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e A typical idea for a dynamic algorithm on a recursive decomposition:

— Capture all relevant inform. about the problem on a substructure.

— Process this information bottom-up in the decomposition.
— Importantly, this information has size depending only on & (ideally,
not on the structure size), or at most polynomial size. . .

e How to understand words “all relevant information about the problem”?
Use “tables”? Or...

Look for inspiration in traditional finite automata theory!
Theorem. [Myhill-Nerode, folklore]

Finite automaton states (this is our information) «
right congruence classes on the words (of a regular language).

e Explicit comb. extensions of this concept appeared e.g. in the works
k [Abrahamson and Fellows, 93], [PH, 03], or [Ganian and PH, 08]. j
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2 The Concept of a Canonical Equivalence

How does the right congruence extend
from formal words with the concatention operation
to, say, graphs with a kind of a ‘join” operation?

e Consider the universe of structures Uy, implicitly associated with

— some (small) distinguished “boundary of size k" of each graph, and
— a join operation G ® H acting on the boundaries of disjoint G, H.

e Let P be a (decision) property we study.
Definition. The canonical equivalence of P on U}, is defined:
G1 ~p,, G2 forany G1,G2 € Uy, if and only if, for all H € Uy,
GiQHEeEP < G2HcP.
o Informally, the classes of ~p ;. capture all information about the property

‘P that can “cross” our boundary of size k
(regardless of actual meaning of "boundary” and “join").
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Decision properties, or more?

Definition. The canonical equivalence of ‘P on the universe U}, is defined:
G1 =p G2 forany G1,G2 € Uy, if and only if, for all H € Uy,
GiRHeP «— Gy®HEcP.

e Not only deciding the exist. of a solution, but want to find it / optimize!

e So, let G1,G2 and H be assoc. with a solution fragment, say .

Definition, Il. The canonical equivalence of P on the extended universe Uy,
(of structures equipped with solution fragments) is defined:

(G1,¢1) =pr (G2, p2) for (Gi, p;) € Uy, if and only if, forall (H, ) € Uy,
(G17901)®(H7S0)|:P — (G27Q02)®(H790)):P
e For simplicity, solution fragments ¢ can be “embedded” in U/ and ®.

e Can, e.g., count the solutions in each class of ~p , or keep an opt. one.
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Some particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of ‘P on the universe U}, is defined:
G1 =p G2 forany G1,G2 € Uy, if and only if, for all H € Uy,
GiI®HEP < G:QHETP.
e Are the elements of U}, required recursively decomposable?

— somehow surprisingly, does not seem to play role. ..

e Can we have a different “right-hand-side universe’ H € Uj,?

— yes, useful e.g. for bi-rank-width of digraphs.

e Can we use more different join operators ® 7 Why?

— related to “prepartitioning” (expectation) of right-hand universe.

o XP algorithms, i.e. getting away from finite automata?
— yes, still works quite nicely, cf. [Ganian, PH, ObdrZélek, 09].

— brings new application issues such as “quantification inside ®" (cf. sol.
fragments), or a “second-level” congruence on top of ~p .

\_ J
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Parse trees of decompositions

To give an algor. usable meaning to the terms “boundary, join, and universe”

we set them in the context of tree-shaped decompositions as follows. . .

e Considering a rooted *-decomposition of a graph G,
we build on the following correspondence:

boundary size k<«  restricted bag-size / width / etc in decomposition

Join operator ® <«  the way pieces of G “stick together' in decomp.

e This can be (visually) seen as. ..

CS=e
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Motivation: Trees are easy to understand and to handle, so how “tree-like” our
graph is in some well-defined sense (the width)?

e A topic occuring both in pure theory (e.g. Graph Minors),
and in algorithms (Fixed parameter tractability).

e Many definitions known,
e.g. tree-width, path-width, branch-width, DAG-width . ..

e Clique-width — another graph complexity measure [Courcelle and Olariu],
defined by operations on vertex—labeled graphs:

— create a new vertex with label ¢,

— take the disjoint union of two labeled graphs,

— add all edges between vertices of label 7 and label j,
— and relabel all vertices with label ¢ to have label j.

— giving the expression tree (parse tree) for clique-width.
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Rank-decomposition \

e [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X C V(G) via cut-rank:
V(G) -
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oc(X)=rankof X |1 0 1 0 0] modulo2
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e [Oum and Seymour, 03] Bringing the branch-decomposition approach to
measure “complexity” of vertex subsets X C V(G) via cut-rank:

Rank-decomposition

V(G)-X
01001

oc(X)=rankof X |1 0 1 0 0| modulo2
1 0011

Definition. Decompose V' ((G) one-to-one into the leaves of a subcubic tree.
Then

width(e) = pg(X) where X is displayed by f in the tree.

e Rank-width = min i decs. of ¢ Max {width(f) : f tree edge}

\_ /




An example. Cycle C5 and its rank-decomposition of width 2:

d
(& &
a b
d c
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(0o 11 (0 0 1) (0 1) (© 1 1 0
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(1 0o 0 1)
e a b




/

Comparing these two
e Rank-width t is related to clique-width k as t < k < 281 — 1.

e Both these measures are N P-hard in general.




4 )

Comparing these two
e Rank-width t is related to clique-width k as t < k < 281 — 1.
e Both these measures are N P-hard in general.

e Clique-width expressions seem to be much more “explicit” than rank-
decompositions, and more suited for design of actual algorithms.

On the other hand, however. ..




4 )

Comparing these two
e Rank-width t is related to clique-width k as t < k < 281 — 1.
e Both these measures are N P-hard in general.

e Clique-width expressions seem to be much more “explicit” than rank-
decompositions, and more suited for design of actual algorithms.

On the other hand, however. ..

e [Corneil and Rotics, 05] Clique-width can really be up to exponentially
higher than rank-width.




4 )

Comparing these two
e Rank-width t is related to clique-width k as t < k < 281 — 1.
e Both these measures are N P-hard in general.

e Clique-width expressions seem to be much more “explicit” than rank-
decompositions, and more suited for design of actual algorithms.

On the other hand, however. ..

e [Corneil and Rotics, 05] Clique-width can really be up to exponentially
higher than rank-width.

e [Oum and PH, 07] There is an FPT algorithm for computing an optimal
width-t rank-decomposition of a graph in time O(f(t) - n3).




4 )

Comparing these two
e Rank-width t is related to clique-width k as t < k < 281 — 1.
e Both these measures are N P-hard in general.

e Clique-width expressions seem to be much more “explicit” than rank-
decompositions, and more suited for design of actual algorithms.

On the other hand, however. ..

e [Corneil and Rotics, 05] Clique-width can really be up to exponentially
higher than rank-width.

e [Oum and PH, 07] There is an FPT algorithm for computing an optimal
width-t rank-decomposition of a graph in time O(f(t) - n3).

e And new results show that certain algorithms designed on rank-
decompositions run faster than their analogues designed on clique-width
expressions. ..  (subst. poly(t) in place of cw, instead of 2¢)
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Parse trees for rank-decompositions

Unlike for tree- or clique- decompositions with obvious parse trees, what is the
“boundary” and “join" operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank.
e Bilinear product approach of [Courcelle and Kanté, 07]:

— boundary ~ labeling lab : V(G) — 2{1:2-t} (multi-colouring),
— join ~ bilinear form g over GF(2)! (i.e. “odd intersection”) s.t.

edge uv < lab(u) - g - lab(v) = 1.

e Join — a composition operator with relabelings fi, fo;
(G1,1ab?) ®[g| f1, f2] (Ga2,lab®) = (H,lab)

= the rank-width parse tree [Ganian and PH, 08]:
t-labeling parse tree for G <= rank-width of G < t.

e Independently considered related notion of R;-join decompositions by
[Bui-Xuan, Telle, and Vatshelle, 08].

\_

\




A parse tree. An example generating the cycle C5 (of rank-width 2):
®lid|-,-]

®lid| id, 1—0] ®[id|1—2, id|
®lid| id,1—2] ’

®©a
©b ®c ®d ®e
d{1} d{2} d{2}
e{l} o o c{1} e{l} / {2y  e{l} / c{2}
oo b1} a'h}' b1} a{l} o
d
- a b
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e #SAT — counting satisfying assignments of a CNF formula,

a well-known #P-hard problem.

e FPT solutions on formulas of bounded *-width:
[Fisher, Makowsky, and Ravve, 08] — tree-width and clique-width,
[Samer and Szeider, 10] — tree-width improved.

e On the other hand. ..

Quote. [Samer and Szeider, 10] — regarding #SAT and clique-width:

. A single-exponential algorithm (for #SAT) is due to Fisher, Makowsky,
and Ravve. However, both algorithms rely on clique-width approximation al-
gorithms. The known polynomial-time algorithms for that purpose admit an
exponential approximation error and are of limited practical value.

Where is the problem?

A resulting double-exponential worst-case dependency on a width estimate!
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The problem, again
Quote. [Samer and Szeider, 10] — regarding #SAT and clique-width:

A single-exponential algorithm (for #SAT) is due to Fisher, Makowsky,
and Ravve. However, both algorithms rely on clique-width approximation
algorithms. The known polynomial-time algorithms for that purpose admit
an exponential approximation error and are of limited practical value.

Our answer — considering rank-width:

e No loss in the promissed width, and yet single-exponential in it.

e A clear and rigorous algorithm employing many of the above tricks.

Theorem. [Ganian, PH, ObdrZélek, 10] #SAT solved in FPT time
o(t3 . 23t(t—|—1)/2 . |¢|)

where t is the signed rank-width of the input instance (CNF formula) ¢.
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Signed graphs of CNF formulas
e The common way to measure structure / width of a formula:

vertices := V UC variables and clauses of ¢.
edges := ET U E~ where
zic; € ET ifej=(--Va;...)€C, and
T;iCj c B~ ifcj = (\/—ml) e C.
e Signed clique-width — using distinct operations for E™ and E~
(ordinary clique-width is not enough!).
e Signed rank-width — using separate joins for ET and E~, formally

G = Gt UG~ on the same vertex set (sim. bi-rank-width).

Then
Gi®Gy = (G ®Gf) U (GT ®G3)

and the same decomposition is used.




4 )

The canonical equivalence for SAT

e Corresp. G = G[¢] signed graph +—— ¢ = ¢[G] CNF formula.




4 )

The canonical equivalence for SAT
e Corresp. G = G[¢] signed graph +—— ¢ = ¢[G] CNF formula.

e Valuation vg:V —{0,1}.




/

The canonical equivalence for SAT

e Corresp. G = G[¢] signed graph +—— ¢ = ¢[G] CNF formula.
e Valuation vg:V —{0,1}.

e The canonical equivalence: (G1,v1) =sar: (Ga,v») iff, for all (H,vg),

V1UI/H)=¢[G1®H] <~ I/QUVH’:(ﬁ[Gz@H].




/

The canonical equivalence for SAT

e Corresp. G = G[¢] signed graph «—— ¢ = ¢|G] CNF formula.
e Valuation vg:V —{0,1}.

e The canonical equivalence: (G1,v1) =sar: (Ga,v») iff, for all (H,vg),

V1UI/H):¢[G1®H] < I/QUVH’:(b[Gg@H].

Proposition. (G1,v1) ~gar: (Ga2,12) if the foll. equal for (G;,v;), i =1, 2:

— the set of G, -labels occuring at true (under ;) variables,




/

The canonical equivalence for SAT

e Corresp. G = G[¢] signed graph «—— ¢ = ¢|G] CNF formula.
e Valuation vg:V —{0,1}.

e The canonical equivalence: (G1,v1) =gary (Go,vs) iff, for all (H, vgy),

V1UI/H):¢[G1®H] < I/QUVH|:(Z5[G2®H].

Proposition. (G1,v1) ~gar: (Ga2,12) if the foll. equal for (G;,v;), i =1, 2:

— the set of G, -labels occuring at true (under ;) variables,
— analog., the set of (; -labels of false (under v;) variables, and




e

The canonical equivalence for SAT

e Corresp. G = G[¢] signed graph «—— ¢ = ¢|G] CNF formula.
e Valuation vg:V —{0,1}.

e The canonical equivalence: (G1,v1) =gary (Go,vs) iff, for all (H, vgy),

V1UI/H):¢[G1®H] < I/QUVH|:(Z5[G2®H].

Proposition. (G1,v1) ~gar: (Ga2,12) if the foll. equal for (G;,v;), i =1, 2:

— the set of G, -labels occuring at true (under ;) variables,
— analog., the set of (; -labels of false (under v;) variables, and
— the set of pair labels of all unsatisfied (under ;) clauses of ¢[Gj].




e

The canonical equivalence for SAT

e Corresp. G = G[¢] signed graph «—— ¢ = ¢|G] CNF formula.
e Valuation vg:V —{0,1}.

e The canonical equivalence: (G1,v1) =gary (Go,vs) iff, for all (H, vgy),

V1UI/H):¢[G1®H] < I/QUVH|:(Z5[G2®H].

Proposition. (G1,v1) ~gar: (Ga2,12) if the foll. equal for (G;,v;), i =1, 2:
— the set of G, -labels occuring at true (under ;) variables,
— analog., the set of (; -labels of false (under v;) variables, and
— the set of pair labels of all unsatisfied (under ;) clauses of ¢[Gj].

Easy to prove. .., but does it help?

Subsets of labels from 2{1.2-th Q(22t) classes!
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Getting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

e Linear algebra:

Subset of labels —— the spanning subspace in GF(2)t.

Theorem. [Goldman and Rota, 69] The number of subspaces of GF(2)! is
S(t) < 28D/ for all ¢ > 12.

e Expectation:

Labels of unsat. clauses —— expected labels of variables in H,
and the subspace trick once again.

In other words, ~g47; “suitably restricted” to (H,vg)'s of the expected
label subspaces of its false and true variables. . .

Conclusion. Breaking the satisfying assignments of ¢ into S(t)* classes,

and processing a node of the parse tree in O* (S(t)ﬁ). a
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