# A Short Proof of Euler–Poincaré Formula



#### Petr Hliněný

#### Faculty of Informatics, Masaryk University

Brno, Czech Republic

# 1 Euler–Poincaré Polyhedral Formula

$$V - E + F = 2$$



• The first landmark in the theory of polytopes.



- The first landmark in the theory of polytopes.
- Known already to Descartes. First full proof by Legendre in 1794.
- See also David Eppstein: *Twenty Proofs of Euler's Formula*. The Geometry Junkyard http://www.ics.uci.edu/~eppstein/junkyard/euler.

**Theorem.** Let P be a convex polytope in  $\mathbb{R}^d$ , and denote by  $f^c$ ,  $c \in \{0, 1, \dots, d\}$ , the numbers of *faces of* P *of dimension* c. Then

$$f^0 - f^1 + f^2 - \dots + (-1)^{d-1} f^{d-1} + (-1)^d f^d = 1$$



**Theorem.** Let P be a convex polytope in  $\mathbb{R}^d$ , and denote by  $f^c$ ,  $c \in \{0, 1, \dots, d\}$ , the numbers of *faces of* P *of dimension* c. Then

$$f^0 - f^1 + f^2 - \dots + (-1)^{d-1} f^{d-1} + (-1)^d f^d = 1$$



• Discovered by Schläfli 1852 (published 1902).

**Theorem.** Let P be a convex polytope in  $\mathbb{R}^d$ , and denote by  $f^c$ ,  $c \in \{0, 1, \dots, d\}$ , the numbers of *faces of* P *of dimension* c. Then

$$f^0 - f^1 + f^2 - \dots + (-1)^{d-1} f^{d-1} + (-1)^d f^d = 1$$



- Discovered by Schläfli 1852 (published 1902).
- Rediscoveries in late 19th century, all proofs assuming *shellability*.

**Theorem.** Let P be a convex polytope in  $\mathbb{R}^d$ , and denote by  $f^c$ ,  $c \in \{0, 1, \ldots, d\}$ , the numbers of faces of P of dimension c. Then

$$f^0 - f^1 + f^2 - \dots + (-1)^{d-1} f^{d-1} + (-1)^d f^d = 1$$



- Discovered by Schläfli 1852 (published 1902).
- Rediscoveries in late 19th century, all proofs assuming *shellability*.
- Shellability established only in 1971 by Bruggesser and Mani.

$$f^0-f^1+f^2-\dots+(-1)^df^d=1$$
or,  $f^0-f^1+\dots+(-1)^{d-1}f^{d-1}=1+(-1)^{d-1}$ 



$$f^0-f^1+f^2-\dots+(-1)^df^d=1$$
or,  $f^0-f^1+\dots+(-1)^{d-1}f^{d-1}=1+(-1)^{d-1}$ 

- P an arbitrary convex polytope in dim.  $\mathbb{R}^{k+1}$ .

$$f^0-f^1+f^2-\dots+(-1)^df^d=1$$
  
or,  $f^0-f^1+\dots+(-1)^{d-1}f^{d-1}=1+(-1)^{d-1}$ 



- P an arbitrary convex polytope in dim.  $\mathbb{R}^{k+1}$
- R := the Schlegl diagram of P (a complex in ℝ<sup>k</sup>), having the facets R<sub>1</sub>,..., R<sub>t</sub> where t := f<sup>k</sup> − 1, and R<sub>0</sub> being the "outer" facet of the diagram.

$$f^0 - f^1 + f^2 - \dots + (-1)^d f^d = 1$$
  
or,  $f^0 - f^1 + \dots + (-1)^{d-1} f^{d-1} = 1 + (-1)^{d-1}$ 



- P an arbitrary convex polytope in dim.  $\mathbb{R}^{k+1}$
- R := the Schlegl diagram of P (a complex in ℝ<sup>k</sup>), having the facets R<sub>1</sub>,..., R<sub>t</sub> where t := f<sup>k</sup> 1, and R<sub>0</sub> being the "outer" facet of the diagram. Let f<sup>c</sup><sub>i</sub> be the number of faces of R<sub>i</sub> of dimension c.

$$f^0-f^1+f^2-\dots+(-1)^df^d=1$$
or,  $f^0-f^1+\dots+(-1)^{d-1}f^{d-1}=1+(-1)^{d-1}$ 



- P an arbitrary convex polytope in dim.  $\mathbb{R}^{k+1}$
- *R* := the Schlegl diagram of *P* (a complex in ℝ<sup>k</sup>), having the facets *R*<sub>1</sub>,..., *R*<sub>t</sub> where *t* := *f<sup>k</sup>* − 1, and *R*<sub>0</sub> being the "outer" facet of the diagram. Let *f<sup>c</sup><sub>i</sub>* be the number of faces of *R<sub>i</sub>* of dimension *c*.
- Choose a general direction (vector) α in R<sup>k</sup>, i.e., one not parallel to any proper face in the complex R.

$$f^0-f^1+f^2-\dots+(-1)^df^d=1$$
or,  $f^0-f^1+\dots+(-1)^{d-1}f^{d-1}=1+(-1)^{d-1}$ 



- P an arbitrary convex polytope in dim.  $\mathbb{R}^{k+1}$
- R := the Schlegl diagram of P (a complex in ℝ<sup>k</sup>), having the facets R<sub>1</sub>,..., R<sub>t</sub> where t := f<sup>k</sup> 1, and R<sub>0</sub> being the "outer" facet of the diagram. Let f<sup>c</sup><sub>i</sub> be the number of faces of R<sub>i</sub> of dimension c.
- Choose a general direction (vector) α in ℝ<sup>k</sup>, i.e., one not parallel to any proper face in the complex R.
- Assign two *flags* to each face of dim. < k, one as α and one as −α.</li>
   Formally, the flags are εα and −εα for small ε > 0, starting both in a point in the relative interior of this face.

Recall the setup:

- $f^0 f^1 + \dots + (-1)^{d-1} f^{d-1} = 1 + (-1)^{d-1}$ , for  $d \le k$ ,
- P in dimension d := k + 1, R := Schlegl diagram of P,
- two opposite flags at each face of dim.  $0, 1, \ldots, k-1$  in R.

Flag signs (values)

Recall the setup:

- $f^0 f^1 + \dots + (-1)^{d-1} f^{d-1} = 1 + (-1)^{d-1}$ , for  $d \le k$ ,
- P in dimension d := k + 1, R := Schlegl diagram of P,
- two opposite flags at each face of dim.  $0, 1, \ldots, k-1$  in R.

Flag signs (values)

•  $(-1)^c$  for each flag at a face of dim.  $c \le k-1$ .

Recall the setup:

- $f^0 f^1 + \dots + (-1)^{d-1} f^{d-1} = 1 + (-1)^{d-1}$ , for  $d \le k$ ,
- P in dimension d := k + 1, R := Schlegl diagram of P,
- two opposite flags at each face of dim.  $0, 1, \ldots, k-1$  in R.

Flag signs (values)

•  $(-1)^c$  for each flag at a face of dim.  $c \le k - 1$ .

Summing the flags

Recall the setup:

- $f^0 f^1 + \dots + (-1)^{d-1} f^{d-1} = 1 + (-1)^{d-1}$ , for  $d \le k$ ,
- P in dimension d := k + 1, R := Schlegl diagram of P,
- two opposite flags at each face of dim.  $0, 1, \ldots, k-1$  in R.

Flag signs (values)

•  $(-1)^c$  for each flag at a face of dim.  $c \le k - 1$ .

#### Summing the flags

• Globally – all flag values together:  $2\left(f^0 - f^1 + \dots + (-1)^{k-1}f^{k-1}\right) = 2\sum_{c=0}^{k-1} (-1)^c f^c$ 

Recall the setup:

- $f^0 f^1 + \dots + (-1)^{d-1} f^{d-1} = 1 + (-1)^{d-1}$ , for  $d \le k$ ,
- P in dimension d := k + 1, R := Schlegl diagram of P,
- two opposite flags at each face of dim.  $0, 1, \ldots, k-1$  in R.

Flag signs (values)

•  $(-1)^c$  for each flag at a face of dim.  $c \le k - 1$ .

#### Summing the flags

- Globally all flag values together: (cf. Schläfli!)  $2\left(f^0 - f^1 + \dots + (-1)^{k-1}f^{k-1}\right) = 2\sum_{c=0}^{k-1} (-1)^c f^c$
- Locally every flag "belongs" to precis. one of the facets in R... (flags pointing out of R belong to outer  $R_0$ )

Recall the global sum  
"
$$\sum$$
 all flags" =  $2\sum_{c=0}^{k-1}(-1)^c f^c = 2 \times$  "Schläfli".

Recall the global sum  
"
$$\sum$$
 all flags" =  $2\sum_{c=0}^{k-1}(-1)^c f^c = 2 \times$  "Schläfli".

Local count at  $R_i$   $(1 \le i \le t)$ 

Recall the global sum  
"
$$\sum$$
 all flags" =  $2\sum_{c=0}^{k-1}(-1)^c f^c = 2 \times$  "Schläfli".

Local count at  $R_i$   $(1 \le i \le t)$ 

• Out of each pair of flags of face F, at most one in  $R_i$  (by convexity),

Recall the global sum "
$$\sum$$
 all flags" =  $2\sum_{c=0}^{k-1}(-1)^c f^c = 2 \times$  "Schläfli".

Local count at  $R_i$   $(1 \le i \le t)$ 

- Out of each pair of flags of face F, at most one in  $R_i$  (by convexity),
- and one flag in  $R_i \iff$  face F "disappears" in the orth. proj. by  $\alpha$ :

Recall the global sum "
$$\sum$$
 all flags" =  $2\sum_{c=0}^{k-1}(-1)^c f^c = 2 \times$  "Schläfli".

Local count at  $R_i$   $(1 \le i \le t)$ 

- Out of each pair of flags of face F, at most one in  $R_i$  (by convexity),
- and one flag in  $R_i \iff$  face F "disappears" in the orth. proj. by  $\alpha$ :

"
$$\sum$$
 flags in  $R_i$ " =  $\sum_{c=0}^{k-1} (-1)^c f_i^c - \sum_{c=0}^{k-2} (-1)^c g_i^c$ 

where  $R_i$  projects down to  $S_i$  by  $\alpha$ , and  $g_i^c$  is the number of faces of  $S_i$  of dimension c.

Recall the global sum "
$$\sum$$
 all flags" =  $2\sum_{c=0}^{k-1}(-1)^c f^c = 2 \times$  "Schläfli".

Local count at  $R_i$   $(1 \le i \le t)$ 

- Out of each pair of flags of face F, at most one in  $R_i$  (by convexity),
- and one flag in  $R_i \iff$  face F "disappears" in the orth. proj. by  $\alpha$ :

"
$$\sum$$
 flags in  $R_i$ " =  $\sum_{c=0}^{k-1} (-1)^c f_i^c - \sum_{c=0}^{k-2} (-1)^c g_i^c$ 

where  $R_i$  projects down to  $S_i$  by  $\alpha$ , and  $g_i^c$  is the number of faces of  $S_i$  of dimension c.

#### **Local count at** $R_0$ (the outer facet of R)

slightly different...

Petr Hliněný, ACO 25, 2017

Recall the global sum  
"
$$\sum$$
 all flags" =  $2\sum_{c=0}^{k-1}(-1)^c f^c = 2 \times$  "Schläfli"  
and the local sum at  $R_i$ ,  $i > 0$   
" $\sum$  flags in  $R_i$ " =  $\sum_{c=0}^{k-1}(-1)^c f_i^c - \sum_{c=0}^{k-2}(-1)^c g_i^c$ .

c=0

c=0

Recall the global sum  
"
$$\sum$$
 all flags" =  $2\sum_{c=0}^{k-1}(-1)^c f^c = 2 \times$  "Schläfli"  
and the local sum at  $R_i$ ,  $i > 0$   
 $k-1$   
 $k-2$ 

"
$$\sum$$
 flags in  $R_i$ " =  $\sum_{c=0}^{n-1} (-1)^c f_i^c - \sum_{c=0}^{n-1} (-1)^c g_i^c$ .

**Local count at**  $R_0$  (the outer facet of R)

Same arguments, but counting complementary, flags "pointing out":

'
$$\sum$$
 flags in  $R_0$ " =  $\sum_{c=0}^{k-1} (-1)^c f_0^c + \sum_{c=0}^{k-2} (-1)^c g_0^c$ .

Recall the **global** sum  
"
$$\sum$$
 all flags" =  $2\sum_{c=0}^{k-1}(-1)^c f^c = 2 \times$  "Schläfli"  
and the **local** sum at  $R_{ii}$ ,  $i > 0$ 

"
$$\sum$$
 flags in  $R_i$ " =  $\sum_{c=0}^{\kappa-1} (-1)^c f_i^c - \sum_{c=0}^{\kappa-2} (-1)^c g_i^c$ .

**Local count at**  $R_0$  (the outer facet of R)

Same arguments, but counting complementary, flags "pointing out":

'
$$\sum$$
 flags in  $R_0$ " =  $\sum_{c=0}^{k-1} (-1)^c f_0^c + \sum_{c=0}^{k-2} (-1)^c g_0^c$ .

Towards the conclusion...

"
$$\sum$$
 all flags" =  $\sum_{a=1}^{t}$  " $\sum$  flags in  $R_i$ " + " $\sum$  flags in  $R_0$ "

Recall "
$$\sum$$
 all flags" = 2 × "Schläfli" =  $2\sum_{c=0}^{k-1} (-1)^c f^c$   
=  $\sum_{a=1}^t$  " $\sum$  flags in  $R_i$ " + " $\sum$  flags in  $R_0$ ".

Recall "
$$\sum$$
 all flags" = 2 × "Schläfli" =  $2\sum_{c=0}^{k-1} (-1)^c f^c$   
=  $\sum_{a=1}^t$  " $\sum$  flags in  $R_i$ " + " $\sum$  flags in  $R_0$ ".

**Induction** assumption

"
$$\sum$$
 flags in  $R_i$ " =  $\sum_{c=0}^{k-1} (-1)^c f_i^c - \sum_{c=0}^{k-2} (-1)^c g_i^c$ 

Recall "
$$\sum$$
 all flags" = 2 × "Schläfli" =  $2\sum_{c=0}^{k-1} (-1)^c f^c$   
=  $\sum_{a=1}^t$  " $\sum$  flags in  $R_i$ " + " $\sum$  flags in  $R_0$ ".

**Induction** assumption

"\sum flags in 
$$R_i$$
" =  $\sum_{c=0}^{k-1} (-1)^c f_i^c - \sum_{c=0}^{k-2} (-1)^c g_i^c$   
=  $1 + (-1)^{k-1} - (1 + (-1)^{k-2}) = 2(-1)^{k-1}$ 

Recall "
$$\sum$$
 all flags" = 2 × "Schläfli" =  $2\sum_{c=0}^{k-1} (-1)^c f^c$   
=  $\sum_{a=1}^t$  " $\sum$  flags in  $R_i$ " + " $\sum$  flags in  $R_0$ ".

**Induction** assumption

"\sum flags in 
$$R_i$$
" =  $\sum_{c=0}^{k-1} (-1)^c f_i^c - \sum_{c=0}^{k-2} (-1)^c g_i^c$   
=  $1 + (-1)^{k-1} - (1 + (-1)^{k-2}) = 2(-1)^{k-1}$   
"\sum flags in  $R_0$ " =  $\sum_{c=0}^{k-1} (-1)^c f_0^c + \sum_{c=0}^{k-2} (-1)^c g_0^c$   
=  $1 + (-1)^{k-1} + 1 + (-1)^{k-2} = 2$ 

Recall "
$$\sum$$
 all flags" = 2 × "Schläfli" =  $2\sum_{c=0}^{k-1}(-1)^c f^c$   
=  $\sum_{a=1}^t$  " $\sum$  flags in  $R_i$ " + " $\sum$  flags in  $R_0$ " where  $t = f^k - 1$ .

Recall "
$$\sum$$
 all flags" = 2 × "Schläfli" =  $2\sum_{c=0}^{k-1}(-1)^c f^c$   
=  $\sum_{a=1}^t$  " $\sum$  flags in  $R_i$ " + " $\sum$  flags in  $R_0$ " where  $t = f^k - 1$ .

-

**Putting together** 

$$2\sum_{c=0}^{k-1} (-1)^c f^c = \sum_{a=1}^t 2(-1)^{k-1} + 2$$

Recall "
$$\sum$$
 all flags" = 2 × "Schläfli" =  $2\sum_{c=0}^{k-1}(-1)^c f^c$   
=  $\sum_{a=1}^t$  " $\sum$  flags in  $R_i$ " + " $\sum$  flags in  $R_0$ " where  $t = f^k - 1$ .

Putting together

$$2\sum_{c=0}^{k-1} (-1)^c f^c = \sum_{a=1}^t 2(-1)^{k-1} + 2$$
$$\sum_{c=0}^{k-1} (-1)^c f^c = \sum_{a=1}^t (-1)^{k-1} + 1 = (f^k - 1) \cdot (-1)^{k-1} + 1$$

Recall "
$$\sum$$
 all flags" = 2 × "Schläfli" =  $2\sum_{c=0}^{k-1} (-1)^c f^c$   
=  $\sum_{a=1}^t$  " $\sum$  flags in  $R_i$ " + " $\sum$  flags in  $R_0$ "

**Putting together** 

$$2\sum_{c=0}^{k-1} (-1)^{c} f^{c} = \sum_{a=1}^{t} 2(-1)^{k-1} + 2$$
$$\sum_{c=0}^{k-1} (-1)^{c} f^{c} = \sum_{a=1}^{t} (-1)^{k-1} + 1 = (f^{k} - 1) \cdot (-1)^{k-1} + 1$$
$$\sum_{c=0}^{k} (-1)^{c} f^{c} = -1 \cdot (-1)^{k-1} + 1 = 1 + (-1)^{k}$$

# 4 Conclusions

Ħ

Petr Hliněný, ACO 25, 2017

. . .

## 4 Conclusions

Thank you for your attention. and Long live the ACO!

. . .