FO model checking of intersection graphs and twin-width

01 October 2021

09:00

Dagstuhl - Sparsity 2021

Petr Hliněný * and Filip Pokrývka

Faculty of Informatics, Masaryk University
Brno, Czech Republic

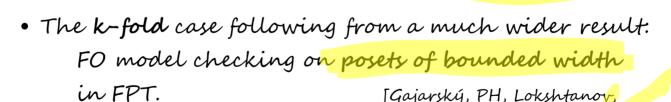
Motivation

 While FO model checking of sparse graphs is nowadays well-understood...

Deciding First-Order Properties of Nowhere Dense Graphs

MARTIN GROHE, RWTH Aachen University STEPHAN KREUTZER and SEBASTIAN SIEBERTZ, Technical University Berlin

Journal of the ACM, Vol. 64, No. 3, Article 17, Publication date: June 2017.


· For "dense" graphs, we have been starting from

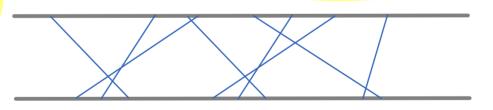
scratch in the past decade, such as from rather simple geometric intersection classes.

Examples

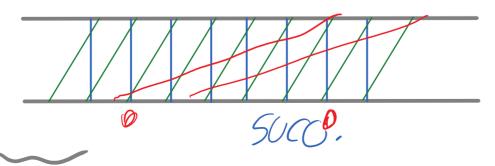
of FO model checking in FPT

- Interval graphs with a finite set of fixed int. lengths.
 [Ganian, PH, Král, Obdržálek, Schwartz, Teska, 2013/15]
- · k-fold proper interval graphs

Obdržálek, Ordyniak, Ramanujan, Saurabh, 2015]


• FO model checking of map graphs in FPT.

[Eickmeyer and Kawarabayashi, 2017]

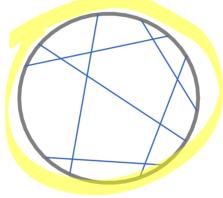

Examples II (even more geometry)

• PERMutation graphs (edges ↔ inversions)

Equivalently, intersection graphs of chords between two parallels.

· Fact. All simple graphs interpretable in PERM:

 FO model checking of PERM graphs of bounded clique or IS in FPT.


[PH, Pokrývka and Roy, 2018] (Using posets of bounded width.)

· Exact boundary of FO m.c. tractability on PERM?

· CIRcle graphs

= intersection graphs of chords in a circle:

• FO model checking of CIR graphs of bounded IS (but not clique) in FPT.

[PH, Pokrývka and Roy, 2018] Again, using posets of bounded width.

· What about CIR graphs of bounded clique size?

Twin-width - the breakthrough

Twin-width I: tractable FO model checking

Édouard Bonnet
Univ Lyon, CNRS, ENS de Lyon,
Université Claude Bernard Lyon 1, LIP UMR5668,
Lyon, France
Email: edouard.bonnet@ens-lyon.fr

Stéphan Thomassé
Univ Lyon, CNRS, ENS de Lyon,
Université Claude Bernard Lyon 1, LIP UMR5668,
Lyon, France
Institut Universitaire de France
Email: stephan.thomasse@ens-lyon.fr

Eun Jung Kim
Université Paris-Dauphine, PSL University,
CNRS UMR7243, LAMSADE,
Paris, France
Email: eun-jung.kim@dauphine.fr

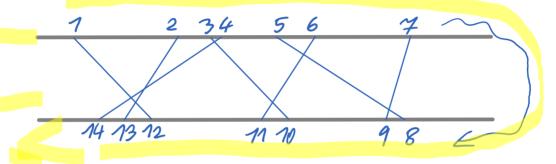
Rémi Watrigant
Univ Lyon, CNRS, ENS de Lyon,
Université Claude Bernard Lyon 1, LIP UMR5668,
Lyon, France
Email: remi.watrigant@ens-lyon.fr

 FO model checking of classes of bounded twin-width is in FPT.

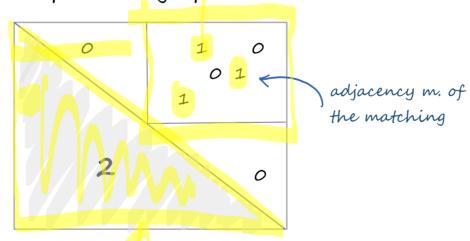
[Bonnet, Kim, Thomassé, Watrigant, 2020]

-> this includes all previously stated results.

• Poset of width d have twin-width 2.

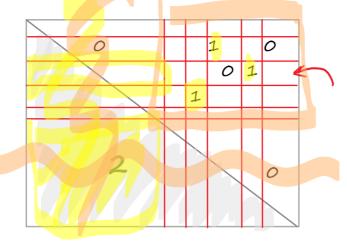

[Bonnet, Kim, Thomassé, Watrigant, 2020]

Poset of width d have twin-width O(d).
 [Balabán and PH, 2021]


Back to the PERMutation graphs

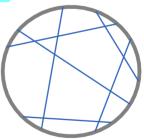
 A heredit. class of PERM graphs has FPT FO model checking iff it excludes some PERM graph.
 [Bonnet, Kim, Thomassé, Watrigant, 2020]

A proof sketch...



- o n-vertex PERM g. ↔ a matching on {1,2,...,2n},
- then encoded in an "ordered" matrix which FO interprets the graph:

- Now, bounded tww. → tractable FO model c.
 (note that we use the interpretation of the gr.),
- and unbounded tww. → large mixed minor (in every order, hence also in our order).

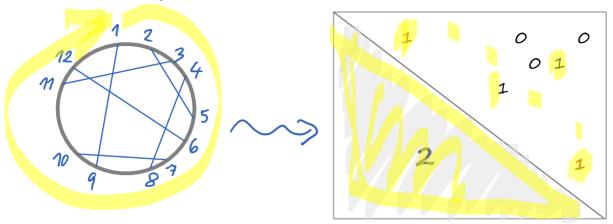

(in every order, hence also in our order).

can choose any PERM graph

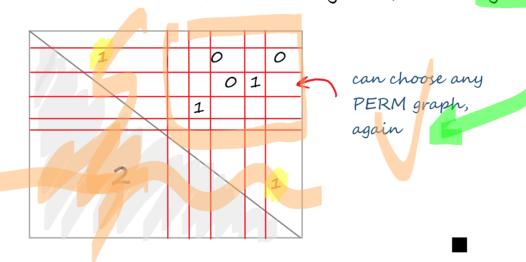
O Hence, unbounded tww. → our class contains all PERM graphs! (and that is not our class)

Analogously for CIRcle graphs

• A hereditary class of CIR graphs has FPT FO model checking iff it excludes some PERM graph.


[PH and Pokrývka, 2021]

· Note; CIR graph representation can be computed in polytime.


[Bouchet, 1985], [Spinrad, 1994]

A proof sketch...

- All PERM graphs → intractable FO model c.
- · Take again an ordered matrix with a matching:

- · Bounded tww. -> tractable FO model c. again,
- o and unbounded tww. -> large mixed m. again:

Conclusions

- The question of FO model checking on subclasses
 of PERM graphs turned out to be the right one...
- Similarly to the case of CIR graphs, can we deduce a sharp boundary between tractable and intractable FO model c. on interval graphs?
 - The literally same approach with ordered matchings and mixed minors can be applied to them, but the outcome is not satisfactory (exhibiting perhaps only a big clique).
 - o The problem seems to lie in that the order prescribed in the matrix is not the right one to exhibit truly large tww.
- *NEW* (regarding vertex-minors of Rose)

 Let B be a hereditary class such that every graph in B is a p-bounded perturbation of a CIR graph. Then B has bounded twin-width

iff

B excludes some PERM graph.

