
page.11
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– theor. tools claiming efficient solvability of large classes of problems at once.

* Courcelle’s Theorem* Courcelle’s Theorem
• All MSO2-definable prop. in linear-time FPT for bounded tree-width.

– perhaps the best known alg. metatheorem on graphs (1988)

– clique-width + MSO1 version by [Courcelle–Makowsky–Rotics]

* Logic on Graphs* Logic on Graphs
• Propositional logic (∧∨ →), graph vertices/edges (x, y, z, .., e, . . . );

– e.g., ∀x, y
(
edge(x, y)→ x ∈ C∨y ∈ C

)
, “C is vertex cover”

– FO logic (first-order): just this ↑
– MSO logic (monadic second-o.): quantifies vertex sets ∃X, Y

↑ MSO1 vs. MSO2 ↓
– or, quantifies vertex and edge sets together ∃X, Y,E, F .
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• On hereditary classes, perhaps the same with clique-width. . . ?

* Better with FO* Better with FO

• FO is always in XP, but we aim for FPT (fixed exponent poly.)!

– [Seese] on bounded degree graphs (1996)

– [Frick–Grohe] locally bounded tree-width

– [Dawar–Grohe–Kreutzer] locally excluding a minor

– [D.-K. / Dvǒrák–Král’–Thomas] locally bounded expansion

– nowhere dense classes in general. . . ???
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2 Interval Graphs2 Interval Graphs

• Why these?

Extending FO metaresults towards (some) dense graph class. . .

• INT: Intersection graphs of intervals on the real line.

• L-interval graphs = interval lengths only from a set L.

(Unit-interval graphs: L = {1}.)
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Technical remarksTechnical remarks

• Note; open/close intervals do not matter.

We consider half-closed intervals [a, b).

• Although the recognition problems for interval and for unit-interval

graphs are in P, we do not know about L-interval graphs!

• Thus, we assume graphs are given by their interval representations,
and these representations are handled by the real-precision RAM
model (no tricks, though).
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3 The “FO on INT” Metatheorem3 The “FO on INT” Metatheorem

• For any dense subset L of [1, 1+ε], the L-interval graphs interpret,

by means of FO, arbitrary graphs.

– hence, FO model checking is hopeless on these graphs

– and similarly for MSO1 already on unit interval graphs

• The main result.
For any finite set L ⊆ R+, any FO property can be tested in
time O(n logn) on L-interval graphs.

– for example, independent and dominating set, subgraph isom.,

etc.

– nearly tight result by the previous examples

– rather easy to prove for rational L, but difficult otherwise
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Petr Hliněný, ICALP Riga, 2013 7 / 11 FO Model Checking of Interval Graphs

4 Easy Case: Locality of FO4 Easy Case: Locality of FO
(Note, regarding FO, locally bounded/excluding *** occurs quite often. . . )
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• Restriction to fixed-radius neighbourh. (above) definable inside FO.

• Hence, it is enough to solve any given FO property in

every local neighbourhood!
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Petr Hliněný, ICALP Riga, 2013 8 / 11 FO Model Checking of Interval Graphs

Locality in interval graphsLocality in interval graphs

For fin. L ⊆ R+, any FO prop. tested in O(n log n) on L-interval graphs.

• Unit interval graphs have locally bounded clique-width.

→ immediate FO model checking via [Courcelle et al]

• Claim. The same holds for any L a finite set of rationals.



page.11
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Locality in interval graphsLocality in interval graphs

For fin. L ⊆ R+, any FO prop. tested in O(n log n) on L-interval graphs.

• Unit interval graphs have locally bounded clique-width.

→ immediate FO model checking via [Courcelle et al]

• Claim. The same holds for any L a finite set of rationals.

Outlining:

• equivalent INT representations ∼ same endpoint sequence

• simple INT repres. ∼ no two endpoints the same, all > 0

• accumulation points ∼ the infima of left ends over all equiv. repres.

– e.g., for unit interval L = {1} these are 0, 1, 2, . . .

• clique-width — simply order the intervals by their distance from the
resp. accumulation points → linear k-expression

– where k ∼ |L| ·#accum. points ! (finite in bounded radius)
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Petr Hliněný, ICALP Riga, 2013 9 / 11 FO Model Checking of Interval Graphs

5 Hard Case: Not “locally bounded *** ”5 Hard Case: Not “locally bounded *** ”

For fin. L ⊆ R+, any FO prop. tested in O(n log n) on L-interval graphs.

• Claim. For any irrational r, the class of {1, r}-interval graphs has

locally unbounded clique-width.

• So, what next?

– Recall [Seese] about FO on bounded-degree graphs.

– Recall the accumulation points:

∗ these are linear integer combinations ~λ · ~L of the lengths

∗ many many intervals “at” the same accumulation point

→ remove some, preserving all FO of quant. rank d!



page.11
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5 Hard Case: Not “locally bounded *** ”5 Hard Case: Not “locally bounded *** ”

For fin. L ⊆ R+, any FO prop. tested in O(n log n) on L-interval graphs.

• Claim. For any irrational r, the class of {1, r}-interval graphs has

locally unbounded clique-width.

• So, what next?

– Recall [Seese] about FO on bounded-degree graphs.

– Recall the accumulation points:

∗ these are linear integer combinations ~λ · ~L of the lengths

∗ many many intervals “at” the same accumulation point

→ remove some, preserving all FO of quant. rank d!

∗ hint: consider “locality” on the integer grid (~λ)

– Now, not many intervals anywhere → bounded degree.

• Finished with any finite L.
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• So, many intervals start in one tiny section A of the real line.

– tiny ∼ the smallest distance def. by a local section of the grid
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Some proof detailsSome proof details

For fin. L ⊆ R+, any FO prop. tested in O(n log n) on L-interval graphs.

• So, many intervals start in one tiny section A of the real line.

– tiny ∼ the smallest distance def. by a local section of the grid

• Take W ; these intervals plus the intervals starting in the tiny distance

to (the accumulation points in) a grid-neighbourhood of A.
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For fin. L ⊆ R+, any FO prop. tested in O(n log n) on L-interval graphs.

• So, many intervals start in one tiny section A of the real line.

– tiny ∼ the smallest distance def. by a local section of the grid

• Take W ; these intervals plus the intervals starting in the tiny distance

to (the accumulation points in) a grid-neighbourhood of A.

– in this W , one can remove some w ∈ W such that

G[W ] ≡d G[W \ w]
(by E-F game trees in the paper. . . )

• Now, play a “derived” E-F game on the whole G:

– start with flagging all the intervals of A

– far (on the grid) from flagged – the duplicator simply duplicates

– near to flagged – flag this one, and play the duplic. by W \ w
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Can one test FO properties in FPT for every nowhere dense class?

• Our little contribution:

There exist natural somewhere dense graph classes on which FO

properties are in FPT.

• Other such examples? A broader metatheorem?

• And, apart from the previous;

What is the comput. complexity of recognizing L-interval graphs?



page.11

Petr Hliněný, ICALP Riga, 2013 11 / 11 FO Model Checking of Interval Graphs

6 Conclusions6 Conclusions

• Behind the Graph Sparsity theory of Nešeťril and Ossona de Mendez;

Can one test FO properties in FPT for every nowhere dense class?

• Our little contribution:

There exist natural somewhere dense graph classes on which FO

properties are in FPT.

• Other such examples? A broader metatheorem?

• And, apart from the previous;

What is the comput. complexity of recognizing L-interval graphs?

Thank you for attention.
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