

How "Good" Digraph Width Measures Do / Can We Have?

Petr Hliněný*

Robert Ganian Jan Obdržálek Joachim Kneis Alexander Langer Daniel Meister Peter Rossmanith Somnath Sikdar

FI MU Brno

RWTH Aachen

P. Hliněný et al., Maastricht 2010

Good Digraph Width Measures

Tree-width (Robertson and Seymour) — a real success story:

- FPT algorithms for many problems, incl. all MSO₂
- structurally nice, FPT computable, just great!
- related to (even nicer) branch-width

Tree-width (Robertson and Seymour) — a real success story:

- FPT algorithms for many problems, incl. all MSO₂
- structurally nice, FPT computable, just great!
- related to (even nicer) branch-width

Clique-width / rank-width (Courcelle and Olariu / Oum and Seymour)

- again, FPT or XP algorithms for many problems, incl. all MSO_1
- but not subgraph or minor-monotone

Tree-width (Robertson and Seymour) — a real success story:

- FPT algorithms for many problems, incl. all MSO₂
- structurally nice, FPT computable, just great!
- related to (even nicer) branch-width

Clique-width / rank-width (Courcelle and Olariu / Oum and Seymour)

- again, FPT or XP algorithms for many problems, incl. all MSO₁
- but not subgraph or minor-monotone

What about directed graphs?

Directed tree-width (Johnson, Robertson, Seymour, and Thomas)

- XP algorithms for Hamiltonian path or k-path (linkage) problems
- technically difficult, not many efficient algorithms...

Tree-width (Robertson and Seymour) — a real success story:

- FPT algorithms for many problems, incl. all MSO₂
- structurally nice, FPT computable, just great!
- related to (even nicer) branch-width

Clique-width / rank-width (Courcelle and Olariu / Oum and Seymour)

- again, FPT or XP algorithms for many problems, incl. all MSO_1
- but not subgraph or minor-monotone

What about directed graphs?

Directed tree-width (Johnson, Robertson, Seymour, and Thomas)

- XP algorithms for Hamiltonian path or k-path (linkage) problems
- technically difficult, not many efficient algorithms...

Recent additions

• an explosion of new directed measures in the past decade... giving finer resolution for better algorithmic applications ?

P. Hliněný et al., Maastricht 2010

2

Directed measures: briefly (and chronologically)...

Cycle rank, —— directed path-width, dir. tree-width, *D-width, entanglement, DAG-width, Kelly-width, DFVS-number, bi-rank-width, K-width, DAG-depth*

Directed measures: briefly (and chronologically)...

Cycle rank, —— directed path-width, dir. tree-width, *D-width, entanglement, DAG-width, Kelly-width, DFVS-number, bi-rank-width, K-width, DAG-depth*

... as driven by algorithmic use:

Probl. \ Param.	K-width	DAG-depth	DAG-width	Cycle-rank	DFVS-num.	DAGs	Bi-rank-width
HAM (§4.3)	FPT	FPT	XP ^{*a} /W[2]-hard ^b	$\rm XP^{*a}/W[2]$ -h. ^b	XP ^a [‡]	Р	$\mathbf{XP^c}/W[2]$ -h. ^d
<i>с</i> -Ратн (§4.4)	FPT	FPT	XP ^{*a} [‡]	XP ^{*a‡}	XP ^a [‡]	$\mathbf{P}^{\mathbf{a}}$	FPT
k-Path (§4.4)	para-NPC	para-NPC	$\rm NPC^{e}$	$\rm NPC^{e}$	$\rm NPC^{e}$	$\rm NPC^{e}$	$para-NPC^{f}$
DIDS (§4.5)	para-NPC	para-NPC	NPC	NPC	NPC	NPC	FPT
DiSTP (§4.5)	para-NPC	para-NPC	NPC	NPC	NPC	NPC	FPT
MaxLOB (§4.6)	para-NPC	para-NPC	NPC	NPC	NPC	NPC	FPT
MinLOB (§4.6)	para-NPC	para-NPC	para-NPC ^g	para-NPC ^g	para-NPC	\mathbf{P}^{h}	open
c-MinLOB (§4.6)	XP [‡]	FPT	$\rm XP^{*g}/W[2]$ -hard ^b	$XP^{*g}/W[2]-h.^{b}$	XP ^g [‡]	\mathbf{P}^{h}	$\mathbf{XP^c} / W[2]$ -h. ^d
MaxDiCut (§4.7)	$para-NPC^{b}$	$para-NPC^{b}$	$\rm NPC^{b}$	$\rm NPC^{b}$	$\rm NPC^{b}$	$\rm NPC^{b}$	${f XP^c}/W[2]$ -h. ^j
c-OCN (§4.8)	para-NPC	para-NPC	NPC^k	NPC^k	NPC^k	NPC^k	FPT
DFVS (§4.9)	open	open	para-NPC ^l	para-NPC ¹	$\rm FPT^m$	Р	FPT
Kernel (§4.9)	$\operatorname{para-NPC^n}$	$\operatorname{para-NPC^n}$	$\operatorname{para-NPC}^{l,n}$	$\operatorname{para-NPC}^{l,n}$	FPT	Р	FPT
ϕ -MSO ₁ MC (§4.2)	para-NPH	para-NPH	NPH	NPH	NPH	NPH	$\rm FPT^p$
<i>ф</i> -LTLMC (§4.10)	pcoNPH	pcoNPH	coNPH	coNPH	coNPH	\mathbf{coNPC}	para-coNPH
Parity (§4.10)	XP ^q [‡]	XP ^q [‡]	XP*q‡	XP*q‡	XP ^q [‡]	Р	XP ^r [‡]

 $\begin{array}{l} \label{eq:references} \ {}^{a}[JRST01] \ {}^{b}[LKM08] \ {}^{c}[GH010] \ {}^{d}[FGLS09] \ {}^{c}[EIS76] \ {}^{f}[GW06] \ {}^{g}[DGK09] \ {}^{h}[GRK09] \ {}^{j}[FGLS10] \ {}^{k}[CD06] \ {}^{l}[K008] \ {}^{m}[CLL^{+}08] \ {}^{n}[vL76] \ {}^{p}[CMR00] \ {}^{q}[BDHK06] \ {}^{r}[Obd07] \ . \end{array}$

FPT \simeq runtime $O(f(k) \cdot n^c)$

P. Hliněný et al., Maastricht 2010

 $\mathsf{XP}\simeq\mathsf{runtime}\;O\big(n^{f(k)}\big)$

Good Digraph Width Measures

DAG - directed acyclic graph (the simplest class ???)

2 What are these Directed Width Measures DAG – directed *acyclic* graph (the simplest class ???)

Some measures that are small on DAGs:

DAG-width – how many cops catch a *visible robber* (no unnatural SCC restriction for the robber)

DAG – directed *acyclic* graph (the simplest class ???)

Some measures that are small on DAGs:

DAG-width – how many cops catch a *visible robber* (no unnatural SCC restriction for the robber)

Kelly-width – how many cops catch an *invisible and lazy robber*, or the width of a dir. elimination ordering

4

DAG – directed acyclic graph (the simplest class ???)

Some measures that are small on DAGs:

DAG-width – how many cops catch a *visible robber* (no unnatural SCC restriction for the robber)

Kelly-width – how many cops catch an *invisible and lazy robber*, or the width of a dir. elimination ordering

DFVS number – how many vertices to remove to become acyclic

DAG – directed *acyclic* graph (the simplest class ???)

Some measures that are small on DAGs:

DAG-width – how many cops catch a *visible robber* (no unnatural SCC restriction for the robber)

Kelly-width – how many cops catch an *invisible and lazy robber*, or the width of a dir. elimination ordering

DFVS number – how many vertices to remove to become acyclic

Cycle rank (60's!) – how "deep" to remove vertices to become acyclic

DAG-depth – how many cop moves are needed to catch a *visible robber*, related to the longest directed path

DAG-depth – how many cop moves are needed to catch a *visible robber*, related to the longest directed path

K-width – how many distinct paths between a pair of vertices

DAG-depth – how many cop moves are needed to catch a *visible robber*, related to the longest directed path

K-width – how many distinct paths between a pair of vertices

and slightly different sort...

Clique-width – same def. for undirected and directed:

Minimum number of *labels* to build the graph using

- create a (labeled) vertex,
- make disjoint union,
- relabel all i's to j,
- and add all arcs from label i to j.

DAG-depth – how many cop moves are needed to catch a *visible robber*, related to the longest directed path

K-width – how many distinct paths between a pair of vertices

and slightly different sort...

Clique-width – same def. for undirected and directed:

Minimum number of *labels* to build the graph using

- create a (labeled) vertex,
- make disjoint union,
- relabel all i's to j,
- and add all arcs from label i to j.

Bi-rank-width (Kanté) – related to clique-width / rank-width; i.e. the branch-width of the *bi-cutrank* function on the vertex set.

How these measures compare

Graph family	DAG-depth	K-width	DFVS-number	cycle-rank	DAG-width
• •• •• •• ···	∞	1	0	0	1
	3	∞	0	0	1
\rightarrow	∞	∞	0	0	1
$\triangleleft \triangleleft \triangleleft \neg \neg$	3	1	∞	1	2
	∞	1	∞	1	2
	3	∞	∞	1	2
	∞	1	∞	∞	3
₽ 	∞	∞	∞	∞	3

P. Hliněný et al., Maastricht 2010

3 Their Structural Properties

Very good: DAG-width, Kelly-width, DAG-depth

- having nice cops-and-robber game characterizations
- monotone under taking subgraphs and some restricted form of arc contractions

3 Their Structural Properties

Very good: DAG-width, Kelly-width, DAG-depth

- having nice cops-and-robber game characterizations
- monotone under taking subgraphs and some restricted form of arc contractions
- Good: directed tree-width, DFVS number, cycle rank, K-width
 - no game chars., but still monotone under taking subgraphs

3 Their Structural Properties

Very good: DAG-width, Kelly-width, DAG-depth

- having nice cops-and-robber game characterizations
- monotone under taking subgraphs and some restricted form of arc contractions

Good: directed tree-width, DFVS number, cycle rank, K-width

• no game chars., but still monotone under taking subgraphs

and Bad: clique-width, bi-rank-width

- subgraphs can have much higher width,
 e.g. the complete graph (bidirected) has small width while its subgraphs are complex
- still, not so bad since related to so called *vertex minors*

4 and Algorithmic Usefulness

Probl. \setminus Param.	K-width	DAG-depth	DAG-width	Cycle-rank	DFVS-num.	DAGs	Bi-rank-width
HAM (§4.3)	FPT	FPT	$\rm XP^{*a}/W[2]$ -hard ^b	$\mathrm{XP^{*a}/W[2]-h.^{b}}$	XP ^a [‡]	Р	$\mathbf{XP^c}/W[2]$ -h. ^d
с-Ратн (§4.4)	FPT	FPT	XP ^{*a} [‡]	XP*a‡	XP ^a [‡]	$\mathbf{P}^{\mathbf{a}}$	FPT
k-Path (§4.4)	para-NPC	para-NPC	$\rm NPC^{e}$	$\rm NPC^{e}$	$\rm NPC^{e}$	$\rm NPC^{e}$	para-NPC ^f
DIDS (§4.5)	para-NPC	para-NPC	NPC	NPC	NPC	NPC	FPT
DiSTP (§4.5)	para-NPC	para-NPC	NPC	NPC	NPC	NPC	FPT
MaxLOB (§4.6)	para-NPC	para-NPC	NPC	NPC	NPC	NPC	FPT
MinLOB ($\S4.6$)	para-NPC	para-NPC	$para-NPC^g$	$para-NPC^{g}$	para-NPC	$\mathbf{P}^{\mathbf{h}}$	open
c-MinLOB (§4.6)	XP [‡]	FPT	$\rm XP^{*g}/W[2]$ -hard ^b	$XP^{*g}/W[2]-h.^{b}$	XP ^g [‡]	$\mathbf{P}^{\mathbf{h}}$	$\mathbf{XP^c}/W[2]$ -h. ^d
MaxDiCut (§4.7)	$para-NPC^{b}$	$para-NPC^{b}$	$\rm NPC^{b}$	$\rm NPC^{b}$	$\rm NPC^{b}$	$\rm NPC^{b}$	${f XP^c}/W[2] ext{-h.j}$
c-OCN (§4.8)	para-NPC	para-NPC	NPC^k	NPC^k	NPC^k	NPC^k	FPT
DFVS (§4.9)	open	open	para-NPC ^l	para-NPC ¹	$\rm FPT^m$	Р	FPT
Kernel (§4.9)	$\operatorname{para-NPC^n}$	$\operatorname{para-NPC^n}$	$\operatorname{para-NPC}^{l,n}$	$\operatorname{para-NPC}^{l,n}$	FPT	Р	\mathbf{FPT}
ϕ -MSO ₁ MC (§4.2)	para-NPH	para-NPH	NPH	NPH	NPH	NPH	$\rm FPT^{p}$
φ-LTLMC (§4.10)	pcoNPH	pcoNPH	coNPH	coNPH	coNPH	\mathbf{coNPC}	para-coNPH
Parity (§4.10)	XPq ‡	XP ^q [‡]	XP*q‡	XP*q‡	XP ^q [‡]	Р	XP ^r [‡]

 $\begin{array}{l} \label{eq:references} \ {}^{a}[JRST01] \ {}^{b}[LKM08] \ {}^{c}[GH010] \ {}^{d}[FGLS09] \ {}^{c}[EIS76] \ {}^{f}[GW06] \ {}^{g}[DGK09] \ {}^{h}[GRK09] \ {}^{j}[FGLS10] \ {}^{k}[CD06] \ {}^{l}[K008] \ {}^{m}[CLL^{+}08] \ {}^{n}[vL76] \ {}^{p}[CMR00] \ {}^{q}[BDHK06] \ {}^{r}[Obd07] \ . \end{array}$

FPT \simeq runtime $O(f(k) \cdot n^c)$ NPC \simeq lik. no efficient alg. at all $\label{eq:XP} \begin{array}{l} \mathsf{XP}\simeq \mathsf{runtime}\; O\big(n^{f(k)}\big)\\ \mathsf{W}[\mathsf{i}]\text{-hard}\simeq \mathsf{lik.} \text{ no better than XP alg.} \end{array}$

Very good: clique-width, bi-rank-width

- all MSO₁ properties have FPT algorithms
- and many other problems have (at least) XP algorithms

Very good: clique-width, bi-rank-width

- all MSO₁ properties have FPT algorithms
- and many other problems have (at least) XP algorithms

Moderate: DAGs

• but this is not a measure, just a special case!

Very good: clique-width, bi-rank-width

- all MSO₁ properties have FPT algorithms
- and many other problems have (at least) XP algorithms

Moderate: DAGs

• but this is not a measure, just a special case!

and Bad: all the other measures!

Very good: clique-width, bi-rank-width

- all MSO₁ properties have FPT algorithms
- and many other problems have (at least) XP algorithms

Moderate: DAGs

• but this is not a measure, just a special case!

and Bad: all the other measures!

 classical digraph problems like dominating set, Steiner tree, max-/min-LOB (outbranching), oriented colouring, etc. are still NP-hard for the measures

Very good: clique-width, bi-rank-width

- all MSO₁ properties have FPT algorithms
- and many other problems have (at least) XP algorithms

Moderate: DAGs

• but this is not a measure, just a special case!

and Bad: all the other measures!

- classical digraph problems like dominating set, Steiner tree, max-/min-LOB (outbranching), oriented colouring, etc. are still NP-hard for the measures
- positive algorithmic results seem rather incidental,
 e.g. Hamiltonian path and related, or some particular algorithms parametrized by the DFVS number

The contrast: So far we have got no directed measure that is structurally nice and algorithmically useful at the same time!

The contrast: So far we have got no directed measure that is structurally nice and algorithmically useful at the same time!

The Question:

What "structural" and algorithmically useful measures of digraphs can we get?

The contrast: So far we have got no directed measure that is structurally nice and algorithmically useful at the same time!

The Question:

What "*structural*" and *algorithmically useful* measures of digraphs can we get? Say, the number of vertices? No...

The contrast: So far we have got no directed measure that is structurally nice and algorithmically useful at the same time!

The Question:

What "*structural*" and *algorithmically useful* measures of digraphs can we get? Say, the number of vertices? No...

Ordinary tree-width of the underlying undirected graph!

- efficiently solves almost all usual problems, incl. MSO₂
- and has quite nice structural properties, just ignore the directions

The contrast: So far we have got no directed measure that is structurally nice and algorithmically useful at the same time!

The Question:

What "*structural*" and *algorithmically useful* measures of digraphs can we get? Say, the number of vertices? No...

Ordinary tree-width of the underlying undirected graph!

- efficiently solves almost all usual problems, incl. MSO₂
- and has quite nice structural properties, just ignore the directions

OK, but we want a directed measure that is

NOT tree-width bounding!

Can we have an *algorithmically useful* measure of digraphs that is not tree-width bounding and monotone on subgraphs (i.e. "*structural*")?

Can we have an *algorithmically useful* measure of digraphs that is not tree-width bounding and monotone on subgraphs (i.e. "*structural*")?

This "crazy subdivision" measure works well:

- 0 if every two vertices of deg > 2 are "very far" apart, |V| otherwise
- again, efficiently solves almost all usual problems, incl. MSO₂

Can we have an *algorithmically useful* measure of digraphs that is not tree-width bounding and monotone on subgraphs (i.e. "*structural*")?

This "crazy subdivision" measure works well:

- 0 if every two vertices of deg > 2 are "very far" apart, |V| otherwise
- again, efficiently solves almost all usual problems, incl. MSO₂

NO, we really do not want a measure like this one, right?

Can we have an *algorithmically useful* measure of digraphs that is not tree-width bounding and monotone on subgraphs (i.e. "*structural*")?

This "crazy subdivision" measure works well:

- 0 if every two vertices of deg > 2 are "very far" apart, |V| otherwise
- again, efficiently solves almost all usual problems, incl. MSO₂

NO, we really do not want a measure like this one, right?

The Question, II':

What about add. monotonicity under butterfly contractions (minors)?

Can we have an *algorithmically useful* measure of digraphs that is not tree-width bounding and monotone on subgraphs (i.e. "*structural*")?

This "crazy subdivision" measure works well:

- 0 if every two vertices of deg >2 are "very far" apart, |V| otherwise
- again, efficiently solves almost all usual problems, incl. MSO₂

NO, we really do not want a measure like this one, right?

The Question, II':

What about add. monotonicity under *butterfly contractions* (minors)? NO, this does not help to dismiss the "crazy" measure either...

P. Hliněný et al., Maastricht 2010

So, what definition of a *directed minor* shall we consider when describing the property of being "structurally nice"?

So, what definition of a *directed minor* shall we consider when describing the property of being "structurally nice"?

• contractions that do not create any new directed paths (cf. the butterfly minors) are not helpful in our context

So, what definition of a *directed minor* shall we consider when describing the property of being "structurally nice"?

- contractions that do not create any new directed paths (cf. the butterfly minors) are not helpful in our context
 - we need to contract any induced "long path" (even not directed)!

So, what definition of a *directed minor* shall we consider when describing the property of being "structurally nice"?

- contractions that do not create any new directed paths (cf. the butterfly minors) are not helpful in our context
 - we need to contract any induced "long path" (even not directed)!
- instead, we choose to define *directed topological minors* as follows:
 - let V_3 be the subset of vertices with > 2 neighbours;
 - arc \vec{a} is 2-contractible if
 - * not both ends of \vec{a} are in V_3 , and
 - st no new dir. path between vert. of V_3 after contraction of $ec{a}$

So, what definition of a *directed minor* shall we consider when describing the property of being "structurally nice"?

- contractions that do not create any new directed paths (cf. the butterfly minors) are not helpful in our context
 - we need to contract any induced "long path" (even not directed)!
- instead, we choose to define *directed topological minors* as follows:
 - let V_3 be the subset of vertices with > 2 neighbours;
 - arc \vec{a} is 2-contractible if
 - * not both ends of \vec{a} are in V_3 , and
 - * no new dir. path between vert. of V_3 after contraction of $ec{a}$

- not tree-width bounding,
- monotone under taking directed topological minors,

So, what definition of a *directed minor* shall we consider when describing the property of being "structurally nice"?

- contractions that do not create any new directed paths (cf. the butterfly minors) are not helpful in our context
 - we need to contract any induced "long path" (even not directed)!
- instead, we choose to define *directed topological minors* as follows:
 - let V_3 be the subset of vertices with > 2 neighbours;
 - arc \vec{a} is 2-contractible if
 - * not both ends of \vec{a} are in V_3 , and
 - * no new dir. path between vert. of V_3 after contraction of $ec{a}$

- not tree-width bounding,
- monotone under taking directed topological minors,
- efficiently orientable (approx. in XP), and

So, what definition of a *directed minor* shall we consider when describing the property of being "structurally nice"?

- contractions that do not create any new directed paths (cf. the butterfly minors) are not helpful in our context
 - we need to contract any induced "long path" (even not directed)!
- instead, we choose to define *directed topological minors* as follows:
 - let V_3 be the subset of vertices with > 2 neighbours;
 - arc \vec{a} is 2-contractible if
 - * not both ends of \vec{a} are in V_3 , and
 - st no new dir. path between vert. of V_3 after contraction of $ec{a}$

- not tree-width bounding,
- monotone under taking directed topological minors,
- efficiently orientable (approx. in XP), and
- algorithmically *powerful* (undirected MSO_1 in XP).

Theorem. Unless P=NP, there is NO directed width measure s.t.

- not tree-width bounding,
- monotone under taking directed topological minors,
- efficiently orientable (approx. in XP), and
- algorithmically *powerful* (undirected MSO₁ in XP).

Theorem. Unless P=NP, there is NO directed width measure s.t.

- not tree-width bounding,
- monotone under taking directed topological minors,
- efficiently orientable (approx. in XP), and
- algorithmically *powerful* (undirected MSO₁ in XP).

Powerfulness - why undirected MSO₁?

• A useful width measure should not only incidentally solve a few problems, but a whole rich class (a *framework*).

Theorem. Unless P=NP, there is NO directed width measure s.t.

- not tree-width bounding,
- monotone under taking directed topological minors,
- efficiently orientable (approx. in XP), and
- algorithmically *powerful* (undirected MSO₁ in XP).

- A useful width measure should not only incidentally solve a few problems, but a whole rich class (a *framework*).
- Say, we would like to solve problems in a logic-based framework, then:

Theorem. Unless P=NP, there is NO directed width measure s.t.

- not tree-width bounding,
- monotone under taking directed topological minors,
- efficiently orientable (approx. in XP), and
- algorithmically *powerful* (undirected MSO₁ in XP).

- A useful width measure should not only incidentally solve a few problems, but a whole rich class (a *framework*).
- Say, we would like to solve problems in a logic-based framework, then:

⁻ ability to test the presence of an arc (u, v), plus

Theorem. Unless P=NP, there is NO directed width measure s.t.

- not tree-width bounding,
- monotone under taking directed topological minors,
- efficiently orientable (approx. in XP), and
- algorithmically *powerful* (undirected MSO₁ in XP).

- A useful width measure should not only incidentally solve a few problems, but a whole rich class (a *framework*).
- Say, we would like to solve problems in a logic-based framework, then:
 - ability to test the presence of an arc (u, v), plus
 - the language of (at least) MSO to capture global properties

Theorem. Unless P=NP, there is NO directed width measure s.t.

- not tree-width bounding,
- monotone under taking directed topological minors,
- efficiently orientable (approx. in XP), and
- algorithmically *powerful* (undirected MSO₁ in XP).

- A useful width measure should not only incidentally solve a few problems, but a whole rich class (a *framework*).
- Say, we would like to solve problems in a logic-based framework, then:
 - ability to test the presence of an arc (u, v), plus
 - the language of (at least) MSO to capture global properties
 - \implies undirected MSO₁ is the least common denominator!

I.e., for every undirected G, one can efficiently orient (in XP time) the edges of G such that the width is (approximately) optimal over all orientations of G.

I.e., for every undirected G, one can efficiently orient (in XP time) the edges of G such that the width is (approximately) optimal over all orientations of G.

• Traditional directed measures are efficiently orientable.

I.e., for every undirected G, one can efficiently orient (in XP time) the edges of G such that the width is (approximately) optimal over all orientations of G.

- Traditional directed measures are efficiently orientable.
- Giving up this condition, we could encode computationally excessive information (NP-compl. oracle) in the orientation of edges.

I.e., for every undirected G, one can efficiently orient (in XP time) the edges of G such that the width is (approximately) optimal over all orientations of G.

- Traditional directed measures are efficiently orientable.
- Giving up this condition, we could encode computationally excessive information (NP-compl. oracle) in the orientation of edges.
- Such exc. encoding can even be preserved on dir. topol. minors!

I.e., for every undirected G, one can efficiently orient (in XP time) the edges of G such that the width is (approximately) optimal over all orientations of G.

- Traditional directed measures are efficiently orientable.
- Giving up this condition, we could encode computationally excessive information (NP-compl. oracle) in the orientation of edges.
- Such exc. encoding can even be preserved on dir. topol. minors!

3-colouring encoding example — low width if the arcs *encode* a 3-colouring:

- arcs directed from lower to higher colour

I.e., for every undirected G, one can efficiently orient (in XP time) the edges of G such that the width is (approximately) optimal over all orientations of G.

- Traditional directed measures are efficiently orientable.
- Giving up this condition, we could encode computationally excessive information (NP-compl. oracle) in the orientation of edges.
- Such exc. encoding can even be preserved on dir. topol. minors!

3-colouring encoding example — low width if the arcs *encode* a 3-colouring:

- arcs directed from lower to higher colour
- condition: having any dir. path with ends of deg. > 2, the start is a source or the end is a sink

(and this cond. is closed under dir. topol. minors)

I.e., for every undirected G, one can efficiently orient (in XP time) the edges of G such that the width is (approximately) optimal over all orientations of G.

- Traditional directed measures are efficiently orientable.
- Giving up this condition, we could encode computationally excessive information (NP-compl. oracle) in the orientation of edges.
- Such exc. encoding can even be preserved on dir. topol. minors!

3-colouring encoding example — low width if the arcs *encode* a 3-colouring:

- arcs directed from lower to higher colour
- condition: having any dir. path with ends of deg. > 2, the start is a source or the end is a sink
 (and this cond. is closed under dir. topol. minors)
- excessive info. even knowing a graph is 3-colourable, there is no efficient way to find a colouring (this measure is cheating!)

- not tree-width bounding,
- monotone under taking directed topological minors,
- efficiently orientable (approx. in XP), and
- algorithmically *powerful* (undirected MSO₁ in XP).

- not tree-width bounding,
- monotone under taking directed topological minors,
- efficiently orientable (approx. in XP), and
- algorithmically *powerful* (undirected MSO₁ in XP).
- As argued above, these assumptions are all natural,

- not tree-width bounding,
- monotone under taking directed topological minors,
- efficiently orientable (approx. in XP), and
- algorithmically *powerful* (undirected MSO₁ in XP).
- As argued above, these assumptions are all natural, and there is no solution fulfilling all of them!

- not tree-width bounding,
- monotone under taking directed topological minors,
- efficiently orientable (approx. in XP), and
- algorithmically *powerful* (undirected MSO₁ in XP).
- As argued above, these assumptions are all natural, and there is no solution fulfilling all of them!
- So, which of the assumptions should be given up?

- not tree-width bounding,
- monotone under taking directed topological minors,
- efficiently orientable (approx. in XP), and
- algorithmically *powerful* (undirected MSO₁ in XP).
- As argued above, these assumptions are all natural, and there is no solution fulfilling all of them!
- So, which of the assumptions should be given up?
 Our point of view is *algorithmic*, and so the only possibility here to give up is the structural condition!

- not tree-width bounding,
- monotone under taking directed topological minors,
- efficiently orientable (approx. in XP), and
- algorithmically *powerful* (undirected MSO₁ in XP).
- As argued above, these assumptions are all natural, and there is no solution fulfilling all of them!
- So, which of the assumptions should be given up?
 Our point of view is *algorithmic*, and so the only possibility here to give up is the structural condition!
- Hence, for algorithmically useful directed measures, we can not require nice structural properties at the same time, and thus...

- not tree-width bounding,
- monotone under taking directed topological minors,
- efficiently orientable (approx. in XP), and
- algorithmically *powerful* (undirected MSO₁ in XP).
- As argued above, these assumptions are all natural, and there is no solution fulfilling all of them!
- So, which of the assumptions should be given up?
 Our point of view is *algorithmic*, and so the only possibility here to give up is the structural condition!
- Hence, for algorithmically useful directed measures, we can not require nice structural properties at the same time, and thus...
- Bi-rank-width is a really good dir. measure the best we (can) have?

