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1 How to Measure Graph “Width”1 How to Measure Graph “Width”

Tree-width (Robertson and Seymour) — a real success story:

• FPT algorithms for many problems, incl. all MSO2

• structurally nice, FPT computable, just great!
• related to (even nicer) branch-width
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1 How to Measure Graph “Width”1 How to Measure Graph “Width”

Tree-width (Robertson and Seymour) — a real success story:

• FPT algorithms for many problems, incl. all MSO2

• structurally nice, FPT computable, just great!
• related to (even nicer) branch-width

Clique-width / rank-width (Courcelle and Olariu / Oum and Seymour)

• again, FPT or XP algorithms for many problems, incl. all MSO1

• but not subgraph or minor -monotone



'

&

$

%

'

&

$
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1 How to Measure Graph “Width”1 How to Measure Graph “Width”

Tree-width (Robertson and Seymour) — a real success story:

• FPT algorithms for many problems, incl. all MSO2

• structurally nice, FPT computable, just great!
• related to (even nicer) branch-width

Clique-width / rank-width (Courcelle and Olariu / Oum and Seymour)

• again, FPT or XP algorithms for many problems, incl. all MSO1

• but not subgraph or minor -monotone

What about directed graphs?What about directed graphs?

Directed tree-width (Johnson, Robertson, Seymour, and Thomas)

• XP algorithms for Hamiltonian path or k-path (linkage) problems
• technically difficult, not many efficient algorithms. . .
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1 How to Measure Graph “Width”1 How to Measure Graph “Width”

Tree-width (Robertson and Seymour) — a real success story:

• FPT algorithms for many problems, incl. all MSO2

• structurally nice, FPT computable, just great!
• related to (even nicer) branch-width

Clique-width / rank-width (Courcelle and Olariu / Oum and Seymour)

• again, FPT or XP algorithms for many problems, incl. all MSO1

• but not subgraph or minor -monotone

What about directed graphs?What about directed graphs?

Directed tree-width (Johnson, Robertson, Seymour, and Thomas)

• XP algorithms for Hamiltonian path or k-path (linkage) problems
• technically difficult, not many efficient algorithms. . .

Recent additions

• an explosion of new directed measures in the past decade. . .
giving finer resolution for better algorithmic applications ?
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Directed measures: briefly (and chronologically). . .Directed measures: briefly (and chronologically). . .

Cycle rank, —— directed path-width, dir. tree-width, D-width, entanglement,
DAG-width, Kelly-width, DFVS-number, bi-rank-width, K-width, DAG-depth
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Directed measures: briefly (and chronologically). . .Directed measures: briefly (and chronologically). . .

Cycle rank, —— directed path-width, dir. tree-width, D-width, entanglement,
DAG-width, Kelly-width, DFVS-number, bi-rank-width, K-width, DAG-depth

. . . as driven by algorithmic use:. . . as driven by algorithmic use:

FPT ' runtime O
(
f(k) · nc

)
XP ' runtime O

(
nf(k)

)
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2 What are these Directed Width Measures2 What are these Directed Width Measures

DAG – directed acyclic graph (the simplest class ???)
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2 What are these Directed Width Measures2 What are these Directed Width Measures

DAG – directed acyclic graph (the simplest class ???)

Some measures that are small on DAGs:Some measures that are small on DAGs:

DAG-width – how many cops catch a visible robber
(no unnatural SCC restriction for the robber)



'

&

$

%

'

&

$
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2 What are these Directed Width Measures2 What are these Directed Width Measures

DAG – directed acyclic graph (the simplest class ???)

Some measures that are small on DAGs:Some measures that are small on DAGs:

DAG-width – how many cops catch a visible robber
(no unnatural SCC restriction for the robber)

Kelly-width – how many cops catch an invisible and lazy robber,
or the width of a dir. elimination ordering
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%P. Hliněný et al., Maastricht 2010 4 Good Digraph Width Measures

2 What are these Directed Width Measures2 What are these Directed Width Measures

DAG – directed acyclic graph (the simplest class ???)

Some measures that are small on DAGs:Some measures that are small on DAGs:

DAG-width – how many cops catch a visible robber
(no unnatural SCC restriction for the robber)

Kelly-width – how many cops catch an invisible and lazy robber,
or the width of a dir. elimination ordering

DFVS number – how many vertices to remove to become acyclic
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2 What are these Directed Width Measures2 What are these Directed Width Measures

DAG – directed acyclic graph (the simplest class ???)

Some measures that are small on DAGs:Some measures that are small on DAGs:

DAG-width – how many cops catch a visible robber
(no unnatural SCC restriction for the robber)

Kelly-width – how many cops catch an invisible and lazy robber,
or the width of a dir. elimination ordering

DFVS number – how many vertices to remove to become acyclic

Cycle rank (60’s!) – how “deep” to remove vertices to become acyclic
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Some measures that are high on DAGs:Some measures that are high on DAGs:

DAG-depth – how many cop moves are needed to catch a visible robber,
related to the longest directed path
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Some measures that are high on DAGs:Some measures that are high on DAGs:

DAG-depth – how many cop moves are needed to catch a visible robber,
related to the longest directed path

K-width – how many distinct paths between a pair of vertices
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Some measures that are high on DAGs:Some measures that are high on DAGs:

DAG-depth – how many cop moves are needed to catch a visible robber,
related to the longest directed path

K-width – how many distinct paths between a pair of vertices

and slightly different sort. . .

Clique-width – same def. for undirected and directed:

Minimum number of labels to build the graph using

– create a (labeled) vertex,
– make disjoint union,
– relabel all i’s to j,
– and add all arcs from label i to j.
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%P. Hliněný et al., Maastricht 2010 5 Good Digraph Width Measures

Some measures that are high on DAGs:Some measures that are high on DAGs:

DAG-depth – how many cop moves are needed to catch a visible robber,
related to the longest directed path

K-width – how many distinct paths between a pair of vertices

and slightly different sort. . .

Clique-width – same def. for undirected and directed:

Minimum number of labels to build the graph using

– create a (labeled) vertex,
– make disjoint union,
– relabel all i’s to j,
– and add all arcs from label i to j.

Bi-rank-width (Kanté) – related to clique-width / rank-width;
i.e. the branch-width of the bi-cutrank function on the vertex set.
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How these measures compareHow these measures compare
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3 Their Structural Properties3 Their Structural Properties

Very good: DAG-width, Kelly-width, DAG-depth

• having nice cops-and-robber game characterizations

• monotone under taking subgraphs and some restricted form of
arc contractions
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3 Their Structural Properties3 Their Structural Properties

Very good: DAG-width, Kelly-width, DAG-depth

• having nice cops-and-robber game characterizations

• monotone under taking subgraphs and some restricted form of
arc contractions

Good: directed tree-width, DFVS number, cycle rank, K-width

• no game chars., but still monotone under taking subgraphs
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3 Their Structural Properties3 Their Structural Properties

Very good: DAG-width, Kelly-width, DAG-depth

• having nice cops-and-robber game characterizations

• monotone under taking subgraphs and some restricted form of
arc contractions

Good: directed tree-width, DFVS number, cycle rank, K-width

• no game chars., but still monotone under taking subgraphs

and Bad: clique-width, bi-rank-width

• subgraphs can have much higher width,
e.g. the complete graph (bidirected) has small width while its sub-
graphs are complex

• still, not so bad since related to so called vertex minors
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4 and Algorithmic Usefulness4 and Algorithmic Usefulness

FPT ' runtime O
(
f(k) · nc

)
XP ' runtime O

(
nf(k)

)
NPC ' lik. no efficient alg. at all W[i]-hard ' lik. no better than XP alg.
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Conclusions from the Table. . .

Very good: clique-width, bi-rank-width

• all MSO1 properties have FPT algorithms

• and many other problems have (at least) XP algorithms



'

&

$

%

'

&

$
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Conclusions from the Table. . .

Very good: clique-width, bi-rank-width

• all MSO1 properties have FPT algorithms

• and many other problems have (at least) XP algorithms

Moderate: DAGs

• but this is not a measure, just a special case!
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Conclusions from the Table. . .

Very good: clique-width, bi-rank-width

• all MSO1 properties have FPT algorithms

• and many other problems have (at least) XP algorithms

Moderate: DAGs

• but this is not a measure, just a special case!

and Bad: all the other measures!
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%P. Hliněný et al., Maastricht 2010 9 Good Digraph Width Measures

Conclusions from the Table. . .

Very good: clique-width, bi-rank-width

• all MSO1 properties have FPT algorithms

• and many other problems have (at least) XP algorithms

Moderate: DAGs

• but this is not a measure, just a special case!

and Bad: all the other measures!

• classical digraph problems like dominating set, Steiner tree,
max- / min-LOB (outbranching), oriented colouring, etc. are still
NP-hard for the measures
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Conclusions from the Table. . .

Very good: clique-width, bi-rank-width

• all MSO1 properties have FPT algorithms

• and many other problems have (at least) XP algorithms

Moderate: DAGs

• but this is not a measure, just a special case!

and Bad: all the other measures!

• classical digraph problems like dominating set, Steiner tree,
max- / min-LOB (outbranching), oriented colouring, etc. are still
NP-hard for the measures

• positive algorithmic results seem rather incidental,
e.g. Hamiltonian path and related, or some particular algorithms
parametrized by the DFVS number
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5 Can we do better?5 Can we do better?

The contrast: So far we have got no directed measure that is structurally
nice and algorithmically useful at the same time!
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5 Can we do better?5 Can we do better?

The contrast: So far we have got no directed measure that is structurally
nice and algorithmically useful at the same time!

The Question:The Question:

What “structural” and algorithmically useful measures of digraphs can we get?
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5 Can we do better?5 Can we do better?

The contrast: So far we have got no directed measure that is structurally
nice and algorithmically useful at the same time!

The Question:The Question:

What “structural” and algorithmically useful measures of digraphs can we get?

Say, the number of vertices? No. . .
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5 Can we do better?5 Can we do better?

The contrast: So far we have got no directed measure that is structurally
nice and algorithmically useful at the same time!

The Question:The Question:

What “structural” and algorithmically useful measures of digraphs can we get?

Say, the number of vertices? No. . .

Ordinary tree-width of the underlying undirected graph!

• efficiently solves almost all usual problems, incl. MSO2

• and has quite nice structural properties, just ignore the directions
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5 Can we do better?5 Can we do better?

The contrast: So far we have got no directed measure that is structurally
nice and algorithmically useful at the same time!

The Question:The Question:

What “structural” and algorithmically useful measures of digraphs can we get?

Say, the number of vertices? No. . .

Ordinary tree-width of the underlying undirected graph!

• efficiently solves almost all usual problems, incl. MSO2

• and has quite nice structural properties, just ignore the directions

OK, but we want a directed measure that is

NOT tree-width bounding!
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The Question, II:The Question, II:

Can we have an algorithmically useful measure of digraphs that is not tree-width
bounding and monotone on subgraphs (i.e. “structural”)?
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The Question, II:The Question, II:

Can we have an algorithmically useful measure of digraphs that is not tree-width
bounding and monotone on subgraphs (i.e. “structural”)?

This “crazy subdivision” measure works well:

• 0 if every two vertices of deg > 2 are “very far” apart, |V | otherwise

• again, efficiently solves almost all usual problems, incl. MSO2
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The Question, II:The Question, II:

Can we have an algorithmically useful measure of digraphs that is not tree-width
bounding and monotone on subgraphs (i.e. “structural”)?

This “crazy subdivision” measure works well:

• 0 if every two vertices of deg > 2 are “very far” apart, |V | otherwise

• again, efficiently solves almost all usual problems, incl. MSO2

NO, we really do not want a measure like this one, right?
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The Question, II:The Question, II:

Can we have an algorithmically useful measure of digraphs that is not tree-width
bounding and monotone on subgraphs (i.e. “structural”)?

This “crazy subdivision” measure works well:

• 0 if every two vertices of deg > 2 are “very far” apart, |V | otherwise

• again, efficiently solves almost all usual problems, incl. MSO2

NO, we really do not want a measure like this one, right?

The Question, II’:The Question, II’:

What about add. monotonicity under butterfly contractions (minors)?
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The Question, II:The Question, II:

Can we have an algorithmically useful measure of digraphs that is not tree-width
bounding and monotone on subgraphs (i.e. “structural”)?

This “crazy subdivision” measure works well:

• 0 if every two vertices of deg > 2 are “very far” apart, |V | otherwise

• again, efficiently solves almost all usual problems, incl. MSO2

NO, we really do not want a measure like this one, right?

The Question, II’:The Question, II’:

What about add. monotonicity under butterfly contractions (minors)?

NO, this does not help to dismiss the “crazy” measure either. . .
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The Question, III:The Question, III:

So, what definition of a directed minor shall we consider when describing the
property of being “structurally nice”?
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The Question, III:The Question, III:

So, what definition of a directed minor shall we consider when describing the
property of being “structurally nice”?

• contractions that do not create any new directed paths (cf. the butterfly
minors) are not helpful in our context
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The Question, III:The Question, III:

So, what definition of a directed minor shall we consider when describing the
property of being “structurally nice”?

• contractions that do not create any new directed paths (cf. the butterfly
minors) are not helpful in our context
— we need to contract any induced “long path” (even not directed)!
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The Question, III:The Question, III:

So, what definition of a directed minor shall we consider when describing the
property of being “structurally nice”?

• contractions that do not create any new directed paths (cf. the butterfly
minors) are not helpful in our context
— we need to contract any induced “long path” (even not directed)!

• instead, we choose to define directed topological minors as follows:

– let V3 be the subset of vertices with > 2 neighbours;

– arc ~a is 2-contractible if

∗ not both ends of ~a are in V3, and

∗ no new dir. path between vert. of V3 after contraction of ~a
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The Question, III:The Question, III:

So, what definition of a directed minor shall we consider when describing the
property of being “structurally nice”?

• contractions that do not create any new directed paths (cf. the butterfly
minors) are not helpful in our context
— we need to contract any induced “long path” (even not directed)!

• instead, we choose to define directed topological minors as follows:

– let V3 be the subset of vertices with > 2 neighbours;

– arc ~a is 2-contractible if

∗ not both ends of ~a are in V3, and

∗ no new dir. path between vert. of V3 after contraction of ~a

Theorem. Unless P=NP, there is NO directed width measure s.t.

– not tree-width bounding,

– monotone under taking directed topological minors,
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property of being “structurally nice”?

• contractions that do not create any new directed paths (cf. the butterfly
minors) are not helpful in our context
— we need to contract any induced “long path” (even not directed)!

• instead, we choose to define directed topological minors as follows:

– let V3 be the subset of vertices with > 2 neighbours;

– arc ~a is 2-contractible if

∗ not both ends of ~a are in V3, and

∗ no new dir. path between vert. of V3 after contraction of ~a

Theorem. Unless P=NP, there is NO directed width measure s.t.

– not tree-width bounding,

– monotone under taking directed topological minors,

– efficiently orientable (approx. in XP), and
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The Question, III:The Question, III:

So, what definition of a directed minor shall we consider when describing the
property of being “structurally nice”?

• contractions that do not create any new directed paths (cf. the butterfly
minors) are not helpful in our context
— we need to contract any induced “long path” (even not directed)!

• instead, we choose to define directed topological minors as follows:

– let V3 be the subset of vertices with > 2 neighbours;

– arc ~a is 2-contractible if

∗ not both ends of ~a are in V3, and

∗ no new dir. path between vert. of V3 after contraction of ~a

Theorem. Unless P=NP, there is NO directed width measure s.t.

– not tree-width bounding,

– monotone under taking directed topological minors,

– efficiently orientable (approx. in XP), and

– algorithmically powerful (undirected MSO1 in XP).



'

&

$

%

'

&

$
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6 No, we cannot do better – our Answer6 No, we cannot do better – our Answer

Theorem. Unless P=NP, there is NO directed width measure s.t.

– not tree-width bounding,

– monotone under taking directed topological minors,

– efficiently orientable (approx. in XP), and

– algorithmically powerful (undirected MSO1 in XP).

Powerfulness - why undirected MSO1?Powerfulness - why undirected MSO1?
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6 No, we cannot do better – our Answer6 No, we cannot do better – our Answer

Theorem. Unless P=NP, there is NO directed width measure s.t.

– not tree-width bounding,

– monotone under taking directed topological minors,

– efficiently orientable (approx. in XP), and

– algorithmically powerful (undirected MSO1 in XP).

Powerfulness - why undirected MSO1?Powerfulness - why undirected MSO1?

• A useful width measure should not only incidentally solve a few problems,
but a whole rich class (a framework).
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Theorem. Unless P=NP, there is NO directed width measure s.t.

– not tree-width bounding,

– monotone under taking directed topological minors,

– efficiently orientable (approx. in XP), and

– algorithmically powerful (undirected MSO1 in XP).

Powerfulness - why undirected MSO1?Powerfulness - why undirected MSO1?

• A useful width measure should not only incidentally solve a few problems,
but a whole rich class (a framework).

• Say, we would like to solve problems in a logic-based framework, then:
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%P. Hliněný et al., Maastricht 2010 13 Good Digraph Width Measures

6 No, we cannot do better – our Answer6 No, we cannot do better – our Answer

Theorem. Unless P=NP, there is NO directed width measure s.t.

– not tree-width bounding,

– monotone under taking directed topological minors,

– efficiently orientable (approx. in XP), and

– algorithmically powerful (undirected MSO1 in XP).

Powerfulness - why undirected MSO1?Powerfulness - why undirected MSO1?

• A useful width measure should not only incidentally solve a few problems,
but a whole rich class (a framework).

• Say, we would like to solve problems in a logic-based framework, then:

– ability to test the presence of an arc (u, v), plus
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6 No, we cannot do better – our Answer6 No, we cannot do better – our Answer

Theorem. Unless P=NP, there is NO directed width measure s.t.

– not tree-width bounding,

– monotone under taking directed topological minors,

– efficiently orientable (approx. in XP), and

– algorithmically powerful (undirected MSO1 in XP).

Powerfulness - why undirected MSO1?Powerfulness - why undirected MSO1?

• A useful width measure should not only incidentally solve a few problems,
but a whole rich class (a framework).

• Say, we would like to solve problems in a logic-based framework, then:

– ability to test the presence of an arc (u, v), plus

– the language of (at least) MSO to capture global properties
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6 No, we cannot do better – our Answer6 No, we cannot do better – our Answer

Theorem. Unless P=NP, there is NO directed width measure s.t.

– not tree-width bounding,

– monotone under taking directed topological minors,

– efficiently orientable (approx. in XP), and

– algorithmically powerful (undirected MSO1 in XP).

Powerfulness - why undirected MSO1?Powerfulness - why undirected MSO1?

• A useful width measure should not only incidentally solve a few problems,
but a whole rich class (a framework).

• Say, we would like to solve problems in a logic-based framework, then:

– ability to test the presence of an arc (u, v), plus

– the language of (at least) MSO to capture global properties

– =⇒ undirected MSO1 is the least common denominator!
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And why efficiently orientable?And why efficiently orientable?

I.e., for every undirected G, one can efficiently orient (in XP time) the edges of
G such that the width is (approximately) optimal over all orientations of G.
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• Giving up this condition, we could encode computationally excessive in-
formation (NP-compl. oracle) in the orientation of edges.
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• Such exc. encoding can even be preserved on dir. topol. minors!
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3-colouring encoding example — low width if the arcs encode a 3-colouring:

– arcs directed from lower to higher colour
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I.e., for every undirected G, one can efficiently orient (in XP time) the edges of
G such that the width is (approximately) optimal over all orientations of G.

• Traditional directed measures are efficiently orientable.

• Giving up this condition, we could encode computationally excessive in-
formation (NP-compl. oracle) in the orientation of edges.

• Such exc. encoding can even be preserved on dir. topol. minors!

3-colouring encoding example — low width if the arcs encode a 3-colouring:

– arcs directed from lower to higher colour

– condition: having any dir. path with ends of deg. > 2, the start is a
source or the end is a sink
(and this cond. is closed under dir. topol. minors)
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And why efficiently orientable?And why efficiently orientable?

I.e., for every undirected G, one can efficiently orient (in XP time) the edges of
G such that the width is (approximately) optimal over all orientations of G.

• Traditional directed measures are efficiently orientable.

• Giving up this condition, we could encode computationally excessive in-
formation (NP-compl. oracle) in the orientation of edges.

• Such exc. encoding can even be preserved on dir. topol. minors!

3-colouring encoding example — low width if the arcs encode a 3-colouring:

– arcs directed from lower to higher colour

– condition: having any dir. path with ends of deg. > 2, the start is a
source or the end is a sink
(and this cond. is closed under dir. topol. minors)

– excessive info. – even knowing a graph is 3-colourable, there is no
efficient way to find a colouring (this measure is cheating!)
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7 The Conclusion, again7 The Conclusion, again

Theorem. Unless P=NP, there is NO directed width measure s.t.

– not tree-width bounding,

– monotone under taking directed topological minors,

– efficiently orientable (approx. in XP), and

– algorithmically powerful (undirected MSO1 in XP).
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• So, which of the assumptions should be given up?

Our point of view is algorithmic, and so the only possibility here to give
up is the structural condition!
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and there is no solution fulfilling all of them!

• So, which of the assumptions should be given up?

Our point of view is algorithmic, and so the only possibility here to give
up is the structural condition!

• Hence, for algorithmically useful directed measures, we can not require
nice structural properties at the same time, and thus. . .
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Theorem. Unless P=NP, there is NO directed width measure s.t.

– not tree-width bounding,

– monotone under taking directed topological minors,

– efficiently orientable (approx. in XP), and

– algorithmically powerful (undirected MSO1 in XP).

• As argued above, these assumptions are all natural,

and there is no solution fulfilling all of them!

• So, which of the assumptions should be given up?

Our point of view is algorithmic, and so the only possibility here to give
up is the structural condition!

• Hence, for algorithmically useful directed measures, we can not require
nice structural properties at the same time, and thus. . .

• Bi-rank-width is a really good dir. measure – the best we (can) have?
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THANK YOU FOR YOUR ATTENTION
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