
New Results on the Complexity of Oriented

Colouring on Restricted Digraph Classes

Robert Ganian and Petr Hliněný ⋆

Faculty of Informatics, Masaryk University
Botanická 68a, Brno, Czech Republic

{xganian1,hlineny}@fi.muni.cz

Abstract. Oriented colouring is a quite intuitive generalization of undi-
rected colouring, yet the problem remains NP-hard even on digraph
classes with bounded usual directed width measures. In light of this fact,
one might ask whether new width measures are required for efficient
dealing with this problem or whether further restriction of traditional
directed width measures such as DAG-width would suffice. The K-width
and DAG-depth measures (introduced by [Ganian et al, IWPEC’09]) are
ideal candidates for tackling this question: They are both closely tied
to the cops-and-robber games which inspire and characterize the most
renowned directed width measures, while at the same time being much
more restrictive.
In this paper, we look at the oriented colouring problem on digraphs of
bounded K-width and of bounded DAG-depth. We provide new polyno-
mial algorithms for solving the problem on “small” instances as well as
new strong hardness results showing that the input restrictions required
by our algorithms are in fact “tight”.

Key words: directed graph, complexity, oriented colouring, DAG-depth

1 Preliminaries

1.1 Introduction

The study of ordinary colourings of graphs has become the focus of many authors
and lead to a number of interesting results. However, only in the last decade has
this been extended to directed graphs. The notion of oriented colouring was
first introduced by Courcelle [2], see Definition 1.1. Briefly, while an ordinary
colouring is a homomorhpism into a complete graph, an oriented colouring is a
homomorhpism into an orientation of a complete graph.

Properties of oriented colouring have been studied by several authors, see
e.g. the work of Nešetřil and Raspaud [11] or the survey by Sopena [14]. Simi-
larly to undirected colouring, computing the oriented chromatic number (further

⋆ This research has been supported by the Czech research grants GAČR 201/-
08/0308 (P. Hliněný) and 201/09/J021 (R. Ganian), and by the research intent
MSM0021622419 of the Czech Ministry of Education.

referred to as OCN) and deciding oriented colourability of digraphs are both NP-
hard problems. However, while undirected colouring becomes easy if we restrict
the input to the graph class of trees, deciding oriented colourability already
by 4 colours (OCN4) remains NP-hard even on on acyclic digraphs (DAGs) [3].
Apart from being an interesting notion from a theoretical point of view, oriented
colouring also has practical applications, e.g. in mobile networks.

There exists a wide range of width parameters for digraphs: directed tree-
width [8], DAG-width [1, 12], Kelly-width [7], and cycle rank [4] perhaps being
the best known. A shared feature of all these width parameters is that they
assume their minimum values on DAGs. Thus, it is impossible to use a bound
on any of these width parameters to efficiently decide oriented colourability at
all — there will always be instances in which deciding OCN4 remains NP-hard.

One way to interpret this finding is to ask whether there exist stronger, more
restrictive digraph width parameters which could help with computing OCN.

Very recently, a possible lead to answering this question has been given in [6].
Two new directed width measures have been introduced in that article, both
related to cops-and-robber games (and thus to the classical directed width mea-
sures) and both very restrictive. The first one is K-width (Def. 1.2) which re-
stricts the maximum number of directed paths between pairs of vertices, and
the second one is DAG-depth (Def. 1.3) which on the other hand restricts the
maximum number of moves in a cops-and-robber game.

These parameters have been successfully used in [6] to design some new FPT
algorithms, e.g. for the Hamiltonian Path and c-Paths problems. We analyse the
relationship of these new measures to OCN. The first results of this paper (Sec-
tion 2) are two new polynomial algorithms for computing OCN on digraphs of
DAG-depth 2, and on digraphs of K-width 1 with a “single reachable fragment”.
Then we show that, although our algorithms do seem relatively simple and one
would expect there to be more involved variants for (at least slightly) more
general cases, the bounds in these algorithms are in fact “tight”. To this end
we introduce a new reduction proving that the OCN4 problem is NP-complete
already for digraphs with K-width 1 and DAG-depth 3 (Theorem 3.4).

1.2 Definitions

We assume that the reader is familiar with all basic definitions related to undi-
rected and directed graphs. Keep in mind that digraph stands for directed graph
and DAG stands for acyclic digraph. Our digraphs are simple; they have no par-
allel arcs or loops, but can have two arcs in opposite directions.

Let G,H be digraphs. A homomorphism of G to H is a mapping f : V (G) →
V (H) such that for all (a, b) ∈ E(G), it holds (f(a), f(b)) ∈ E(H).

Definition 1.1 ([2]). The k-oriented chromatic number (OCNk) problem is
defined as follows: Given a digraph G, is there a homomorphism from G to Hk,
where Hk is some (irreflexive antisymmetric) orientation of edges of the complete
graph on k vertices?

2

There is also the natural optimization variant (OCN) —to find the minimum k

such that OCNk is true.
For simplicity, we will sometimes say that a set of vertices of G have the same

colour — meaning that they all map into the same vertex of H. Notice that each
colour class is an independent set in G, and that if there is an arc from a vertex
coloured a to a vertex coloured b, then there can never be an arc from a vertex
coloured b to a vertex coloured a. This is a useful and intuitive way of looking
at oriented colouring.

Next, we introduce the first of the two aforementioned width parameters:

Definition 1.2 ([6]). A digraph G has K-width k if k is the lowest integer such
that, for any pair of vertices s, t ∈ V (G), the number of distinct directed paths
from s to t is at most k. Note that these paths need not be pairwise disjoint.

K-width is related to the better-known DAG-width [1, 12] in the sense that
bounded K-width implies bounded DAG-width. More precisely, the K-width of
a G is greater or equal to the DAG-width of G minus one [6]. On the other hand,
DAGs (which have DAG-width 0) can have arbitrarily high K-width.

The last part of the definitions introduces DAG-depth, an interesting directed
counterpart to the better known tree-depth [10]. First, we need to formalize the
notion of reachable fragments. For a digraph G and any v ∈ V (G), let Gv denote
the subdigraph of G induced by the vertices reachable from v. The maximal
elements of the poset {Gv : v ∈ V (G) } in the digraph-inclusion order are
then called reachable fragments of G (further referred to as RF(G)). Notice that
reachable fragments in the undirected case coincide with connected components.

Definition 1.3 ([6]). The DAG-depth ddp(G) of a digraph G is inductively
defined as follows: If |V (G)| = 1, then ddp(G) = 1. If G has a single reachable
fragment, then ddp(G) = 1+min{ddp(G−v) : v ∈ V (G)}. Otherwise, ddp(G) =
max{ddp(F) : F ∈ RF(G)}.

DAG-width has a beautiful characterization [12] via a “cops and robber”
game: In this game, on a digraph G, the robber can move between the vertices
of G along cop-free directed paths at great speed, while cops move to vertices
of G in a helicopter which the robber can see and escape. The DAG-width of G

then equals the minimum number t of cops sufficient to catch the robber in G

(by landing at him when he has no escape route). Similarly:

Theorem 1.4 ([6]). The DAG-depth of a digraph G is at most t if, and only
if, the cop player has a “lift-free” winning strategy in the t-cops and robber game
on G, i.e. a strategy that never moves a cop from a vertex once he has landed.

Based on the game characterization, it is easy to see that DAG-depth may
never be higher than DAG-width. However, DAG-depth is in fact much more
restrictive than DAG-width: [6] The number of vertices on the longest directed
path in a digraph G is at most 2t − 1 where t = ddp(G). Theorem 1.4 will be
useful for determining the DAG-depth of some digraphs in the next sections.

3

2 The Algorithms

First of all, we remark that the problems OCN2 and OCN3 are trivially solvable,
see e.g.[3]. We present our results for solving OCN4 on digraphs of K-width 1
consisting of a single reachable fragment, and of DAG-depth 2.

2.1 Digraphs of K-width 1

We begin by proving a few structural properties of digraphs G with K-width 1
consisting of a single reachable fragment (i.e. having |RF(G)| = 1). First, choose
any vertex such that the whole digraph G is reachable from that vertex. This
will be the unique source of G, or s. Then perform a Depth-First search of G

from s to create a Depth-First search tree; the paths from s to the leaves of this
Depth-First search tree will be called branches, and the (x, y) arcs where y is a
predecessor of x in some branch will be called back-arcs.

Proposition 2.1. For any two branches X = (x0, x1, . . . xa) and Y = (y0, y1,

. . . yb) starting in s = x0 = y0, the following holds:

1) For any two vertices x ∈ V (X)\V (Y) and y ∈ V (Y)\V (X), there is no (x, y)
arc in G.

2) X and Y intersect in a single path starting in s.
3) For any back-arc (xi, xj), i > j, it holds that no xk, i ≥ k > j can be the

start point of a back-arc, and no xl, i > l ≥ j can be the endpoint of a
back-arc.

4) If xi = yi is the last vertex in common of X and Y , and there is a back-arc
(xm, xn),m > i > n, then there can be no back-arc (yp, yq), p > i > q.

Fig. 1. Forbidden situations by 1), 2), 3) and 4) respectively

Proof. Points 1) and 2) follow trivially from the digraph having K-width 1.
For point 3), if xk, i ≥ k > j were the starting point of a back-arc in G, then

there would be two paths from xk to xk−1: One would use the back-arc starting
at xk and then follow down the branch, the other would follow down the branch,

4

use the back-arc (xi, xj) and then follow down the branch to xk−1. On the other
hand, if xl, i > l ≥ j were the endpoint of a back-arc in G, again there would be
two paths from xl+1 to xl: One would go down the branch and use the back-arc
ending at xl, the other would go down to xi, use the back-arc (xi, xj) and then
follow down to xl.

As for point 4), if there was a back-arc (yp, yq), p ≥ i > q, there would be
two paths from xi to xi−1: One going through X and using (xm, xn), the other
going through Y and using (yp, yq). ⊓⊔

This means that our digraph is formed by a set of (non-disjoint) branches
from a common source, which at some point disconnect from one another and
each end up at separate leaves. Cycles only occur when a back-edge is present,
and each back-edge corresponds to precisely one cycle, since there is only one
path from the endpoint of the back-edge to its start. And, finally, any two cycles
can only intersect in at most one vertex. From these facts, we get:

Theorem 2.2. A digraph G with K-width 1 consisting of a single reachable
fragment either contains a directed cycle of length 2 or 5, or can be orientedly
coloured by 4 colours in polynomial time.

Proof. It is a trivial observation that directed cycles of length 5 require 5 colours
for oriented colouring. Cycles of length 2 can not be orientedly coloured at all.
We prove the oriented colourability of digraphs without such cycles by providing
an algorithm for colouring them using 4 colours:

We start by giving the following orientation of arcs in the target 4-vertex
digraph H4 (cf. Def. 1.1).

34

1 2

Notice that, given any cycle (of length other than 2 and 5) with fixed colouring
at one single vertex, such a cycle always remains colourable by using H. For
cycles of length 3 and 4, one can fill in the colours by using the 3-cycles and
4-cycle in H, and any number above 5 can be decomposed into a sum of threes
and fours – which provides a suitable colouring for such cycles.

Our algorithm works as follows:

– First, find a source s of the reachable fragment by performing a reversed
Depth-First search on G.

– Then, start a Depth-First search from s. The only reason for this Depth-First
search is to identify back-arcs (we remember whether every arc is normal or
a back-arc).

– Next, start a new, slightly modified Depth-First search from s. During the
search, colour every traversed vertex in accordance with H until an incoming
back-arc b is reached. The arc b corresponds to a cycle, and we must ensure
that the colouring respects this cycle. So, go to the vertex x starting the

5

back-arc b = (x, y) and then backtrack via normal arcs all the way up to
the end y of b. If we had not avoided back-arcs, we could have ended up
backtracking further down the Depth-First search tree. While backtracking,
we record the length of the cycle so that we can colour accordingly. Note
that even if this means that vertices can be visited more often than in an
ordinary Depth-First search, in fact the number of visits only goes up by at
most two. Once we reach the end y of the back-arc b (where we had originally
started backtracking), start colouring in a manner respecting the length of
the cycle and always choose the branch leading to the start of the back-arc.

– If we ever find a 2-cycle or 5-cycle, return false. Otherwise, using Proposition
2.1, we are left with a valid oriented 4-colouring when the algorithm ends.

⊓⊔

We remark that the previous algorithm can be trivially adjusted to find an
oriented 5-colouring for any digraph of K-width 1 consisting of a single reachable
fragment, unless a directed 2-cycle is present.

Corollary 2.3. There is a polynomial algorithm that, given a digraph G of K-
width 1 consisting of a single reachable fragment, determines the oriented chro-
matic number of G.

Proof. (sketch) First check for directed cycles of length 2. If any are present, the
digraph is not orientedly colourable. Otherwise run the algorithms for OCN2,
OCN3 (always polynomial) and the introduced algorithms for OCN4 and OCN5.
One of them must suceed. ⊓⊔

2.2 Digraphs of DAG-depth 2

Again, we start by introducing a few structural remarks about digraphs of DAG-
depth 2. We then use these remarks to prove that all digraphs of DAG-depth 2
are either orientedly 3-colourable or contain a 2-cycle by providing an algorithm
for computing a valid 3-colouring.

Remark 2.4. Digraphs of DAG-depth 2 contain none of the following subgraphs:

Proposition 2.5. In a digraph of DAG-depth 2, for any two paths of length 2
P = (a1, a2, a3), Q = (b1, b2, b3), and any v ∈ V (P)∩V (Q), it holds v = ai = bi

for some 1 ≤ i ≤ 3. Also, an arc (ai, bj) can only exist if j > i.

Proof. (sketch) It is easy to check that all other possibilities result in a path of
length 3, which is forbidden by Remark 2.4. ⊓⊔

6

Theorem 2.6. Digraphs of DAG-depth 2 without 2-cycles are always orientedly
3-colourable. Furthermore, there exists a simple polynomial algorithm computing
a 3-colouring for such digraphs.

Proof. We utilize the fact that DAG-depth 2 implies no path of length
higher than 2. H = (V,E) will be defined as follows: V = {1, 2, 3}, E =
{(1, 2), (1, 3), (2, 3)}. Start by colouring all paths of length 2 by colours 1,
2, 3 for the first, second and third vertices respectively. If a 2-cycle is found,
return “false” and terminate. If there are no 2-cycles then this is a valid partial
oriented colouring by H – paths will remain properly coloured even when they
intersect or have arcs between them thanks to Proposition 2.5.

Now, iteratively run through all arcs with at least one endpoint in an un-
coloured vertex. Note that all arcs from uncoloured vertices must start at sources
and all arcs into uncoloured vertices must end at sinks, since otherwise an un-
coloured 2-path would be present. Simply colour all the sinks by 3 and sources
by 1, and the remaining disconnected vertices can be coloured arbitrarily. We
end up with a valid oriented 3-colouring, assuming the digraph had DAG-depth
2 and no 2-cycles. ⊓⊔

3 Hardness proofs

3.1 Acyclic digraphs

The first NP-hardness proof in this article is for OCN4 on the class of DAGs.
Although the same result was claimed true already by the authors of [3], their
paper only sketched a reduction gadget with a picture, and the sketch missed
a key point — which would require further work and proving to ensure that no
cycles are present in the resulting digraph. So, we decided to include our own
reduction here, which is more straightforward and avoids the aforementioned
problem. Another reason for proving the acyclic case first is that it serves as a
motivation for the DAG-depth and K-width reduction (Theorem 3.4), and allows
us to introduce tools which are useful for both of these cases. Please note that
the target homomorphism digraph for our reduction is necessarily H of Fig. 3;
the reasons will be made clear in the proof of Theorem 3.2.

Lemma 3.1. Consider the gadget S from Fig. 2 and the target H from Fig. 3.

1. For any precolouring (l1, l2, l3) 7→ {T, F}3 of S with the exception of
(F, F, F), there is a homomorphism S → H extending it.

2. No homomorphism S → H maps (l1, l2, l3) to (F, F, F).

Proof. To explain one issue in advance, we remark that the same statement holds
also for a “simpler” gadget S′ which results from S by identifying s with s′. It
is, however, that this S′ has DAG-depth 4 while S has only 3, cf. Theorem 3.4.

1. As the proof, we show a table containing instructions on how to colour S for
all combinations of T and F at l1, l2, l3 (except for triple-F). For each li, the
table contains the colours to be used in the sequence of vertices from s to li.

7

a1

t b

f

a2

m

x

¬x
s

l1

l2

s′

l3

Fig. 2. Gadgets L to the left and S to the right

AB

T F

Fig. 3. The unique target colouring digraph H for our reductions

(l1, l2, l3) Evaluation l1-branch l2-branch l3-branch
T,T,T BFAT BFABT BFBTFABT
T,T,F BFAT BFABT BFBTFABF
T,F,T BFAT BFABF BFBTFABT
T,F,F BFAT BFABF BFBTFABF
F,T,T ABTF ABFAT ABABFABT
F,T,F ABTF ABFAT ABABFABF
F,F,T FABF FABTF FAFABFAT

2. Here we show another table, this time describing the relationship between
the colour of s and possible li colourings. As one can see, all combinations
are possible except for triple-F , thus concluding our proof.

Colour at s Admissible l1 col. Admissible l2 col. Admissible l3 col.
A F T T,F
B T T,F T,F
T T T,F T,F
F T,F F T

⊓⊔

Theorem 3.2. The OCN4 problem is NP-complete even on the class of DAGs.

Proof. We reduce 3-SAT to OCN4 with the use of two gadgets, S for clauses and
L for literals – see Fig. 2.

The reduction works as follows: Given a 3-SAT formula, for every literal
we construct a copy of the gadget L consisting of vertices {a1, f, b, t, a2,m} as
depicted by the figure. For every clause we then construct a copy of the gadget

8

S, where l1, l2 and l3 are identified with the vertices we have created for the
appropriate literals or their negations which appear in that particular clause.

Assume we have a 3-SAT evaluation. Then we must show that it is possible
to provide a valid oriented 4-colouring of this digraph. Let us name the colours
A,B, F, T (Fig. 3). The vertices a1, a2, b, t, f will be coloured in accordance to
their names, m will be coloured by B and every x and ¬x will be coloured by T

and F depending on whether the literal is true or false in the 3-SAT evaluation —
if it is true, then the vertex marked x in the figure will be coloured by T and ¬x

by F , and otherwise the colours will be switched. The T–F and F–T paths of
length 5 are 4-colourable by the sequences (T,A, F, T,A, F) and (F, T,A,B, F, T)
respectively. All that remains now is to orientedly colour all S gadgets. Notice
that the arcs between colours allow us to use H as the orientation of edges for
the colouring. So, the colourability of S is certified by Lemma 3.1(1).

On the other hand, assume we are given an oriented 4-colouring of such a
digraph and want to find a valid 3-SAT evaluation. Vertices a1, t, b, f all need
to have distinct colours, and without loss of generality we can again name these
colours A, T,B, F . The arcs between these four vertices in L, and the existence
of an arc (f, a2) easily leave the homomorphism image H from Fig 3 as the only
admissible variant of colouring. Notice that a2 and m must then be coloured by
A,B respectively.

Now all the vertices x and ¬x have to be coloured by either T or F . Our
goal is to have T represent “true” and F represent “false”, but for that to make
sense x and ¬x may not be both coloured by the same colour —that is where
the interconnecting 5-path is used. It is easy to verify that a 5-path starting with
T (or F) can not end with T (or F). So right now, we are given an evaluation
of literals in the 3-SAT formula by the colouring: If the appropriate literal is
coloured by T in x, evaluate it as “true”, otherwise evaluate it as “false”.

But what certifies that such an evaluation of all literals satisfies the 3-SAT
formula? Here the specifics of S come into play. As proved in Lemma 3.1(2), S

allows any combination of the colours T, F at l1, l2, l3 except for F, F, F .

So, to recapitulate, it is possible to straightforwardly translate an oriented 4-
colouring of such a digraph to the evaluation of the 3-SAT formula. The digraph
structure guarantees that the evaluation will be sound (i.e. every literal is “true”
iff its negation is “false”) and that the evaluation will satisfy the formula. This
concludes our proof. ⊓⊔

Remark 3.3. The digraph instances of the OCN4 problem in Theorem 3.2 are of
K-width 3 and DAG-depth 5.

3.2 Digraphs of DAG-depth 3 and K-width 1

Here we prove NP-hardness of the OCN4 problem on another very restricted
(c.f. Remark 3.3) digraph class — those that have simultaneously K-width 1 and
DAG-depth 3. Although the constructed instances are not acyclic, all the values

9

of traditional directed width parameters such as directed tree-width [8], DAG-
width [1, 12], Kelly-width [7] and cycle rank [4] remain bounded and very small.
To recapitulate, these bounds on K-width and DAG-depth mean that there exists
at most one path between any two vertices and that the robber can always be
caught by cops in 3 moves in the cops-and-robber game of Theorem 1.4. This is
just a little less restrictive than in Theorems 2.2 and 2.6.

Theorem 3.4. The OCN4 problem is NP-complete even on the class of digraphs
with K-width 1 and DAG-depth 3.

Proof. We prove the theorem by a reduction very similar to the case of Theorem
3.2. Notice that if the gadget S is applied on literals which are sinks in the
graph, then the conditions on DAG-depth and K-width hold. We will however
use a different variable gadget L1 (Fig. 4) of smaller K-width and DAG-depth.

p

q r

u b

¬x

x

Fig. 4. Gadget L1

Then, for every literal in the 3-SAT formula we create a separate copy of L1,
for each clause a separate copy of S and merge the copies of vertices x and ¬x

with l1, l2, l3 of S in accordance with clauses of the formula. It is easy to verify
that such a digraph will have K-width 1 and DAG-depth 3: Since the gadget S

only intersects with other gadgets in copies of li and all li are sinks, K-width can
only be increased above 1 by L1. However, the K-width of L1 is also 1. As for
DAG-depth, the robber can be caught in 3 moves regardless of his starting point
in S or L1. Specifically, if the robber is in L1 and starts in n, x or ¬x, then he
can be caught trivially. Otherwise, place cops on q, u and then he is caught by
the third one. Catching the robber in S is also simple and we leave the details
to the reader as an exercise.

So, assume we have a 3-SAT evaluation. We will use the same H as in the pre-
vious reduction. If the literal is true in the evaluation, then we colour (p, q, r, u, b)
as (F,A,B, T,B) and x,¬x as T and F . If it is false, we colour (p, q, r, u, b) as
(B, T, F,A,B) and x,¬x as F and T . Finally, colour S by Lemma 3.1(1).

On the other hand, assume we have a valid oriented 4-colouring of such a
digraph. Choose any 4-cycle C in a copy of L1. C must be coloured by 4 distinct
colours, without loss of generality let’s say p, q, r, u are coloured by some colours
P,Q,R,U respectively. This forces a 4-cycle in H and at this moment the only
two orientations of arcs which remain undetermined in H are {P,R} and {Q,U}.

10

If x and ¬x were to be coloured by R and P (i.e. without using a “cross
arc” in the cycle), we would not be able to assign any colour to B. So, only two
possibilities can occur:

1. ¬x coloured by P and x coloured by U . Then b must be coloured by R and
we obtain H = H1 (Fig. 5 and 3). By identifying (R,U, P,Q) = (B, T, F,A)
we see that this is isomorhpic to H as before.

2. ¬x coloured by Q and x coloured by R. Then b must be coloured by P and
we obtain H = H2 (Fig. 5 and 3). By identifying (R,U, P,Q) = (F,A,B, T)
we again see that this is isomorhpic to H.

UP

Q R

UP

Q R

Fig. 5. The colour digraphs H1 and H2 respectively.

So both admissible cases lead to the same (up to isomorphism) and only
possible orientation of arcs in H. Since the aforementioned holds separately for
every copy of L1, each copy of x and ¬x must be coloured only by T or F

and never by the same colour as the other. Lemma 3.1(2) already certifies that
under these conditions S forces every clause in the 3-SAT formula to hold true,
concluding our proof. ⊓⊔

4 Conclusions

There are two possible interpretations of the results of the article. One is opti-
mistic: there are some positive results and the problem can be algorithmically
solved for DAG-depth 2 and special cases of K-width 1. This is a step forward,
since no such positive results exist for traditional directed width parameters. It
also remains an open question whether the algorithm for K-width 1 could be ex-
tended to a parameterized FPT algorithm with respect to the number of sources
in the digraph.

In light of OCN4 remaining NP-hard even after such severe restriction of
the class of input graphs, we believe that new width parameters are needed
for tackling this and perhaps other hard problems on digraphs. The recently
introduced bi-rank-width measure [9], a natural directed extension of rank-width,
could be a promising candidate. However, bi-rank-width is conceptually quite
far away from the aforementioned width measures—these are mostly inspired by
cops-and-robber games and undirected tree-width (see e.g. [13])—while bi-rank-
width is close to the undirected clique-width and rank-width measures.

11

A strong positive aspect of bi-rank-width is that it performs much better
[6] than the other aforementioned directed width measures with respect to an
existence of polynomial algorithms for hard problems on digraphs (such as Di-
rected Steiner Tree or Directed Feedback Vertex Set). Particularly, the OCNc

problem can be solved in FPT time on digraphs of bounded bi-rank-width for
every fixed c [6].

There still are many unanswered questions though. One such question is
the parameterized complexity of computing the oriented chromatic number (the
optimization variant OCN) on digraphs of bounded bi-rank-width, as the algo-
rithm used for computing the ordinary chromatic number on graphs of bounded
rank-width [5] can not be straightforwardly extended to oriented colourings.

The major question in this context seems to be the following: Can one find
a more restrictive directed width measure which is conceptually related to tree-
width (and to cops and robber games), and which at the same time allows to
solve the OCNc problem efficiently?

References

1. D. Berwanger, A. Dawar, P. Hunter, and S. Kreutzer: DAG-width and parity
games. In STACS’06, volume 3884 of LNCS, pages 542–536. Springer, 2006.

2. B. Courcelle: The monadic second order-logic of graphs VI : on several repre-
sentations of graphs by relational structures. Discrete Appl. Math., 54:117-149,
1994.

3. J.-F. Culus and M. Demange: Oriented coloring: Complexity and approximation.
In SOFSEM’06, volume 3831 of LNCS, pages 226–236. Springer, 2006.

4. L. Eggan: Transition graphs and the star-height of regular events. Michigan

Mathematical Journal, 10(4):385–397, 1963.
5. R. Ganian and P. Hliněný: Better Polynomial Algorithms on Graphs of Bounded

Rank-width. Extended abstract in IWOCA’09, LNCS to appear. Springer.
6. R. Ganian, P. Hliněný, J. Kneis, A. Langer, J. Obdržálek and P. Rossmanith: On

Digraph Width Measures in Parameterized Algorithmics. Extended abstract in
IWPEC’09, LNCS to appear. Springer.

7. P. Hunter and S. Kreutzer: Digraph measures: Kelly decompositions, games, and
orderings. Theor. Comput. Sci., 399(3):206–219, 2008.

8. T. Johnson, N. Robertson, P. D. Seymour and R. Thomas: Directed treewidth.
J. Combin. Theory Ser. B, 82(1):138–154, 2001.

9. M. Kanté: The rank-width of directed graphs. In arXiv:0709.1433v3, 2008.
10. J. Nešetřil and P. Ossona de Mendez: Tree-depth, subgraph coloring and homo-

morphism bounds. European J. Combin., 27(6):1024–1041, 2006.
11. J. Nešetřil and A. Raspaud: Colored Homomorphisms of colored mixed graphs.

J. Combin. Theory Ser. B, 80(1):147–155, 2000.
12. J. Obdržálek: DAG-width: connectivity measure for directed graphs. In SODA’06,

pages 814–821. ACM-SIAM, 2006.
13. Robertson, N. and Seymour, P.: Graph minors X. Obstructions to tree-decompo-

sition. J. Combin. Theory Ser. B, 52(2):153–190, 1991.
14. É. Sopena: Oriented Graph Coloring. Discrete Math., 229:359–369, 2001.

12

