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1 Bit of Personal History1 Bit of Personal History

My getting to mathematical computing:

• Early 90’s – some tries to generate snarks on a computer;

that was when I had first met Brendan’s work and nauty.



'

&

$

%

'

&

$
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%P. Hliněný et al., Matroids and computation 2 Generation of Matroids

1 Bit of Personal History1 Bit of Personal History

My getting to mathematical computing:

• Early 90’s – some tries to generate snarks on a computer;

that was when I had first met Brendan’s work and nauty.

• Late 90’s – Negami’s planar cover conjecture;
unsuccessful tries to get a computer-assisted discharging argument, and

a very successful generation of all possible counterexamples to it.

• Since 2000 – MACEK, motivated by Geoff’s questions and suggestions.

Unfortunately, its development not touched since 2006.

• And nowadays – am I too old for programming? Or too lazy?

Perhaps, and so I leave the coding work to my students. . .

For instance;

– generating all posible nonprojective graphs with planar emulators,
– and computing good heuristic partitioned branch-decompositions of

really huge graphs (e.g. the TIGER/Line road maps of USA).
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2 MACEK and Matroid Generation2 MACEK and Matroid Generation

– MAtroids Computed Efficiently toolKit.

• A system developed under influence of Geoff at VUW since 2000.

• Intended to help with tiresome small case-checking in matroid theory.
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• A system developed under influence of Geoff at VUW since 2000.
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• Handling only represented matroids over small finite fields and partial
fields, and richly supporting step-by-step generation of these matroids

from specified base minors.
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2 MACEK and Matroid Generation2 MACEK and Matroid Generation

– MAtroids Computed Efficiently toolKit.

• A system developed under influence of Geoff at VUW since 2000.

• Intended to help with tiresome small case-checking in matroid theory.

• Handling only represented matroids over small finite fields and partial
fields, and richly supporting step-by-step generation of these matroids

from specified base minors.

• Some disadvantages:

– Nonequivalent representations must be handled each one separately,
and

– no support for abstract matroids (though isomorph. testing works).
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2.1 MACEK – a practical example2.1 MACEK – a practical example

– the largest golden-mean matroids of each rank.

Consider a question;

what are the maximum-size golden-mean matroids of each rank?



'

&

$

%

'

&

$
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– the largest golden-mean matroids of each rank.

Consider a question;

what are the maximum-size golden-mean matroids of each rank?

• These are 3-connected, and we may use the Wheels-and-Whirls theorem
to generate all of them in single-element steps.

• MACEK has been developed right for this kind of tasks. . .
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2.1 MACEK – a practical example2.1 MACEK – a practical example

– the largest golden-mean matroids of each rank.

Consider a question;

what are the maximum-size golden-mean matroids of each rank?

• These are 3-connected, and we may use the Wheels-and-Whirls theorem
to generate all of them in single-element steps.

• MACEK has been developed right for this kind of tasks. . .

{ <Wh3 <W3 }

!represgen (S) allq

!append ((S)) "!extend cccccccccccccccc (T)"

!restart

!prtree

– !restart is a tricky way to repeat (cycle) in MACEK.
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2.2 MACEK – a second practical example2.2 MACEK – a second practical example

– the intertwines of M(K3,3) and M(K3,3)
∗.

As Gordon has mentioned in his talk, another interesting task is:

Find the matroids M with both M(K3,3) and M(K3,3)
∗ as minors such

that no proper minor of M has both M(K3,3) and M(K3,3)
∗ as minors.
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2.2 MACEK – a second practical example2.2 MACEK – a second practical example

– the intertwines of M(K3,3) and M(K3,3)
∗.

As Gordon has mentioned in his talk, another interesting task is:

Find the matroids M with both M(K3,3) and M(K3,3)
∗ as minors such

that no proper minor of M has both M(K3,3) and M(K3,3)
∗ as minors.

• Having such 3-connected M , there is a 3-connected single-element minor

N of M containing M(K3,3) but not M(K3,3)
∗.

– All such potential matroids N can be generated in step-by-step 3-
connected extensions from M(K3,3) while excluding M(K3,3)

∗.

– This is very fast in MACEK.

• The next step then adds one element to the generated N in all possible
ways creating an M(K3,3)

∗-minor. Let N1 be the extended matroid.
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– All single-element removals of N1 are then checked for M(K3,3) and
M(K3,3)

∗, which can validate N1 = M being an intertwine.
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The initial generation multi-step

In the rather curious (or even bizzare) language of MACEK this reads:

!pfield GF2

!verbose

{ <grK33 }

@name itwi

@ext-forbid grK33#

!extend $param1

!mmove ((S)) >(()(S))

!prtree

!writetreeto itwi-$param1 (()(T))

– here param1 controls the max size of intended N (the number of extension
steps we take),

– and !mmove is needed to “deprive” the generated matrices of traces (the
signatures) of their generating sequences.
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Continuing; the one-element addition

This step is already quite slow – having to “forget” the previous generating
sequence, we arrive at many duplicates.

So;

!quiet

!append (T) "@eraseall ext-forbid"

!extend b (()(S)) >((2)(S))

!prtree

!writetreeto itwi-$param1-b ((2)(T))

{ <grK33# }

!filt-minor ((2)(S)) ((3)(T))

!prtree

!writetreeto itwi-$param1-bm ((2)(T))

– all the one-element additions are tried for each potential N ,

– and only those extensions having an M(K3,3)
∗ are kept.
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Finishing; testing an intertwine

The finishing step done just by brute force – all one-element removals are tested
as follows for the presence of M(K3,3) and M(K3,3)

∗ minors.

!append ((2)(S)) "!remeach (T); !quiet"

!append ((2)(S)) "!mread grK33 >(()(t)); !mread grK33# >((2)(t))"

!append ((2)(S)) "!filt-minor ((S)) (()(T))"

!append ((2)(S)) "!filt-minor ((S)) ((2)(T))"

!append ((2)(S)) "!iflist 0 = ((S)); !writeto itwi-$param1-ok/ (T)"

!restart

!prtree
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3 Canonical Generation: Generating Sequences3 Canonical Generation: Generating Sequences

– an idea extending Brendan’s orderly generation approach.

The core: Not consider the task as just “constructing a matroid”, but “con-

structing a particular generating sequence” (leading to this matroid).
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• This is a better framework to capture various involved connectivity

restrictions in chain and splitter theorems.
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“results”, define a linear canonical order.
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%P. Hliněný et al., Matroids and computation 10 Generation of Matroids

3 Canonical Generation: Generating Sequences3 Canonical Generation: Generating Sequences

– an idea extending Brendan’s orderly generation approach.

The core: Not consider the task as just “constructing a matroid”, but “con-

structing a particular generating sequence” (leading to this matroid).

• This is a better framework to capture various involved connectivity

restrictions in chain and splitter theorems.

• It is really needed, say (in MACEK), if one wants to stick with a

particular matrix representation.

Canonical minimality: Among all generating sequences leading to isomorphic
“results”, define a linear canonical order.

Always generate only the canonically minimal sequence among all.

• Of course, this canonical order must be hereditary (on subseq.).

• “All” generating sequences can be easily replaced with “all conform-
ing to some arbitrary criteria” if these criteria are hereditary, too.
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The overall advantage: Now, we can define many, even really weird, restric-
tions on the generating sequences; they just have to be hereditary. . .

The price to pay: Often, the requirement of being hereditary on subsequences

implies quite “expensive” canonical orderings, such as:
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• A lexicographical ordering on the sequences with the heavier keys
“on the left” (beginning of the sequence) – unlike the orderly gen-

eration which simply takes the heaviest key at the sequence end.
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• Consequently, a canonicity test has to evaluate all possible generat-

ing sequences, and not only the possible last steps.
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The overall advantage: Now, we can define many, even really weird, restric-
tions on the generating sequences; they just have to be hereditary. . .

The price to pay: Often, the requirement of being hereditary on subsequences

implies quite “expensive” canonical orderings, such as:

• A lexicographical ordering on the sequences with the heavier keys
“on the left” (beginning of the sequence) – unlike the orderly gen-

eration which simply takes the heaviest key at the sequence end.

• Consequently, a canonicity test has to evaluate all possible generat-

ing sequences, and not only the possible last steps.

• Yet, a quite efficient implementation is possible, cf. MACEK.
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Some implementation details:

• The generating framework (high-level) gets a generating sequence on one

side, and a list of all possible one-element additions on the other side.
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• The canonical minimality testing is coded in the framework, calling an
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• The canonical minimality testing is coded in the framework, calling an

external elementary comparison function.

• An external function for testing admissibility of a generating sequence is

provided as well.
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Some implementation details:

• The generating framework (high-level) gets a generating sequence on one

side, and a list of all possible one-element additions on the other side.

• The canonical minimality testing is coded in the framework, calling an

external elementary comparison function.

• An external function for testing admissibility of a generating sequence is

provided as well.

• Both the aforementioned external functions must be sufficiently “frag-
mented”, so that the framework can “gradually” call the admissibility
and canonicity test (from the least to the most expensive ones)!
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3.1 Back to the second MACEK example3.1 Back to the second MACEK example

Find the matroids M with both M(K3,3) and M(K3,3)
∗ as minors such

that no proper minor of M has both M(K3,3) and M(K3,3)
∗ as minors.
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Find the matroids M with both M(K3,3) and M(K3,3)
∗ as minors such

that no proper minor of M has both M(K3,3) and M(K3,3)
∗ as minors.

• A generating sequence leading to such an intertwine M should

– start from M(K3,3) (as a minor),

– maintain 3-connectivity by the wheels-and-whirls theorem, and

– stipulate that there is no M(K3,3)
∗ minor except possibly at the

sequence end.
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3.1 Back to the second MACEK example3.1 Back to the second MACEK example

Find the matroids M with both M(K3,3) and M(K3,3)
∗ as minors such

that no proper minor of M has both M(K3,3) and M(K3,3)
∗ as minors.

• A generating sequence leading to such an intertwine M should

– start from M(K3,3) (as a minor),

– maintain 3-connectivity by the wheels-and-whirls theorem, and

– stipulate that there is no M(K3,3)
∗ minor except possibly at the

sequence end.

• These requirements are hereditary,

and we avoid duplicates in the previously used one-element addition step.

• The final step of validating an intertwine remains the same.
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Yes, it is still out there, and it compiles smoothly in new Linux and gcc4.5.

Just its development stopped years ago, and many of its core design ideas

are now overcome.
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• MACEK is over. . .

Yes, it is still out there, and it compiles smoothly in new Linux and gcc4.5.

Just its development stopped years ago, and many of its core design ideas

are now overcome.

• Though, some algorithmic ideas from extensive MACEK documentation

might be useful in future development of matroid computation (I hope).
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Just its development stopped years ago, and many of its core design ideas

are now overcome.

• Though, some algorithmic ideas from extensive MACEK documentation

might be useful in future development of matroid computation (I hope).

• And the idea of enhanced flexible canonical generating sequences could
possibly be used in the core of the generating process in future matroid

computation kits.
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• MACEK is over. . .

Yes, it is still out there, and it compiles smoothly in new Linux and gcc4.5.

Just its development stopped years ago, and many of its core design ideas

are now overcome.

• Though, some algorithmic ideas from extensive MACEK documentation

might be useful in future development of matroid computation (I hope).

• And the idea of enhanced flexible canonical generating sequences could
possibly be used in the core of the generating process in future matroid

computation kits.

THANK YOU FOR YOUR ATTENTION
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