Twin-width of Planar Graphs a Short Proof

Petr Hliněný

Faculty of Informatics, Masaryk University
Brno, Czech Republic

1 Trigraphs and Twin-Width

Definition. A trigraph is just a simple graph with some edges marked red.

1 Trigraphs and Twin-Width

Definition. A trigraph is just a simple graph with some edges marked red.

- Red edges signal discrepancies / errors in the adjacency relation during (and after) vertex-pair contractions.

1 Trigraphs and Twin-Width

Definition. A trigraph is just a simple graph with some edges marked red.

- Red edges signal discrepancies / errors in the adjacency relation during (and after) vertex-pair contractions.

1 Trigraphs and Twin-Width

Definition. A trigraph is just a simple graph with some edges marked red.

- Red edges signal discrepancies / errors in the adjacency relation during (and after) vertex-pair contractions.

1 Trigraphs and Twin-Width

Definition. A trigraph is just a simple graph with some edges marked red.

- Red edges signal discrepancies / errors in the adjacency relation during (and after) vertex-pair contractions.

Definition. The twin-width of a simple graph G is the least integer d

1 Trigraphs and Twin-Width

Definition. A trigraph is just a simple graph with some edges marked red.

- Red edges signal discrepancies / errors in the adjacency relation during (and after) vertex-pair contractions.

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.
[Bonnet, Kim, Thomassé and Watrigant, FOCS 2020]

Twin-Width Example

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Twin-Width Example

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Twin-Width Example

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Twin-Width Example

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Twin-Width Example

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Twin-Width Example

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Twin-Width Example

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Twin-Width Example

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Twin-Width Example

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Twin-Width Example

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Twin-Width Example

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

$\max . \operatorname{red}=2$

Twin-Width Example

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Twin-Width Example

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

max. red $=2$

Twin-Width Example

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Twin-Width Example

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

$$
\max . \operatorname{red}=2
$$

Twin-Width Example

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Twin-Width Example

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

$$
\max . \operatorname{red}=1
$$

Twin-Width Example

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Twin-Width Example

Definition. The twin-width of a simple graph G is the least integer d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

$$
\begin{array}{r}
\text { max. red }=0 \\
\text { twin-width } \leq 3
\end{array}
$$

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Ma. Pilipczuk [WG'22].

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Ma. Pilipczuk [WG'22].
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Ma. Pilipczuk [WG'22].
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Ma. Pilipczuk [WG'22].
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.
- ArXiv Jun 2022: ≤ 9 by PH.

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Ma. Pilipczuk [WG'22].
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.
- ArXiv Jun 2022: ≤ 9 by PH.
- ArXiv Sep 2022: ≥ 7 by Král' and Lamaison.

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Ma. Pilipczuk [WG'22].
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.
- ArXiv Jun 2022: ≤ 9 by PH.
- ArXiv Sep 2022: ≥ 7 by Král' and Lamaison.
- ArXiv Oct 2022: ≤ 8 by PH and Jedelský [ICALP'23].

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Ma. Pilipczuk [WG'22].
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.
- ArXiv Jun 2022: ≤ 9 by PH.
- ArXiv Sep 2022: ≥ 7 by Král' and Lamaison.
- ArXiv Oct 2022: ≤ 8 by PH and Jedelský [ICALP'23].

So, what NEW?

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Ma. Pilipczuk [WG'22].
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.
- ArXiv Jun 2022: ≤ 9 by PH.
- ArXiv Sep 2022: ≥ 7 by Král' and Lamaison.
- ArXiv Oct 2022: ≤ 8 by PH and Jedelský [ICALP'23].

So, what NEW? With a short and elementary proof;

- The twin-width of any simple planar graph is at most 11.

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Ma. Pilipczuk [WG'22].
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.
- ArXiv Jun 2022: ≤ 9 by PH.
- ArXiv Sep 2022: ≥ 7 by Král' and Lamaison.
- ArXiv Oct 2022: ≤ 8 by PH and Jedelský [ICALP'23].

So, what NEW? With a short and elementary proof;

- The twin-width of any simple planar graph is at most 11.

And the right exact answer? 7 or 8 ?

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Ma. Pilipczuk [WG'22].
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.
- ArXiv Jun 2022: ≤ 9 by PH.
- ArXiv Sep 2022: ≥ 7 by Král' and Lamaison.
- ArXiv Oct 2022: ≤ 8 by PH and Jedelský [ICALP'23].

So, what NEW? With a short and elementary proof;

- The twin-width of any simple planar graph is at most 11.

And the right exact answer? 7 or 8 ?
7 hopefully soon...

2 Basic Setup for the Proof(s)

- A trigraph G with a skeleton $S \subseteq G$, where S is a plane 2-connected black graph not crossed by any edges of $E(G) \backslash E(S)$.

2 Basic Setup for the Proof(s)

- A trigraph G with a skeleton $S \subseteq G$, where S is a plane 2-connected black graph not crossed by any edges of $E(G) \backslash E(S)$.

2 Basic Setup for the Proof(s)

- A trigraph G with a skeleton $S \subseteq G$, where S is a plane 2-connected black graph not crossed by any edges of $E(G) \backslash E(S)$.
- A BFS tree $T \subseteq G$ such that every S-face containing vertices of $V(G) \backslash V(S)$ is bounded by two T-paths + edge.

2 Basic Setup for the Proof(s)

- A trigraph G with a skeleton $S \subseteq G$, where S is a plane 2-connected black graph not crossed by any edges of $E(G) \backslash E(S)$.
- A BFS tree $T \subseteq G$ such that every S-face containing vertices of $V(G) \backslash V(S)$ is bounded by two T-paths + edge.
- Contractions respect the BFS layers, and stick with ≤ 3 vert. per S-face and layer.

2 Basic Setup for the Proof(s)

- A trigraph G with a skeleton $S \subseteq G$, where S is a plane 2-connected black graph not crossed by any edges of $E(G) \backslash E(S)$.
- A BFS tree $T \subseteq G$ such that every S-face containing vertices of $V(G) \backslash V(S)$ is bounded by two T-paths + edge.
- Contractions respect the BFS layers, and stick with ≤ 3 vert. per S-face and layer.
- $V(S)$ untouched by contractions, and so edges induced by $V(S)$ are black, other (except at the sink) considered red.

2 Basic Setup for the Proof(s)

- A trigraph G with a skeleton $S \subseteq G$, where S is a plane 2-connected black graph not crossed by any edges of $E(G) \backslash E(S)$.
- A BFS tree $T \subseteq G$ such that every S-face containing vertices of $V(G) \backslash V(S)$ is bounded by two T-paths + edge.
- Contractions respect the BFS layers, and stick with ≤ 3 vert. per S-face and layer.
- $V(S)$ untouched by contractions, and so edges induced by $V(S)$ are black, other (except at the sink) considered red.

- Can adopt additional detailed conditions for refined proofs...

2 Basic Setup for the Proof(s)

- A trigraph G with a skeleton $S \subseteq G$, where S is a plane 2-connected black graph not crossed by any edges of $E(G) \backslash E(S)$.
- A BFS tree $T \subseteq G$ such that every S-face containing vertices of $V(G) \backslash V(S)$ is bounded by two T-paths + edge.
- Contractions respect the BFS layers, and stick with ≤ 3 vert. per S-face and layer.
- $V(S)$ untouched by contractions, and so edges induced by $V(S)$ are black, other (except at the sink) considered red.

- Can adopt additional detailed conditions for refined proofs. . .
- This setup largely restricts possible red degrees $\rightarrow \leq 11$.

3 The Very Short Proof

- Given a simple planar graph H, extend H into a plane triangulation $H^{+} \supseteq H$ by adding vertices(!).

3 The Very Short Proof

- Given a simple planar graph H, extend H into a plane triangulation $H^{+} \supseteq H$ by adding vertices(!).
- Choose a root on the outer f., and a BFS tree of H^{+}from this root. Note that all edges are only between same and successive BFS layers. Start with $G=S=H^{+}$.

3 The Very Short Proof

- Given a simple planar graph H, extend H into a plane triangulation $H^{+} \supseteq H$ by adding vertices(!).
- Choose a root on the outer f., and a BFS tree of H^{+}from this root. Note that all edges are only between same and successive BFS layers. Start with $G=S=H^{+}$.
- Proceed by induction...
merge two skel. faces, contract* (recall - we preserve BFS layers, and ≤ 3 vert. per face and layer)

3 The Very Short Proof

- Given a simple planar graph H, extend H into a plane triangulation $H^{+} \supseteq H$ by adding vertices(!).
- Choose a root on the outer f., and a BFS tree of H^{+}from this root. Note that all edges are only between same and successive BFS layers. Start with $G=S=H^{+}$.
- Proceed by induction...
merge two skel. faces, contract* (recall - we preserve BFS layers, and ≤ 3 vert. per face and layer) merge two skel. faces, contract *, merge two skel. faces, contract*, merge two skel. faces, contract *,

- So, how does it work?

- And the last bit - how to find the two skeleton faces to be merged?
- Algorithmically, we'd "reverse" a natural recur. decomposition...
- And the last bit - how to find the two skeleton faces to be merged?
- Algorithmically, we'd "reverse" a natural recur. decomposition...
- In a theory proof, however, we just pick a minimal cycle within the current skeleton enclosing some BFS-tree leaf.

4 Conclusions

- While we know an upper bound of 8 (on the twin-width of planar graphs), the presented proof for ≤ 11 is way much simpler. . .

4 Conclusions

- While we know an upper bound of 8 (on the twin-width of planar graphs), the presented proof for ≤ 11 is way much simpler. . . A simple proof brings better understanding of planar twin-width.

4 Conclusions

- While we know an upper bound of 8 (on the twin-width of planar graphs), the presented proof for ≤ 11 is way much simpler. . . A simple proof brings better understanding of planar twin-width.
- What to try next?

4 Conclusions

- While we know an upper bound of 8 (on the twin-width of planar graphs), the presented proof for ≤ 11 is way much simpler. . . A simple proof brings better understanding of planar twin-width.
- What to try next?

Say, a reasonable upper bound for the twin-width of map graphs?

4 Conclusions

- While we know an upper bound of 8 (on the twin-width of planar graphs), the presented proof for ≤ 11 is way much simpler. . .

A simple proof brings better understanding of planar twin-width.

- What to try next?

Say, a reasonable upper bound for the twin-width of map graphs?
[Twin-width I] an implicit bound,
[Bonnet-Kwon-Wood] a 7-digit bound.

4 Conclusions

- While we know an upper bound of 8 (on the twin-width of planar graphs), the presented proof for ≤ 11 is way much simpler. . .

A simple proof brings better understanding of planar twin-width.

- What to try next?

Say, a reasonable upper bound for the twin-width of map graphs?
[Twin-width I] an implicit bound,
[Bonnet-Kwon-Wood] a 7-digit bound.

- Lastly, can we use our ideas to improve the planar product structure theorem, or the planar queue number?

4 Conclusions

- While we know an upper bound of 8 (on the twin-width of planar graphs), the presented proof for ≤ 11 is way much simpler. . .

A simple proof brings better understanding of planar twin-width.

- What to try next?

Say, a reasonable upper bound for the twin-width of map graphs?
[Twin-width I] an implicit bound, [Bonnet-Kwon-Wood] a 7-digit bound.

- Lastly, can we use our ideas to improve the planar product structure theorem, or the planar queue number?

Thank you for your attention.

