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1 Euler–Poincaré Polyhedral Formula1 Euler–Poincaré Polyhedral Formula

“V − E + F = 2 ”

• The first landmark in the theory of polytopes.

• Known already to Descartes. First full proof by Legendre in 1794.

• See also David Eppstein: Twenty Proofs of Euler’s Formula.
The Geometry Junkyard http://www.ics.uci.edu/~eppstein/junkyard/euler.
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2 Schläfli: Higher Dimensions2 Schläfli: Higher Dimensions

Theorem. Let P be a convex polytope in Rd, and denote by f c, c ∈
{0, 1, . . . , d}, the numbers of faces of P of dimension c. Then

f0 − f1 + f2 − · · · + (−1)d−1fd−1 + (−1)dfd = 1
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2 Schläfli: Higher Dimensions2 Schläfli: Higher Dimensions

Theorem. Let P be a convex polytope in Rd, and denote by f c, c ∈
{0, 1, . . . , d}, the numbers of faces of P of dimension c. Then

f0 − f1 + f2 − · · · + (−1)d−1fd−1 + (−1)dfd = 1

• Discovered by Schläfli 1852 (published 1902).

• Rediscoveries in late 19th century, all proofs assuming shellability.

• Shellability established only in 1971 by Bruggesser and Mani.
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3 New Proof: setup3 New Proof: setup

f0 − f1 + f2 − · · · + (−1)dfd = 1

or, f 0 − f 1 + · · ·+ (−1)d−1fd−1= 1 + (−1)d−1

Induction: assume to hold for d := k − 1 and k.
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3 New Proof: setup3 New Proof: setup

f0 − f1 + f2 − · · · + (−1)dfd = 1

or, f 0 − f 1 + · · ·+ (−1)d−1fd−1= 1 + (−1)d−1

Induction: assume to hold for d := k − 1 and k.

• P an arbitrary convex polytope in dim. Rk+1.

• R := the Schlegl diagram of P (a complex in Rk),

having the facets R1, . . . , Rt where t := fk − 1,
and R0 being the “outer” facet of the diagram.

Let f c
i be the number of faces of Ri of dimension c.

• Choose a general direction (vector) α in Rk, i.e., one not parallel to
any proper face in the complex R.
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3 New Proof: setup3 New Proof: setup

f0 − f1 + f2 − · · · + (−1)dfd = 1

or, f 0 − f 1 + · · ·+ (−1)d−1fd−1= 1 + (−1)d−1

Induction: assume to hold for d := k − 1 and k.

• P an arbitrary convex polytope in dim. Rk+1.

• R := the Schlegl diagram of P (a complex in Rk),

having the facets R1, . . . , Rt where t := fk − 1,
and R0 being the “outer” facet of the diagram.

Let f c
i be the number of faces of Ri of dimension c.

• Choose a general direction (vector) α in Rk, i.e., one not parallel to
any proper face in the complex R.

• Assign two flags to each face of dim.< k, one as α and one as −α.

Formally, the flags are εα and −εα for small ε > 0, starting both in
a point in the relative interior of this face.
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Recall the setup:

• f 0 − f 1 + · · ·+ (−1)d−1fd−1 = 1 + (−1)d−1, for d ≤ k,

• P in dimension d := k + 1, R := Schlegl diagram of P ,

• two opposite flags at each face of dim. 0, 1, . . . , k − 1 in R.

Flag signs (values)
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• two opposite flags at each face of dim. 0, 1, . . . , k − 1 in R.

Flag signs (values)

• (−1)c for each flag at a face of dim. c ≤ k − 1.

Summing the flags

• Globally – all flag values together: (cf. Schläfli!)
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(
f 0 − f 1 + · · ·+ (−1)k−1fk−1

)
= 2
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c=0
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New Proof: counting flagsNew Proof: counting flags

Recall the setup:

• f 0 − f 1 + · · ·+ (−1)d−1fd−1 = 1 + (−1)d−1, for d ≤ k,

• P in dimension d := k + 1, R := Schlegl diagram of P ,

• two opposite flags at each face of dim. 0, 1, . . . , k − 1 in R.

Flag signs (values)

• (−1)c for each flag at a face of dim. c ≤ k − 1.

Summing the flags

• Globally – all flag values together: (cf. Schläfli!)

2
(
f 0 − f 1 + · · ·+ (−1)k−1fk−1

)
= 2

k−1∑
c=0

(−1)cf c

• Locally – every flag “belongs” to precis. one of the facets in R. . .
(flags pointing out of R belong to outer R0)
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New Proof: counting locallyNew Proof: counting locally

Recall the global sum

“
∑

all flags” = 2
k−1∑
c=0

(−1)cf c = 2× “Schläfli”.
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where Ri projects down to Si by α,
and gc

i is the number of faces of Si of dimension c.
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Recall the global sum

“
∑

all flags” = 2
k−1∑
c=0

(−1)cf c = 2× “Schläfli”.

Local count at Ri (1 ≤ i ≤ t)

• Out of each pair of flags of face F , at most one in Ri (by convexity),

• and one flag in Ri ⇐⇒ face F “disappears” in the orth. proj. by α:

“
∑

flags in Ri” =
k−1∑
c=0

(−1)cf c
i −

k−2∑
c=0

(−1)cgci

where Ri projects down to Si by α,
and gc

i is the number of faces of Si of dimension c.

Local count at R0 (the outer facet of R)

slightly different. . .
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New Proof: counting locallyNew Proof: counting locally

Recall the global sum
“
∑

all flags” = 2
k−1∑
c=0

(−1)cf c = 2× “Schläfli”

and the local sum at Ri, i > 0

“
∑

flags in Ri” =
k−1∑
c=0

(−1)cf c
i −

k−2∑
c=0

(−1)cgci .

Local count at R0 (the outer facet of R)

• Same arguments, but counting complementary, flags “pointing out”:

“
∑

flags in R0” =
k−1∑
c=0

(−1)cf c
0 +

k−2∑
c=0

(−1)cgc0.

Towards the conclusion. . .

“
∑

all flags” =
t∑

a=1

“
∑

flags in Ri” + “
∑

flags in R0”
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New Proof: wrapping upNew Proof: wrapping up
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∑

all flags” = 2× “Schläfli” = 2
k−1∑
c=0

(−1)cf c

=
t∑

a=1

“
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flags in Ri” + “
∑

flags in R0”.
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all flags” = 2× “Schläfli” = 2
k−1∑
c=0

(−1)cf c

=
t∑

a=1

“
∑

flags in Ri” + “
∑

flags in R0”.

Induction assumption

“
∑

flags in Ri” =
k−1∑
c=0

(−1)cf c
i −

k−2∑
c=0

(−1)cgci

= 1 + (−1)k−1 −
(
1 + (−1)k−2

)
= 2(−1)k−1
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Recall “
∑

all flags” = 2× “Schläfli” = 2
k−1∑
c=0

(−1)cf c

=
t∑

a=1

“
∑

flags in Ri” + “
∑

flags in R0”.

Induction assumption

“
∑

flags in Ri” =
k−1∑
c=0

(−1)cf c
i −

k−2∑
c=0

(−1)cgci

= 1 + (−1)k−1 −
(
1 + (−1)k−2

)
= 2(−1)k−1

“
∑

flags in R0” =
k−1∑
c=0

(−1)cf c
0 +

k−2∑
c=0

(−1)cgc0

= 1 + (−1)k−1 + 1 + (−1)k−2 = 2
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all flags” = 2× “Schläfli” = 2
k−1∑
c=0

(−1)cf c

=
t∑

a=1

“
∑

flags in Ri” + “
∑

flags in R0”

where t = fk − 1.
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k−1∑
c=0

(−1)cf c

=
t∑

a=1

“
∑

flags in Ri” + “
∑

flags in R0”

where t = fk − 1.

Putting together

2
k−1∑
c=0

(−1)cf c =
t∑

a=1

2(−1)k−1 + 2



page.10
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Recall “
∑

all flags” = 2× “Schläfli” = 2
k−1∑
c=0

(−1)cf c

=
t∑

a=1

“
∑

flags in Ri” + “
∑

flags in R0”

where t = fk − 1.

Putting together

2
k−1∑
c=0

(−1)cf c =
t∑

a=1

2(−1)k−1 + 2

k−1∑
c=0

(−1)cf c =
t∑

a=1

(−1)k−1 + 1 = (fk − 1) · (−1)k−1 + 1
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Recall “
∑

all flags” = 2× “Schläfli” = 2
k−1∑
c=0

(−1)cf c

=
t∑

a=1

“
∑

flags in Ri” + “
∑

flags in R0”

where t = fk − 1.

Putting together

2
k−1∑
c=0

(−1)cf c =
t∑

a=1

2(−1)k−1 + 2

k−1∑
c=0

(−1)cf c =
t∑

a=1

(−1)k−1 + 1 = (fk − 1) · (−1)k−1 + 1

k∑
c=0

(−1)cf c = − 1 · (−1)k−1 + 1 = 1 + (−1)k
2
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. . .

Thank you for your attention.

and

Long live the ACO!
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