(-

 Twin-width of Planar Graphs

 Twin-width of Planar Graphs is at most 8

 is at most 8}Petr Hliněný and Jan Jedelský
Faculty of Informatics, Masaryk University Brno, Czech Republic

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

$$
\max . \text { red }=2
$$

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

$$
\max . \operatorname{red}=1
$$

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

1 Twin-Width

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

$$
\begin{array}{r}
\text { max. red }=0 \\
\text { twin-width } \leq 3
\end{array}
$$

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.
- ArXiv Jun 2022: ≤ 9 by PH.

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.
- ArXiv Jun 2022: ≤ 9 by PH.
- ArXiv Sep 2022: ≥ 7 by Král' and Lamaison.

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.
- ArXiv Jun 2022: ≤ 9 by PH.
- ArXiv Sep 2022: ≥ 7 by Král' and Lamaison.

With a highly refied approach:

- The twin-width of any simple planar graph is at most 8. (ArXiv Oct 2022)

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.
- ArXiv Jun 2022: ≤ 9 by PH.
- ArXiv Sep 2022: ≥ 7 by Král' and Lamaison.

With a highly refied approach:

- The twin-width of any simple planar graph is at most 8. (ArXiv Oct 2022)

And the right answer? 7 or 8 ?

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.
- ArXiv Jun 2022: ≤ 9 by PH.
- ArXiv Sep 2022: ≥ 7 by Král' and Lamaison.

With a highly refied approach:

- The twin-width of any simple planar graph is at most 8. (ArXiv Oct 2022)

And the right answer? 7 or 8 ? Wait a bit longer. . .

2 Basic Setup for the Proof

- A trigraph G with a skeleton $S \subseteq G$, where S is a plane 2-connected black graph not crossed by any edges of $E(G) \backslash E(S)$.

2 Basic Setup for the Proof

- A trigraph G with a skeleton $S \subseteq G$, where S is a plane 2-connected black graph not crossed by any edges of $E(G) \backslash E(S)$.

2 Basic Setup for the Proof

- A trigraph G with a skeleton $S \subseteq G$, where S is a plane 2-connected black graph not crossed by any edges of $E(G) \backslash E(S)$.
- A BFS tree $T \subseteq G$ such that every S-face containing vertices of $V(G) \backslash V(S)$ is bounded by two T-paths + edge.

2 Basic Setup for the Proof

- A trigraph G with a skeleton $S \subseteq G$, where S is a plane 2-connected black graph not crossed by any edges of $E(G) \backslash E(S)$.
- A BFS tree $T \subseteq G$ such that every S-face containing vertices of $V(G) \backslash V(S)$ is bounded by two T-paths + edge.
- Contractions respect the BFS layers.

2 Basic Setup for the Proof

- A trigraph G with a skeleton $S \subseteq G$, where S is a plane 2-connected black graph not crossed by any edges of $E(G) \backslash E(S)$.
- A BFS tree $T \subseteq G$ such that every S-face containing vertices of $V(G) \backslash V(S)$ is bounded by two T-paths + edge.
- Contractions respect the BFS layers.
- $V(S)$ untouched by contractions, and so edges induced by $V(S)$ are black, other (except at the sink) considered red.

2 Basic Setup for the Proof

- A trigraph G with a skeleton $S \subseteq G$, where S is a plane 2-connected black graph not crossed by any edges of $E(G) \backslash E(S)$.
- A BFS tree $T \subseteq G$ such that every S-face containing vertices of $V(G) \backslash V(S)$ is bounded by two T-paths + edge.
- Contractions respect the BFS layers.
- $V(S)$ untouched by contractions, and so edges induced by $V(S)$ are black, other (except at the sink) considered red.

- Additional detailed conditions for refined proofs...

2 Basic Setup for the Proof

- A trigraph G with a skeleton $S \subseteq G$, where S is a plane 2-connected black graph not crossed by any edges of $E(G) \backslash E(S)$.
- A BFS tree $T \subseteq G$ such that every S-face containing vertices of $V(G) \backslash V(S)$ is bounded by two T-paths + edge.
- Contractions respect the BFS layers.
- $V(S)$ untouched by contractions, and so edges induced by $V(S)$ are black, other (except at the sink) considered red.

- Additional detailed conditions for refined proofs...
- This setup largely restricts possible red degrees.

3 Simple Proof of Twin-Width ≤ 11

- Given a simple planar graph G, extend G into a plane triangulation $G^{+} \supseteq G$ by adding vertices(!).

3 Simple Proof of Twin-Width ≤ 11

- Given a simple planar graph G, extend G into a plane triangulation $G^{+} \supseteq G$ by adding vertices(!).
- Choose a root on the outer f., and a BFS tree of G^{+}from this root. Note that all edges are only between same and successive BFS layers.

3 Simple Proof of Twin-Width ≤ 11

- Given a simple planar graph G, extend G into a plane triangulation $G^{+} \supseteq G$ by adding vertices(!).
- Choose a root on the outer f., and a BFS tree of G^{+}from this root. Note that all edges are only between same and successive BFS layers.
- Proceed by induction...
merge two skel. faces, contract, merge two skel. faces, contract, merge two skel. faces, contract, merge two skel. faces, contract,

- So, proceed by induction. . .

- And how do we get to "merge two skeleton faces"?
- we use a top-down decomposition first...
(starting from the triangular outer face, and the root at its top)

4 Refined Proof of Twin-Width ≤ 8

Start as before (extending to a triangulation + a BFS tree), but:

- Use a left-aligned BFS tree;

4 Refined Proof of Twin-Width ≤ 8

Start as before (extending to a triangulation + a BFS tree), but:

- Use a left-aligned BFS tree;
meaning the shortest paths are chosen more (most) to the left in the drawing.

- Merge skeleton faces across a vertical-horizontal division (instead of simply merging two faces)
- Merge skeleton faces across a vertical-horizontal division (instead of simply merging two faces)
- these recursive divisions are first obtained in a top-down approach.

- How the contractions go with our skeleton-face merging?
- How the contractions go with our skeleton-face merging?
- bottom-up and right-to-left and bottom-up...

- A local detail of the contractions when merging. . .

5 Conclusions

- We have got to an upper bound of 8 , but the lower bound is 7 !?

5 Conclusions

- We have got to an upper bound of 8 , but the lower bound is 7 !? A proof of ≤ 7 is on the way... (but very long case analysis)

5 Conclusions

- We have got to an upper bound of 8 , but the lower bound is 7 !? A proof of ≤ 7 is on the way... (but very long case analysis)
- What to try next?

5 Conclusions

- We have got to an upper bound of 8 , but the lower bound is 7 !? A proof of ≤ 7 is on the way... (but very long case analysis)
- What to try next?

Say, the twin-width of bipartite planar graphs? We know ≤ 6,

5 Conclusions

- We have got to an upper bound of 8 , but the lower bound is 7 !? A proof of ≤ 7 is on the way... (but very long case analysis)
- What to try next?

Say, the twin-width of bipartite planar graphs? We know ≤ 6, but we conjecture it to be 5 in the worst case.

5 Conclusions

- We have got to an upper bound of 8 , but the lower bound is 7 !? A proof of ≤ 7 is on the way... (but very long case analysis)
- What to try next?

Say, the twin-width of bipartite planar graphs? We know ≤ 6, but we conjecture it to be 5 in the worst case.

- Or, a reasonable upper bound for the twin-width of map graphs?

5 Conclusions

- We have got to an upper bound of 8 , but the lower bound is 7 !? A proof of ≤ 7 is on the way... (but very long case analysis)
- What to try next?

Say, the twin-width of bipartite planar graphs? We know ≤ 6, but we conjecture it to be 5 in the worst case.

- Or, a reasonable upper bound for the twin-width of map graphs?
[Twin-width I] an implicit bound, [Bonnet-Kwon-Wood] a 7-digit bound

5 Conclusions

- We have got to an upper bound of 8 , but the lower bound is 7 !? A proof of ≤ 7 is on the way... (but very long case analysis)
- What to try next?

Say, the twin-width of bipartite planar graphs? We know ≤ 6, but we conjecture it to be 5 in the worst case.

- Or, a reasonable upper bound for the twin-width of map graphs?
[Twin-width I] an implicit bound, [Bonnet-Kwon-Wood] a 7-digit bound
- Lastly, can we use our ideas to improve the planar product structure, or the planar queue number?

5 Conclusions

- We have got to an upper bound of 8 , but the lower bound is 7 !? A proof of ≤ 7 is on the way... (but very long case analysis)
- What to try next?

Say, the twin-width of bipartite planar graphs? We know ≤ 6, but we conjecture it to be 5 in the worst case.

- Or, a reasonable upper bound for the twin-width of map graphs?
[Twin-width I] an implicit bound, [Bonnet-Kwon-Wood] a 7-digit bound
- Lastly, can we use our ideas to improve the planar product structure, or the planar queue number?

Thank you for your attention.

