Printed slides WG2020

Clique-Width of Point Configurations arXiv:2004.02282 [cs.LO]

 Petr Hliněný ${ }^{1}$

 Petr Hliněný ${ }^{1}$}
with co-authors

Onur Çağırıcı, ${ }^{1}$ Filip Pokrývka, ${ }^{1}$ Abhisekh Sankaran ${ }^{2}$

${ }^{1}$ Faculty of Informatics, Masaryk University, Brno, Czech Republic
${ }^{2}$ Department of Computer Science and Technology, University of Cambridge, UK

Motivation

- Structural width measures \hookrightarrow standard tools of graph algorithms.
- In computational geometry?
"Truly geometric" problems are not discrete, but many questions only care about, e.g., relative position of objects...
- Such as, in points configurations, we care about positions of points with respect to other points and lines spanned by them, but not about precise distances or angles:

Contribution

Considering point configurations -
points sets with the relative positions encoded by the so-called "order type"

- give a definition of clique-width of the order type;
- study frontiers between bounded and unbounded clique-width for it, in particular, give reasonable examples of bounded-cw configurations;
- list examples of geometric problems which are hard in general, but efficiently solvable with a given bounded clique-width decomposition (via efficient solvability of all MSO properties of order types).

small detour

Clique-width of a graph

We have the operations:
(u1) create a new vertex with single label i;

(u2) take the disjoint union of two labelled graphs;

(u3) add all edges between the vertices of label i and label $j(i \neq j)$; and

(u4) relabel all vertices with label i to label j.

Clique-width := the min \# of labels used.

Clique-width in greater generality?

What is more general? Relational structures (of finite arity). As previously. . .
(ul') create new points of the ground set (vertices) with label i;
(u2') take the disjoint union of two labelled structures;
(u4') relabel all entities of label i to label j; and
(us') add all relational tuples based on the current point labels.

This leads to unary clique-width, which does not perform well.
[Adler and Adler, 2008]

Multi-ary clique-width!

[Blumensath, 2006], [Blumensath and Courcelle, 2006]
For relational structures of finite arity:
($\mathrm{m} 1^{\prime}$) create new points of the ground set (vertices) with label i;
($\mathrm{m} 2^{\prime}$) take the disjoint union of two labelled structures;
($\mathrm{m} 4^{\prime}$) relabel all entities of label i to label j; and
($\mathrm{m} 3^{\prime}$) create new multi-ary labels and/or relational tuples based on the current labels (formally - by quantifier-free operations).
such as, binary green labels..

Three ingredients

Order type of a point set P

[Goodman and Pollack, 1983]

Order-type $=$ a ternary structure $\Omega \subseteq P^{3}$, such that
$(a, b, c) \in \Omega$ iff $a b c$ forms a counter-clockwise oriented triangle.
Notes:

- $(a, b, c) \in \Omega$ implies $(b, c, a),(c, a, b) \in \Omega$ (cyclic closure),
- the triple $a b c$ forms a clockwise triangle, iff $(b, a, c) \in \Omega$,
- a, b, c are collinear points, iff $(a, b, c),(b, a, c) \notin \Omega$.

Clique-width of a point configuration

We have the operations:
(w1) create a new point with single label i;
(w2) take the disjoint union of two point sets;
(w3) for every two points, point a of label i and point b of label $j(i \neq j)$, give the ordered pair (a, b) binary label k;
(w4) for every three pairwise distinct points, a, b and c such that c is of (unary) label i, and the pair (a, b) is of (binary) label k, add to the structure the cyclic closure of the ordered triple (a, b, c);

($w 4$ ') under the same conditions as in ($w 4$), add the cyclic closure of $(b, a, c$); (w5) relabel all tuples with label i to label j of equal arity.
Clique-width $:=$ the min sum of arities of labels used.

Example: convex point set has clique-width 4:

Example: convex point set has unbounded unary clique-width:

MSO logic of order types

MSO = monadic second-order logic (quantification over points and sets):

- propositional $\neg, \wedge, \vee, \rightarrow$, equality $=$, quantifiers $\exists x, \forall x, \exists X, \forall X$, and
- the predicate $\operatorname{ccw}(x, y, z)$ with the meaning $(x, y, z) \in \Omega(P)$.

Simple examples

- Points x, y, z are collinear:

$$
\neg \operatorname{ccw}(x, y, z) \wedge \neg \operatorname{ccw}(y, x, z)
$$

- Point y belongs to the convex hull of a set $X \not \supset y$:

$$
\forall x, x^{\prime} \in X\left[\left(x \neq x^{\prime} \wedge \forall z \in X \neg \operatorname{ccw}\left(x^{\prime}, x, z\right)\right) \rightarrow \neg \operatorname{ccw}\left(x^{\prime}, x, y\right)\right]
$$

MSO metatheorem(s)

- [Blumensath and Courcelle, 2006]

A class \mathcal{S} of relational structures is of bounded clique-width, iff \mathcal{S} is contained in an MSO transduction of the class of finite trees.
(Informally, structures of \mathcal{S} can defined by MSO in suitable coloured trees.)
\Rightarrow If we define, e.g., a big grid in \mathcal{S}, then \mathcal{S} has large clique-width.!

- [Courcelle, Makowsky and Rotics, 2000]

On graphs of bounded clique-width, one can solve any MSO-definable decision / enumeration / lin-optimization property in FPT-time.
\Rightarrow The same holds for any (finite) relational structures.

Applications

Examples of NP-hard problems

- GENERAL POSItion SUBSET - a max subset without collinearity.

- Minimum convex partition into $\leq k$ convex faces.

- SEGMENTED TERRAIN GUARDING - adjusted classical terr. guarding.

Conclusions

- New contributions given:
- Mathematically sound definition of clique-width of point configurations, based on established concepts from compgeo and logic.
- Assorted examples showing that the new definition makes good sense in computational geometry.
- In particular, a new application area for the established algorithmic metatheorem for MSO-definable properties.
- Future research proposals:
- Of course, to provide an FPT algorithm for the new width.
- Find applications of the new stuff in metric problems on points.
- Consider clique-width of suitable "restrictions" of order type, e.g., in visibility problems the orientation not inter. for invisible triples.

Thank you for your attention

