs of bounded clique-width would be in-
tractable (this can be seen, for example, by encoding the CLIQUE problem into
a CSP of clique width 2). Therefore, in [GP04], the clique-width cw(H) of a
hypergraph H is defined as the clique-width of its incidence graph Gi(H). With
this definition, the following could be shown.

Theorem 5.13 (Gottlob and Pichler [GP04]).

1. CSPs whose hypergraphs have bounded clique-width are tractable.

2. For each hypergraph H, hw(H) ≤ qw(H) ≤ cw(H).

3. There are classes of hypergraphs having bounded hypertree-width and
bounded query-width but unbounded clique-width.
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5.7 The Robber and Marshals Game

In [ST93], graphs G of tree-width k are characterized by the so-called Robber-
and-Cops game where k+1 cops have a winning strategy for capturing a robber
on G. Cops can control vertices of a graph and can fly at each move to arbitrary
vertices, say, by using a helicopter. The robber can move (at infinite speed) along
paths of G, and will try to escape the approaching helicopter(s), but cannot go
over vertices controlled by a cop. It is, moreover, shown that a winning strategy
for the cops exists, if and only if the cops can capture the robber in a monotonic
way, i.e., never returning to a vertex that a cop has previously vacated, which
implies that the moving area of the robber is monotonically shrinking. Thus,
with respect to tree-width, the general (possibly non-monotonic) robber and
cops game and the monotonic robber and cops game coincide. For more detailed
descriptions of the game, see [ST93] or [GLS01].

In order to provide a similarly natural characterization for hypertree-width, a
new game, the robber and marshals game (R&Ms game), was defined in [GLS03].
A marshal is more powerful than a cop. While a cop can control a single vertex
of a hypergraph H only, a marshal controls an entire hyperedge. In the R&Ms
game, the robber moves on vertices along a path of H (which is a path of the
primal graph of H) just as in the robber and cops game, but now marshals
instead of cops are chasing the robber.

During a move of the marshals from the set E of hyperedges to the set E′ of
hyperedges, the robber cannot pass through the vertices in B = (

⋃

E)∩ (
⋃

E′),
where, for a set of hyperedges F ,

⋃

F denotes the union of all hyperedges in F .
Intuitively, the vertices in B are those not released by the marshals during the
move.

In this game, the set of all marshals is considered to be one player and the
robber the other player. The objective of the marshals is thus to move a marshal
(via helicopter) on a hyperedge containing the vertex occupied by the robber.
The robber tries to elude capture. As for the robber and cops game, we dis-
tinguish between a general (not necessarily monotone) and a monotone version
of the R&Ms game. In the monotone version of the game, the marshals have
to make sure, that in each step the robber’s escape space, which is, the compo-
nent in which the robber can freely move around, decreases. The (monotone)
marshal-width of a hypergraph H, mw(H) (and mon-mw(H), respectively), is
the least number k of marshals that have a (monotone) winning strategy in the
robber and k marshals game played on H (see [Adl04, GLS01] for more precise
definitions).

Clearly, for each hypergraph H, mw(H) ≤ mon-mw(H). However, unlike for
the robber and cops game, the marshal-width and the monotone marshal-width
differ. Adler [Adl04] proved that for each constant k there is a hypergraph H
such that mon-mw(H) − hw(H) = k. In addition, several further interesting
results on marshal games can be found in [Adl04].

In [GLS03] it is shown that there is a one-to-one correspondence between the
winning strategies for k marshals in the monotone game and the normal-form
hypertree decompositions of width at most k.

Theorem 5.14 (Gottlob, Leone, and Scarcello [GLS03]). A hypergraph H has
hypertree-width at most k, if and only if k marshals have a winning strategy for
the monotone R&Ms game played on H.
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It is the special condition for hypertree-width which intuitively corresponds
to the monotonicity requirement of the robber and marshals game.

5.8 Hyperlinkedness and Brambles

We discuss the following hypergraph invariants that are generalizations of well-
known graph invariants.

Hyperlinkedness. Let H be a hypergraph, M ⊆ E(H) and C ⊆ V (H). C
is M-big, if it intersects more than half of the edges of M , that is, |{e ∈ M :

e ∩ C 6= ∅}
∣

∣ > |M |
2 . Note that if S ⊆ E(H), then H \

⋃

S has at most one
M -big connected component. Let k be a positive integer. A set M ⊆ E(H)
is k-hyperlinked, if for any set S ⊆ E(H) with |S| < k, H \

⋃

S has an M -
big component. The largest k for which H contains a k-hyperlinked set is
called hyperlinkedness of H, hlink(H). Hyperlinkedness is an adaptation of the
linkedness of a graph [Ree97] to the setting of hypergraphs.

Brambles. Let H be a hypergraph. Sets X1,X2 ⊆ V (H) touch if X1 ∩X2 6= ∅
or or there exists an e ∈ E(H) such that e∩X1 6= ∅ and e∩X2 6= ∅. A bramble
of H is a set B of pairwise touching connected subsets of V (H). This is defined
in analogy to brambles of graphs [Ree97]. The hyper-order of a bramble B is
the least integer k such that there exists a set R ⊆ E(H) with |R| = k and
⋃

R∩X 6= ∅ for all X ∈ B. The hyperbramble number hbramble-no(H) of H is
the maximum of the hyper-orders of all brambles of H.

Theorem 5.15 (Adler, Gottlob, and Grohe [AGG07]). For each hypergraph H,
hlink(H) ≤ hbramble-no(H) ≤ mw(H) ≤ ghw(H) ≤ mon-mw(H) = hw(H) ≤
3 · hlink(H) + 1.

Corollary 5.16. The hypergraph invariants hlink, hbramble-no, mw, ghw,
mon-mw, and hw are all equivalent with respect to boundedness. In other words,
the following are equivalent:

– A class of hypergraph has bounded hlink,

– a class of hypergraph has bounded hbramble-no,

– a class of hypergraph has bounded mw,

– a class of hypergraph has bounded ghw,

– a class of hypergraph has bounded mon-mw,

– a class of hypergraph has bounded hw.

Further hypergraph invariants related to hypertree-width are discussed in
[AGG07].

6 Concluding remarks

At last we add notes on several research directions that have not fit into the core
survey in the previous chapters, but which are currently active and which we
consider interestingly related to our main topic — structural width parameters
in computer science. Our overall goal is to show the readers that there is a
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lot of theoretical research going on in this area, besides ordinary graph tree-
width, and that there is a high potential here for new applications in efficient
algorithmic design. Of course, many deep theoretical questions about width
parameters remain unanswered yet, and new theoretical research directions still
wait to be opened.

6.1 Vertex-free view of tree-width

Notice an interesting fact that all definitions of graph tree-width introduced so
far make explicit use of vertices. That seems to be the major obstructions when
trying to extend this notion to other combinatorial structures (except possibly
hypergraphs). On the other hand, the notion of branch-width, for instance,
has been straightforwardly generalized to all structures possessing a reasonable
measure of connectivity, and Chapter 4 shows how useful such abstract general-
izations could be for solving seemingly unrelated problems (clique-width). So we
return back to the tree-width notion from a new, vertex-free perspective [HW06],
inspired by matroids.

A VF-tree-decomposition of a graph G is a pair (T, τ), where T is a tree,
and τ : E(G)→ V (T ) is an arbitrary mapping of edges to the tree nodes. (The
shortcut VF refers to “vertex-free”.) For a node x of T , denote the connected
components (branches) of T − x by T1, . . . , Td and set Fi = τ−1

(

V (Ti)
)

. The

node-width of x is defined by |V (G)|+(d−1) ·c(G)−
∑d

i=1 c(G\Fi) , where c(H)
denotes the number of components of a graph H. The width of the decomposi-
tion (T, τ) is the maximum width over all the nodes of T , and the smallest width
over all VF-tree-decompositions of G is the VF-tree-width of G. See Figure 22.

a b

fe

h

d

g

c

∅

{fb, fe, fg}

{cb, cd, cg}{hd, he, hg}

{ab, ad, ae}

Figure 22: An example of a VF-tree-decomposition of the cube graph of width
3, where the images of edges under τ are listed at the tree nodes (cf. Figure 3).

At first glance, it may seem surprising that this definition has anything in
common with the traditional definition from Section 1.1. It is important to
note that the mapping τ makes no analogue of bags. Instead, τ replaces the
first condition of a tree-decomposition, and the second condition (interpolation)
is “embedded” inside the formula for node-width. Yet their equality can be
proved:

Theorem 6.1 (Hliněný and Whittle [HW06]). The tree-width of a nonempty
graph G equals the VF-tree-width of G.

The proof of this statement makes essential use of a “geometrical” view of the
VF-tree-width definition provided by its straightforward matroidal extension:
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The node-width in a VF-tree-decomposition of a matroid M on E is given by
∑d

i=1 rankM

(

E \ Fi

)

− (d − 1) · rank(M), which is exactly equal to the above
expression on cycle matroids of graphs. Even this matroidal generalization of
tree-width is in a close relation with branch-width:

Theorem 6.2 (Hliněný and Whittle [HW06]). Let M be a matroid of tree-width
t and branch-width b > 1. Then b ≤ t + 1 ≤ 2b − 1, and both bounds are best
possible.

6.2 Width parameters on digraphs

The question of finding a suitable extension of width notions from undirected
to directed graphs, with similarly nice algorithmic properties, seems to be a
challenging problem. There appear to be two key properties such an extensions
should possess: First, a “directed width” should be closely related with ordinary
width parameters on symmetric orientations of graphs. Second, a “directed
width” of acyclic digraphs should be low.

Nowadays there exist two competing directions of research in extending
ordinary tree-width to digraphs while maintaining the above two properties:
The former directed tree-width notion by Johnson, Robertson, Seymour, and
Thomas [JRST01], and recent extensions starting with the DAG-width no-
tion which has been independently proposed by Obdržálek [Obd06b] and by
Berwanger, Dawar, Hunter and Kreutzer [BDHK06]. Some new development
in the latter direction is represented by [HK07, HO06]. We briefly survey the
basic definitions here, and outline their mutual relations and differences.

Directed tree-width. This notion was introduced by Johnson, Robertson,
Seymour and Thomas in [JRST01] as a counterpart of tree-width for directed
graphs. The decomposition structure is still a tree, though this time directed
(with a designated root).

For a directed acyclic graph R we use the following notation: If r, r′ ∈ V (R)
we write r < r′ if there is a directed path with initial vertex r and terminal
vertex r′. We write r ≤ r′ if r < r′ or r = r′. Finally, for e ∈ E(R), e ∼ r if e
is incident with r. For a graph G, a set S ⊆ V \ Z is Z-normal if there is no
directed path in G \Z with the first and last vertices in S that uses a vertex of
G \ (S ∪ Z).

Definition. An arboreal decomposition of a digraph G is a triple (R,X ,W) where
R is a directed tree, and X = {Xe : e ∈ E(R)}, W = {Wr : r ∈ V (R)} are sets
of vertices of G satisfying:

(R1) W is a partition of V (G) into nonempty sets

(R2) for e ∈ E(R), e = (r1, r2) the set
⋃

{Wr : r ∈ V (R) and r ≥ r2} is
Xe-normal.

The width of (R,X ,W) is the least integer w such that for all r ∈ V (R), |Wr ∪
⋃

e∼r Xe| ≤ w. The directed tree-width of a digraph G is the minimum width
over all possible arboreal decompositions of G.

This notion, unfortunately, seems to have some “unnatural behavior”, and
several naturally looking claims and conjectures proposed in [JRST01] turned
out to be false [Adl07, Obd06a] (see also [JRST]).
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DAG-width. Another extension resigns on having a “tree structure” as the
decomposiion basis, but it uses a general acyclic digraph (DAG). (This indeed
looks quite natural for algorithmic applications on directed graphs.) Here is the
formal definition [Obd06b, BDHK06]:

ad

ac

ab

b c

a

d

Figure 23: An illustration of a digraph and its DAG-decomposition.

Definition. A DAG-decomposition of a digraph G is a pair (D,X ) where D is a
DAG and X = {Xd : d ∈ V (D)} is a family of subsets of V (G) satisfying:

(D1) V (G) =
⋃

d∈V (D)Xd

(D2) If (d, d′) ∈ E(D), then for each (v,w) ∈ E s.t. v ∈ X≥d′ \ Xd we have
w ∈ X≥d′ , where X≥c =

⋃

c′≥cXc′ . If d′ is a root we replace Xd with ∅.

(D3) For all d, d′, d′′ ∈ D, if d′ lies on a path from d to d′′, then Xd∩Xd′′ ⊆ Xd′ .

The width of a DAG-decomposition (D,X ) is maxd∈D |Xd|. (Originally, there
has been |Xd|−1 in this expression, but “-1” is removed now.) The DAG-width
of a digraph G is the minimum width over all DAG-decompositions of G.

Acyclic digraphs have DAG-width one. To get a better intuition, see Fig-
ure 23. As ordinary tree-width of a graph [ST93] (also Section 5.7), DAG-width
of a digraph can be exactly characterized [Obd06b] by a natural directed ver-
sion of a robber-and-cops game in which the robber may freely move along
cop-free directed paths. (That means there is no unnatural restriction of robber
movement only to strong components as in [JRST01].)

One of the crucial properties of DAG-width is that, unlike directed
tree-width, DAG-width is not preserved under the operation of reversing
edges [BDHK06, Obd06a]. As could be expected, the DAG-width of a digraph
can be arbitrarily higher than its directed tree-width. A canonical example of
this is a complete directed binary tree with “back” edges.

Elimination orderings. Another promissing attempt builds on so-called ver-
tex elimination ordering of partial k-trees (Section 1.1), which is a direct general-
ization of a simplicial decomposition of a k-tree as a chordal graph. The natural
extension of this concept to directed graphs has been independently proposed
by Hliněný and Obdržálek [HO06], and by Hunter and Kreutzer [HK07].

Definition. The width of an ordering (v1, v2, . . . , vn) of vertices of a digraph G
is defined as the maximal cardinality |B(vi)| for i ∈ [1, n], where

B(vi) =
{

vj : j ∈ [1, i − 1], and there is a directed path P ⊆ G from vi to vj

such that all internal vertices of P are from {vk : k ∈ [i+ 1, n]}
}

.
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The elimination-ordering width of G is the smallest width over all orderings of
the vertices of G.

While [HO06] conjectured that elimination-ordering width is the same as
DAG-width minus one, [HK07] prove that these two differ in general. Hunter
and Kreutzer [HK07] subsequently introduce another width measure for di-
graphs, called Kelly-width, which is exactly one larger than elimination-ordering
width, and which is better suited for algorithmic applications.

6.3 Width and decidability of theories

We considered in the article many width parameters that proved to be useful
to design parameterized algorithms. A basic result in this area says that when
a class K of structures has bounded tree-width then all MSO problems can be
solved in polynomial and even in linear time. Here we will investigate a special
“converse of this result”. In the absolute sense of the word “converse” this is not
true, since there are classes of structures K such that each MSO problem can be
solves in polynomial or even linear time, and yet K has unbounded tree-width.
This has been proved by Makowsky and Marino in [MM03] by considering a
class of grids, in which each edge is subdivided with a sufficiently large number
(2n) of vertices of degree 2. Another example can be constructed by considering
grids with a sufficient number of isolated vertices added. In this examples the
tree-width (and also the clique-width) is growing only logarithmically in the size
of the graphs, i.e. the graph structure is artificially blown up by some trivial
(indistinguishable) parts. It would be interesting to know whether there are
examples where the tree-width (clique-width) is growing linearly with the size.

Makowsky and Marino [MM03] made the following observation. Assume
P 6= NP . If K is a class of graphs for which each MSO problem is polynomial
and K is closed under minors or topological minors, then K is of bounded
tree-width. This is easy to see, since 3-colorability is NP-complete for planar
graphs and the exclusion of a planar graph leads to bounded tree-width. In the
following subsection we will consider a stronger converse by considering theories
of classes of structures.

Decidability of theories. Until now, we have focused only on single algo-
rithmic problems. From now on we shall consider whole theories, in other words
collections of algorithmic problems in the sense above. We assume that a suit-
able language L is fixed for a certain class K of structures. The L-theory of K

is defined as ThL(K) :=
{

ϕ : ϕ is a sentence of L, and G |= ϕ for all G ∈ K
}

.
Hence, a theory is just the set of all the properties which all structures of K

possess. If K = {G}, we write ThL(G) instead of ThL(K). Using this notation
we obtain ThL(K) =

⋂

G∈K
ThL(G). A theory is said to be decidable if there is

an algorithm deciding for an arbitrary sentence ϕ in L, whether ϕ ∈ ThL(K) or
not, i.e. whether ϕ is true in all structures of K. Otherwise this theory is said
to be undecidable.

The surprising fact concerning decidability of theories is that the tradeoff
between decidability or undecidability of a theory, the structure of the models
of the theory and the expressive power of the corresponding logic shows the
same behavioral patterns that we have already observed for the complexity of
algorithmic problems. A good introduction into the decidability of theories can
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be found in [Rab77]. Surveys on first order theories, monadic second order
theories and theories with generalized quantifiers are given in [San78, Gur85,
BSTW80, BSTW85]. One of the strongest decidability results for MSO-theories
of classes of graphs is the following result.

Theorem 6.3. (Rabin [Rab69], Shelah [She75]) The monadic second order
theory of the class of all (infinite) trees is decidable.

This result has been proved by Rabin in the countable case by reducing
it to the MSO-theory of the two successor functions S2S (we introduced this
structure as the complete infinite binary tree), which is decidable using tree au-
tomata running on the full binary tree. The result has been extended by Shelah
and Stupp [She75, Stu75] to arbitrary trees. One of the main tools to prove de-
cidability or undecidability of theories is again interpretability (Section 2.3): If
ThL(K) is interpretable in ThL′(K′), then the decidability of ThL′(K′) implies
the decidability of ThL(K). In this way one readily proves that the MSO-theory
of the class of all graphs as incidence structures (MS2) of tree-width at most k
is decidable, for every k. For instance a slight modification of Theorem 3.9
extends such a decidability result to all matroids representable over any fixed
finite field.

There are plenty of other interesting studies and results in this direction, like
the one on TreeMSO-classes (or tree-like) [CM00, CM02], on tree-interpretable
infinite structures [Blu04, BG00], or on the use of interpretability technique
[Rab65, Rab69, Rab77, See75, See76, See79, RH71, BSTW80, BSTW85].

For theories one can make the following observation:

Theorem 6.4. (Seese [See91]) If K is a class of planar graphs so that
ThMS2

(K) is decidable, there is k so that each G ∈ K has tree-width at most k.

The proof of this theorem uses Theorem 1.4 and an encoding of the undecidable
tiling problem (Theorem 1.1) in arbitrarily large grids.

Conjecture 6.5. (Seese [See91]) Assume that K is a class of countable simple
graphs with a decidable MSO-theory. Then there exists a class T of trees so
that ThMSO(K) is interpretable into ThMSO(T ), or equivalently K has bounded
clique-width.

This conjecture has been confirmed for several classes of structures by Cour-
celle [Cou00, Cou03, Cou06] (see also [Blu04]), and recently a slight weakening
(using MSO plus parity counting) of the conjucture has been proved by Courcelle
and Oum [CO07]. Until now there are no known counterexamples to Conjec-
ture 6.5 within some other classes of structures. For more details, see [HS06].

Concluding message. To conclude this section we return to the main mes-
sage. We have shown how structural and algorithmic properties of graphs,
networks and other structures can be described in logical languages, which were
basically extensions of monadic second order logic (using quantification on sets).
These languages have a suitable model theory especially for trees, which allows
deciding the truth of formulas for given trees in a uniform way by reducing
formulas equivalently to automata working on trees. These decisions can be
performed in linear time since the automata are nothing else but a compact
code for dynamic programming algorithms running on the trees.
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This can be understood as a sort of universal problem solver for structures of
bounded width and algorithmic problems expressible in the discussed calculus.

The corresponding results explain a part of the borderline between NP-
complete and polynomial, or even linear time solvable problems for graphs
(Figure 4). This borderline, moreover, gets clearer when one looks at a stronger
problem, the decidability of MSO theories.

Because of space restrictions we have had to exclude other concepts and re-
sults from logic which are of great interest in this area nevertheless. One of these
concepts are results related to the Feferman-Vaught theorem [FV59, Mak04],
which investigates how the truth of a formula can be computed for strutures
generated by certain operations (also see [She75]). Some of the concepts proved
to be very fruitful for graphs of bounded width if a graph is defined by a graph
grammar, or is built by special operations or can be decomposed via special
decomposition operations [CM02, GM03, Mak04, CMR00, ACPS93]. This is of
special interest for graphs and networks from practical applications in engineer-
ing, since such structures often are build by operations, as in VLSI design.
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and by the Institute of Theoretical Computer Science, project 1M0545. S. Oum
has been partially supported by NSF grant 0354742. G. Gottlob’s work has been
supported by the Austrian Science Fund Project P17222-N04, “Complementary
Approaches to Constraint Satisfaction”.
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