

Twin-width of Planar Graphs is at most 8

Petr Hliněný and Jan Jedelský

Faculty of Informatics, Masaryk University Brno, Czech Republic

Definition. The **twin-width** of a simple graph G is the least integer d

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

 $\begin{array}{l} \max. \ \mathsf{red} = \mathbf{0} \\ \mathsf{twin-width} \leq 3 \end{array}$

• Astronomical upper bounds already since the first pap. [FOCS 2020].

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.
- ArXiv Jun 2022: ≤ 9 by PH.

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.
- ArXiv Jun 2022: ≤ 9 by PH.
- ArXiv Sep 2022: ≥ 7 by Král' and Lamaison.

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.
- ArXiv Jun 2022: ≤ 9 by PH.
- ArXiv Sep 2022: ≥ 7 by Král' and Lamaison.

With a highly refied approach:

• The twin-width of any simple planar graph is at most 8. (ArXiv Oct 2022)

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.
- ArXiv Jun 2022: ≤ 9 by PH.
- ArXiv Sep 2022: ≥ 7 by Král' and Lamaison.

With a highly refied approach:

• The twin-width of any simple planar graph is at most 8. (ArXiv Oct 2022)

And the right answer? 7 or 8?

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.
- ArXiv Jun 2022: ≤ 9 by PH.
- ArXiv Sep 2022: ≥ 7 by Král' and Lamaison.

With a highly refied approach:

• The twin-width of any simple planar graph is at most 8. (ArXiv Oct 2022)

And the right answer? 7 or 8? Wait a bit longer...

 A trigraph G with a skeleton S ⊆ G, where S is a plane 2-connected black graph not crossed by any edges of E(G) \ E(S).

 A trigraph G with a skeleton S ⊆ G, where S is a plane 2-connected black graph not crossed by any edges of E(G) \ E(S).

- A trigraph G with a skeleton S ⊆ G, where S is a plane 2-connected black graph not crossed by any edges of E(G) \ E(S).
- A BFS tree T ⊆ G such that every S-face containing vertices of V(G) \ V(S) is bounded by two T-paths + edge.

- A trigraph G with a skeleton S ⊆ G, where S is a plane 2-connected black graph not crossed by any edges of E(G) \ E(S).
- A BFS tree T ⊆ G such that every S-face containing vertices of V(G) \ V(S) is bounded by two T-paths + edge.
- Contractions respect the BFS layers.

- A trigraph G with a skeleton S ⊆ G, where S is a plane 2-connected black graph not crossed by any edges of E(G) \ E(S).
- A BFS tree T ⊆ G such that every S-face containing vertices of V(G) \ V(S) is bounded by two T-paths + edge.
- Contractions respect the BFS layers.
- V(S) untouched by contractions, and so edges induced by V(S) are black, other (except at the sink) considered red.

- A trigraph G with a skeleton S ⊆ G, where S is a plane 2-connected black graph not crossed by any edges of E(G) \ E(S).
- A BFS tree T ⊆ G such that every S-face containing vertices of V(G) \ V(S) is bounded by two T-paths + edge.
- Contractions respect the BFS layers.
- V(S) untouched by contractions, and so edges induced by V(S) are black, other (except at the sink) considered red.

• Additional detailed conditions for refined proofs...

- A trigraph G with a skeleton S ⊆ G, where S is a plane 2-connected black graph not crossed by any edges of E(G) \ E(S).
- A BFS tree T ⊆ G such that every S-face containing vertices of V(G) \ V(S) is bounded by two T-paths + edge.
- Contractions respect the BFS layers.
- V(S) untouched by contractions, and so edges induced by V(S) are black, other (except at the sink) considered red.

- Additional detailed conditions for refined proofs...
- This setup largely restricts possible red degrees.

4 / 16

3 Simple Proof of Twin-Width \leq **11**

 Given a simple planar graph G, extend G into a plane triangulation G⁺ ⊇ G by adding vertices(!).

3 Simple Proof of Twin-Width \leq **11**

- Given a simple planar graph G, extend G into a plane triangulation G⁺ ⊇ G by adding vertices(!).
- Choose a root on the outer f., and a BFS tree of G⁺ from this root. Note that all edges are only between same and successive BFS layers.

Simple Proof of Twin-Width ≤ 11

- Given a simple planar graph G, extend G into a plane triangulation G⁺ ⊇ G by adding vertices(!).
- Choose a root on the outer f., and a BFS tree of G⁺ from this root. Note that all edges are only between same and successive BFS layers.

• Proceed by induction...

3

merge two skel. faces, contract, merge two skel. faces, contract, merge two skel. faces, contract, merge two skel. faces, contract,

.

• So, proceed by induction...

- And how do we get to "merge two skeleton faces"?
 - we use a top-down decomposition first...

(starting from the triangular outer face, and the root at its top)

4 Refined Proof of Twin-Width

Start as before (extending to a triangulation + a BFS tree), but:

• Use a *left-aligned* BFS tree;

4 Refined Proof of Twin-Width <>8

Start as before (extending to a triangulation + a BFS tree), but:

• Use a *left-aligned* BFS tree;

meaning the shortest paths are chosen more (most) to the left in the drawing.

• Merge skeleton faces across a *vertical-horizontal division* (instead of simply merging two faces)

- Merge skeleton faces across a *vertical-horizontal division* (instead of simply merging two faces)
 - these recursive divisions are first obtained in a top-down approach.

• How the contractions go with our skeleton-face merging?

- How the contractions go with our skeleton-face merging?
 - bottom-up and right-to-left and bottom-up...

• A local detail of the contractions when merging...

Hliněný and Jedelský, FI MU Brno, CZ, 2023

• We have got to an upper bound of 8, but the lower bound is 7 !?

We have got to an upper bound of 8, but the lower bound is 7 !?
 A proof of < 7 is on the way... (but very long case analysis)

- We have got to an upper bound of 8, but the lower bound is 7 !?
 A proof of < 7 is on the way... (but very long case analysis)
- What to try next?

- We have got to an upper bound of 8, but the lower bound is 7 !?
 A proof of < 7 is on the way... (but very long case analysis)
- What to try next?

Say, the twin-width of bipartite planar graphs? We know ≤ 6 ,

- We have got to an upper bound of 8, but the lower bound is 7 !?
 A proof of < 7 is on the way... (but very long case analysis)
- What to try next?

Say, the twin-width of bipartite planar graphs? We know ≤ 6 , but we conjecture it to be 5 in the worst case.

- We have got to an upper bound of 8, but the lower bound is 7 !?
 A proof of < 7 is on the way... (but very long case analysis)
- What to try next?

Say, the twin-width of bipartite planar graphs? We know ≤ 6 , but we conjecture it to be 5 in the worst case.

• Or, a reasonable upper bound for the twin-width of map graphs?

- We have got to an upper bound of 8, but the lower bound is 7 !?
 A proof of < 7 is on the way... (but very long case analysis)
- What to try next?

Say, the twin-width of bipartite planar graphs? We know ≤ 6 , but we conjecture it to be 5 in the worst case.

Or, a reasonable upper bound for the twin-width of map graphs?
 [Twin-width I] an implicit bound,
 [Bonnet–Kwon–Wood] a 7-digit bound

- We have got to an upper bound of 8, but the lower bound is 7 !?
 A proof of < 7 is on the way... (but very long case analysis)
- What to try next?

Say, the twin-width of bipartite planar graphs? We know ≤ 6 , but we conjecture it to be 5 in the worst case.

- Or, a reasonable upper bound for the twin-width of map graphs?
 [Twin-width I] an implicit bound,
 [Bonnet-Kwon-Wood] a 7-digit bound
- Lastly, can we use our ideas to improve the planar product structure, or the planar queue number?

- We have got to an upper bound of 8, but the lower bound is 7 !?
 A proof of < 7 is on the way... (but very long case analysis)
- What to try next?

Say, the twin-width of bipartite planar graphs? We know ≤ 6 , but we conjecture it to be 5 in the worst case.

- Or, a reasonable upper bound for the twin-width of map graphs?
 [Twin-width I] an implicit bound,
 [Bonnet–Kwon–Wood] a 7-digit bound
- Lastly, can we use our ideas to improve the planar product structure, or the planar queue number?

Thank you for your attention.

