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— theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle’s Theorem
e All MSO,-definable prop. in linear-time FPT for bounded tree-width.

— perhaps the best known alg. metatheorem on graphs (1988)
— clique-width 4+ MSO; version by [Courcelle-Makowsky—Rotics]

* Logic on Graphs
e Propositional logic (A\\V —), graph vertices/edges (z, vy, 2, ...e,...);

— e.g., Vz,y(edge(z,y) = x € CVy € C), “C is vertex cover”
— FO logic (first-order): just this T
— MSO logic (monadic second-o.): quantifies vertex sets 3.X, Y

T M501 VS. MSOg J,
— or, quantifies vertex and edge sets together 94X, Y, E. F'.
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— [Kreutzer—Tazari] not above polylog. tree-width with MSO,
— [GHLORS] not above polylog. tree-width with coloured MSO;

e On hereditary classes, perhaps the same with clique-width...?

* Better with FO

e FO is always in XP, but we aim for FPT (fixed exponent poly.)!
— [Seese] on bounded degree graphs (1996)
— [Frick—Grohe] locally bounded tree-width
— [Dawar—Grohe—Kreutzer| locally excluding a minor
— [D.-K. / Dvotak—Kral'=Thomas] locally bounded expansion

— nowhere dense classes in general... 77?7
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2 Interval Graphs

e Why these?
Extending FO metaresults towards (some) dense graph class. . .
e INT: Intersection graphs of intervals on the real line.

D
A

e L-interval graphs = interval lengths only from a set L.
(Unit-interval graphs: L = {1}.)

ény, ICALP Riga, 2013 FO Model Checking of Interval Graphs



]—Technical remarks

e Note; open/close intervals do not matter.

We consider half-closed intervals [a, b).

ény, ICALP Riga, 2013 FO Model Checking of Interval Graphs



Technical remarks
e Note; open/close intervals do not matter.
We consider half-closed intervals [a, b).

e Although the recognition problems for interval and for unit-interval
graphs are in P, we do not know about L-interval graphs!

ény, ICALP Riga, 2013 FO Model Checking of Interval Graphs



Technical remarks
e Note; open/close intervals do not matter.
We consider half-closed intervals [a, b).

e Although the recognition problems for interval and for unit-interval

graphs are in P, we do not know about L-interval graphs!

e Thus, we assume graphs are given by their interval representations,
and these representations are handled by the real-precision RAM
model (no tricks, though).
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3 The “FO on INT” Metatheorem

e For any dense subset L of [1,14¢]|, the L-interval graphs interpret,
by means of FO, arbitrary graphs.

— hence, FO model checking is hopeless on these graphs

— and similarly for MSO; already on unit interval graphs

e The main result.
For any finite set L C R, any FO property can be tested in
time O(nlogn) on L-interval graphs.

— for example, independent and dominating set, subgraph isom.,
etc.

— nearly tight result by the previous examples

— rather easy to prove for rational L, but difficult otherwise
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4 Easy Case: Locality of FO

(Note, regarding FO, locally bounded/excluding *** occurs quite often. . .)

Gaifman’s theorem.  Every FO sentence is equivalent to a boolean
combination of basic local sentences:

Je,e,... 0 "scattered’(s,..., o) A ] A() Ao~ A ] Als)

e Restriction to fixed-radius neighbourh. (above) definable inside FO.

e Hence, it is enough to solve any given FO property in
every local neighbourhood!
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Locality in interval graphs
For fin. L C R*, any FO prop. tested in O(nlogn) on L-interval graphs.

e Unit interval graphs have locally bounded clique-width.

— immediate FO model checking via [Courcelle et al]

e Claim. The same holds for any L a finite set of rationals.
Outlining:
e equivalent INT representations ~ same endpoint sequence

e simple INT repres. ~ no two endpoints the same, all > 0
e accumulation points ~ the infima of left ends over all equiv. repres.

— e.g., for unit interval L = {1} these are 0, 1,2, ...

e clique-width — simply order the intervals by their distance from the
resp. accumulation points — linear k-expression

— where k ~ |L| - #accum. points ! (finite in bounded radius)

ény, ICALP Riga, 2013 FO Model Checking of Interval Graphs



r5 Hard Case: Not “locally bounded ***"”

For fin. L C R*, any FO prop. tested in O(nlogn) on L-interval graphs.

e Claim. For any irrational r, the class of {1, }-interval graphs has

locally unbounded clique-width.

inény, ICALP Riga, 2013 FO Model Checking of Interval Graphs



r5 Hard Case: Not “locally bounded ***”

For fin. L C R*, any FO prop. tested in O(nlogn) on L-interval graphs.

e Claim. For any irrational r, the class of {1, }-interval graphs has

locally unbounded clique-width.

e So, what next?

— Recall [Seese| about FO on bounded-degree graphs.

ény, ICALP Riga, 2013 FO Model Checking of Interval Graphs



r5 Hard Case: Not “locally bounded ***”

For fin. L C R*, any FO prop. tested in O(nlogn) on L-interval graphs.
e Claim. For any irrational r, the class of {1, }-interval graphs has
locally unbounded clique-width.

e So, what next?

— Recall [Seese| about FO on bounded-degree graphs.
— Recall the accumulation points:

* these are linear integer combinations X - L of the lengths

ény, ICALP Riga, 2013 FO Model Checking of Interval Graphs



5 Hard Case: Not “locally bounded ***”

For fin. L C R*, any FO prop. tested in O(nlogn) on L-interval graphs.

e Claim. For any irrational r, the class of {1, }-interval graphs has

locally unbounded clique-width.
e So, what next?
— Recall [Seese| about FO on bounded-degree graphs.
— Recall the accumulation points:

* these are linear integer combinations X - L of the lengths
% many many intervals “at” the same accumulation point

— remove some, preserving all FO of quant. rank d!

ény, ICALP Riga, 2013 FO Model Checking of Interval Graphs



5 Hard Case: Not “locally bounded ***”

For fin. L C R*, any FO prop. tested in O(nlogn) on L-interval graphs.

e Claim. For any irrational r, the class of {1, }-interval graphs has
locally unbounded clique-width.

e So, what next?

— Recall [Seese| about FO on bounded-degree graphs.
— Recall the accumulation points:

* these are linear integer combinations X - L of the lengths
% many many intervals “at” the same accumulation point
— remove some, preserving all FO of quant. rank d!

—

* hint: consider “locality” on the integer grid (\)

ény, ICALP Riga, 2013

FO Model Checking of Interval Graphs



5 Hard Case: Not “locally bounded ***”

For fin. L C R*, any FO prop. tested in O(nlogn) on L-interval graphs.

e Claim. For any irrational r, the class of {1, }-interval graphs has
locally unbounded clique-width.

e So, what next?

— Recall [Seese| about FO on bounded-degree graphs.
— Recall the accumulation points:

* these are linear integer combinations X - L of the lengths
% many many intervals “at” the same accumulation point
— remove some, preserving all FO of quant. rank d!

—

* hint: consider “locality” on the integer grid (\)

— Now, not many intervals anywhere — bounded degree.

ény, ICALP Riga, 2013

FO Model Checking of Interval Graphs



5 Hard Case: Not “locally bounded ***”

For fin. L C R*, any FO prop. tested in O(nlogn) on L-interval graphs.

e Claim. For any irrational r, the class of {1, }-interval graphs has
locally unbounded clique-width.

e So, what next?

— Recall [Seese| about FO on bounded-degree graphs.
— Recall the accumulation points:

* these are linear integer combinations X - L of the lengths
% many many intervals “at” the same accumulation point

— remove some, preserving all FO of quant. rank d!

—

* hint: consider “locality” on the integer grid (\)

— Now, not many intervals anywhere — bounded degree.

e Finished with any finite L.
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Some proof details

For fin. L C R*, any FO prop. tested in O(nlogn) on L-interval graphs.

e So, many intervals start in one tiny section A of the real line.
— tiny ~ the smallest distance def. by a local section of the grid
e Take IV; these intervals plus the intervals starting in the tiny distance

to (the accumulation points in) a grid-neighbourhood of A.

— in this W, one can remove some w € W such that

GW] =4 GIW \ w]
(by E-F game trees in the paper...)

e Now, play a “derived” E-F game on the whole G:
— start with flagging all the intervals of A

— far (on the grid) from flagged — the duplicator simply duplicates
— near to flagged — flag this one, and play the duplic. by W \ w
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6 Conclusions
e Behind the Graph Sparsity theory of NeSetfil and Ossona de Mendez;

Can one test FO properties in FPT for every nowhere dense class?

e OQur little contribution:

There exist natural somewhere dense graph classes on which FO

properties are in FPT.

e Other such examples? A broader metatheorem?
e And, apart from the previous;
What is the comput. complexity of recognizing L-interval graphs?

THANK YOU FOR ATTENTION.
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