Peter Hliněný

Faculty of Informatics, Masaryk University Brno, Czech Republic
||| ||| I Masaryk University
Fl

The basic formula (by Euler):
\#vertices - \#edges + \#faces = 2

\qquad

A simple discharging proof

The generalized formula in dim. d :

Theorem 1 ("Euler-Poincaré formula"; Schläfli [5] 1852). Let P be a convex polytope in \mathbb{R}^{d}, and denote by $f^{c}, c \in\{0,1, \ldots, d\}$, the numbers of faces of P of dimension c. Then

$$
\begin{equation*}
f^{0}-f^{1}+f^{2}-\cdots+(-1)^{d} f^{d}=1 \tag{1}
\end{equation*}
$$

e.g., dim. 4:

A discharging proof again?

- not quite yet, need a different view in 3D first

Eurocomb21 Page 4

Generalized discharging proof in dim. d :

- Denote shortly by E.P.[d] our formula

$$
f^{0}-f^{1}+f^{2}-\cdots+(-1)^{d} f^{d}=1
$$

- Proving by induction on $k>1$

$$
\text { E.P. }[k-1] \& E \cdot P \cdot[k] \Rightarrow \text { E.P. }[k+1]
$$

as follows...

- Consider a polytope in dimension $k+1$, and
- choose a gen. position line q "piercing" two facets.

- Charge vertices by +1 , edges by -1 , polygs. by +1 , ... c-dim. faces by $(-1)^{c}$; c.f. $f^{0}-f^{1}+f^{2}-\cdots+(-1)^{d} f^{d}=1$
- The discharging rule for a face F (of dim. <k):
- Take (any) point x_{F} in the rel. interior of F,
- cut the polytope by the plane through q \& x_{F},
- and send the charge from F to the two facets determ. by two edges of x_{F} in the cut-polyg.

Eurocomb21 Page 5

- Now, all faces discharged to o except the facets.
- A "pierced" facet : all its faces send into it!

$$
1 / 2 x^{\prime \prime} E \cdot P \cdot[k]^{\prime \prime}=1 / 2
$$

$$
\text { "times two" = } 1
$$

- A "clean" facet T gives a more versatile picture...

Set $t:=q \cap$ hyperplane(T), then
Face F sends half-charge to the facet T

$$
\Leftrightarrow=>
$$

the straight line $\overline{\mp x_{F}}$ passes through int T)

$$
\Leftrightarrow
$$

the face F is destroyed by a projection of T from the point t.

- Last bit - where has the unit charge of the full polytope "disappeared"?
\square 1
- Nowhere; actually, we have cheated a bit...
- The "E.P.[K]" formula of each of the two pierced facets used up only $1 / 2$ of the facet charge, and
- the remaining two halves exactly cancel with unit charge of the whole polytope.

Conclusions

- While there exist other simple inductive combin. proofs of the E.-P. formula, they all assume shellability of polytopes (highly nontrivial).
- We are using only very simple "2D" geometry and basics of linear algebra and convexity.

Thank you for your attention.

