A Short Proof of
 Euler-Poincaré Formula

Petr Hliněný

Faculty of Informatics, Masaryk University
Brno, Czech Republic

1 Euler-Poincaré Polyhedral Formula

$$
" V-E+F=2 "
$$

1 Euler-Poincaré Polyhedral Formula

$$
" V-E+F=2 "
$$

- The first landmark in the theory of polytopes.

1
 Euler-Poincaré Polyhedral Formula

$$
" V-E+F=2 "
$$

- The first landmark in the theory of polytopes.
- Known already to Descartes. First full proof by Legendre in 1794.
- See also David Eppstein: Twenty Proofs of Euler's Formula.

The Geometry Junkyard http://www.ics.uci.edu/~eppstein/junkyard/euler.

2 Schläfli: Higher Dimensions

Theorem. Let P be a convex polytope in \mathbb{R}^{d}, and denote by $\boldsymbol{f}^{c}, c \in$ $\{0,1, \ldots, d\}$, the numbers of faces of P of dimension c. Then

$$
f^{0}-f^{1}+f^{2}-\cdots+(-1)^{d-1} f^{d-1}+(-1)^{d} f^{d}=1
$$

2 Schläfli: Higher Dimensions

Theorem. Let P be a convex polytope in \mathbb{R}^{d}, and denote by $\boldsymbol{f}^{c}, c \in$ $\{0,1, \ldots, d\}$, the numbers of faces of P of dimension c. Then

$$
f^{0}-f^{1}+f^{2}-\cdots+(-1)^{d-1} f^{d-1}+(-1)^{d} f^{d}=1
$$

- Discovered by Schläfli 1852 (published 1902).

2 Schläfli: Higher Dimensions

Theorem. Let P be a convex polytope in \mathbb{R}^{d}, and denote by $\boldsymbol{f}^{c}, c \in$ $\{0,1, \ldots, d\}$, the numbers of faces of P of dimension c. Then

$$
f^{0}-f^{1}+f^{2}-\cdots+(-1)^{d-1} f^{d-1}+(-1)^{d} f^{d}=1
$$

- Discovered by Schläfli 1852 (published 1902).
- Rediscoveries in late 19th century, all proofs assuming shellability.

2 Schläfli: Higher Dimensions

Theorem. Let P be a convex polytope in \mathbb{R}^{d}, and denote by $\boldsymbol{f}^{c}, c \in$ $\{0,1, \ldots, d\}$, the numbers of faces of P of dimension c. Then
$f^{0}-f^{1}+f^{2}-\cdots+(-1)^{d-1} f^{d-1}+(-1)^{d} f^{d}=1$

- Discovered by Schläfli 1852 (published 1902).
- Rediscoveries in late 19th century, all proofs assuming shellability.
- Shellability established only in 1971 by Bruggesser and Mani.

3 New Proof: setup

$$
f^{0}-f^{1}+f^{2}-\cdots+(-1)^{d} f^{d}=1
$$

or, $f^{0}-f^{1}+\cdots+(-1)^{d-1} f^{d-1}=1+(-1)^{d-1}$
Induction: assume to hold for $d:=k-1$ and k.

3 New Proof: setup

$$
f^{0}-f^{1}+f^{2}-\cdots+(-1)^{d} f^{d}=1
$$

or, $f^{0}-f^{1}+\cdots+(-1)^{d-1} f^{d-1}=1+(-1)^{d-1}$
Induction: assume to hold for $d:=k-1$ and k.

- P an arbitrary convex polytope in $\operatorname{dim} . \mathbb{R}^{k+1}$.

3 New Proof: setup

$$
f^{0}-f^{1}+f^{2}-\cdots+(-1)^{d} f^{d}=1
$$

or, $f^{0}-f^{1}+\cdots+(-1)^{d-1} f^{d-1}=1+(-1)^{d-1}$
Induction: assume to hold for $d:=k-1$ and k.

- P an arbitrary convex polytope in $\operatorname{dim} . \mathbb{R}^{k+1}$.

- $\boldsymbol{R}:=$ the Schlegl diagram of P (a complex in \mathbb{R}^{k}), having the facets R_{1}, \ldots, R_{t} where $t:=f^{k}-1$, and R_{0} being the "outer" facet of the diagram.

3 New Proof: setup

$$
f^{0}-f^{1}+f^{2}-\cdots+(-1)^{d} f^{d}=1
$$

or, $f^{0}-f^{1}+\cdots+(-1)^{d-1} f^{d-1}=1+(-1)^{d-1}$
Induction: assume to hold for $d:=k-1$ and k.

- P an arbitrary convex polytope in $\operatorname{dim} . \mathbb{R}^{k+1}$.

- $\boldsymbol{R}:=$ the Schlegl diagram of P (a complex in \mathbb{R}^{k}), having the facets R_{1}, \ldots, R_{t} where $t:=f^{k}-1$, and R_{0} being the "outer" facet of the diagram.
Let f_{i}^{c} be the number of faces of R_{i} of dimension c.

3 New Proof: setup

$$
f^{0}-f^{1}+f^{2}-\cdots+(-1)^{d} f^{d}=1
$$

or, $f^{0}-f^{1}+\cdots+(-1)^{d-1} f^{d-1}=1+(-1)^{d-1}$
Induction: assume to hold for $d:=k-1$ and k.

- P an arbitrary convex polytope in $\operatorname{dim} . \mathbb{R}^{k+1}$.

- $\boldsymbol{R}:=$ the Schlegl diagram of P (a complex in \mathbb{R}^{k}), having the facets R_{1}, \ldots, R_{t} where $t:=f^{k}-1$, and R_{0} being the "outer" facet of the diagram.
Let f_{i}^{c} be the number of faces of R_{i} of dimension c.
- Choose a general direction (vector) α in \mathbb{R}^{k}, i.e., one not parallel to any proper face in the complex R.

3 New Proof: setup

$$
f^{0}-f^{1}+f^{2}-\cdots+(-1)^{d} f^{d}=1
$$

or, $f^{0}-f^{1}+\cdots+(-1)^{d-1} f^{d-1}=1+(-1)^{d-1}$
Induction: assume to hold for $d:=k-1$ and k.

- \boldsymbol{P} an arbitrary convex polytope in $\operatorname{dim} . \mathbb{R}^{k+1}$.

- $\boldsymbol{R}:=$ the Schlegl diagram of P (a complex in \mathbb{R}^{k}), having the facets R_{1}, \ldots, R_{t} where $t:=f^{k}-1$, and R_{0} being the "outer" facet of the diagram.
Let f_{i}^{c} be the number of faces of R_{i} of dimension c.
- Choose a general direction (vector) α in \mathbb{R}^{k}, i.e., one not parallel to any proper face in the complex R.
- Assign two flags to each face of dim. $<k$, one as α and one as $-\alpha$. Formally, the flags are $\varepsilon \alpha$ and $-\varepsilon \alpha$ for small $\varepsilon>0$, starting both in a point in the relative interior of this face.

New Proof: counting flags

Recall the setup:

- $f^{0}-f^{1}+\cdots+(-1)^{d-1} f^{d-1}=1+(-1)^{d-1}$, for $d \leq k$,
- P in dimension $d:=k+1, \quad R:=$ Schlegl diagram of P,
- two opposite flags at each face of $\operatorname{dim} .0,1, \ldots, k-1$ in R.

Flag signs (values)

New Proof: counting flags

Recall the setup:

- $f^{0}-f^{1}+\cdots+(-1)^{d-1} f^{d-1}=1+(-1)^{d-1}$, for $d \leq k$,
- P in dimension $d:=k+1, \quad R:=$ Schlegl diagram of P,
- two opposite flags at each face of $\operatorname{dim} .0,1, \ldots, k-1$ in R.

Flag signs (values)

- $(-1)^{c}$ for each flag at a face of $\operatorname{dim} . c \leq k-1$.

New Proof: counting flags

Recall the setup:

- $f^{0}-f^{1}+\cdots+(-1)^{d-1} f^{d-1}=1+(-1)^{d-1}$, for $d \leq k$,
- P in dimension $d:=k+1, \quad R:=$ Schlegl diagram of P,
- two opposite flags at each face of $\operatorname{dim} .0,1, \ldots, k-1$ in R.

Flag signs (values)

- $(-1)^{c}$ for each flag at a face of $\operatorname{dim} . c \leq k-1$.

Summing the flags

New Proof: counting flags

Recall the setup:

- $f^{0}-f^{1}+\cdots+(-1)^{d-1} f^{d-1}=1+(-1)^{d-1}$, for $d \leq k$,
- P in dimension $d:=k+1, \quad R:=$ Schlegl diagram of P,
- two opposite flags at each face of $\operatorname{dim} .0,1, \ldots, k-1$ in R.

Flag signs (values)

- $(-1)^{c}$ for each flag at a face of $\operatorname{dim} . c \leq k-1$.

Summing the flags

- Globally - all flag values together:
(cf. Schläfli!)

$$
2\left(f^{0}-f^{1}+\cdots+(-1)^{k-1} f^{k-1}\right)=2 \sum_{c=0}^{k-1}(-1)^{c} f^{c}
$$

New Proof: counting flags

Recall the setup:

- $f^{0}-f^{1}+\cdots+(-1)^{d-1} f^{d-1}=1+(-1)^{d-1}$, for $d \leq k$,
- P in dimension $d:=k+1, \quad R:=$ Schlegl diagram of P,
- two opposite flags at each face of $\operatorname{dim} .0,1, \ldots, k-1$ in R.

Flag signs (values)

- $(-1)^{c}$ for each flag at a face of $\operatorname{dim} . c \leq k-1$.

Summing the flags

- Globally - all flag values together:
(cf. Schläfli!)

$$
2\left(f^{0}-f^{1}+\cdots+(-1)^{k-1} f^{k-1}\right)=2 \sum_{c=0}^{k-1}(-1)^{c} f^{c}
$$

- Locally - every flag "belongs" to precis. one of the facets in $R \ldots$ (flags pointing out of R belong to outer R_{0})

New Proof: counting locally

Recall the global sum

$$
\text { " } \sum \text { all flags" }=2 \sum_{c=0}^{k-1}(-1)^{c} f^{c} \quad=2 \times \text { "Schläfli". }
$$

New Proof: counting locally

Recall the global sum

$$
\text { " } \sum \text { all flags" }=2 \sum_{c=0}^{k-1}(-1)^{c} f^{c}=2 \times \text { "Schläfli". }
$$

Local count at $\boldsymbol{R}_{i}(1 \leq i \leq t)$

New Proof: counting locally

Recall the global sum

$$
\text { " } \sum \text { all flags" }=2 \sum_{c=0}^{k-1}(-1)^{c} f^{c}=2 \times \text { "Schläfli". }
$$

Local count at $\boldsymbol{R}_{i}(1 \leq i \leq t)$

- Out of each pair of flags of face F, at most one in R_{i} (by convexity),

New Proof: counting locally

Recall the global sum

$$
\text { " } \sum \text { all flags" }=2 \sum_{c=0}^{k-1}(-1)^{c} f^{c}=2 \times \text { "Schläfli". }
$$

Local count at $\boldsymbol{R}_{i}(1 \leq i \leq t)$

- Out of each pair of flags of face F, at most one in R_{i} (by convexity),
- and one flag in $R_{i} \Longleftrightarrow$ face F "disappears" in the orth. proj. by α :

New Proof: counting locally

Recall the global sum

$$
\text { " } \sum \text { all flags" }=2 \sum_{c=0}^{k-1}(-1)^{c} f^{c}=2 \times \text { "Schläfli". }
$$

Local count at $\boldsymbol{R}_{i}(1 \leq i \leq t)$

- Out of each pair of flags of face F, at most one in R_{i} (by convexity),
- and one flag in $R_{i} \Longleftrightarrow$ face F "disappears" in the orth. proj. by α :

$$
" \sum \text { flags in } R_{i}^{\prime "}=\sum_{c=0}^{k-1}(-1)^{c} f_{i}^{c}-\sum_{c=0}^{k-2}(-1)^{c} g_{i}^{c}
$$

where R_{i} projects down to S_{i} by α, and \boldsymbol{g}_{i}^{c} is the number of faces of S_{i} of dimension c.

New Proof: counting locally

Recall the global sum

$$
\text { " } \sum \text { all flags" }=2 \sum_{c=0}^{k-1}(-1)^{c} f^{c}=2 \times \text { "Schläfli". }
$$

Local count at $\boldsymbol{R}_{i}(1 \leq i \leq t)$

- Out of each pair of flags of face F, at most one in R_{i} (by convexity),
- and one flag in $R_{i} \Longleftrightarrow$ face F "disappears" in the orth. proj. by α :

$$
" \sum \text { flags in } R_{i} "=\sum_{c=0}^{k-1}(-1)^{c} f_{i}^{c}-\sum_{c=0}^{k-2}(-1)^{c} g_{i}^{c}
$$

where R_{i} projects down to S_{i} by α, and \boldsymbol{g}_{i}^{c} is the number of faces of S_{i} of dimension c.

Local count at \boldsymbol{R}_{0} (the outer facet of R)
slightly different...

New Proof: counting locally

Recall the global sum

$$
\text { " } \sum \text { all flags" }=2 \sum_{c=0}^{k-1}(-1)^{c} f^{c}=2 \times \text { "Schläfli" }
$$

and the local sum at $R_{i}, i>0$

$$
" \sum \text { flags in } R_{i}^{\prime "}=\sum_{c=0}^{k-1}(-1)^{c} f_{i}^{c}-\sum_{c=0}^{k-2}(-1)^{c} g_{i}^{c}
$$

New Proof: counting locally

Recall the global sum

$$
\text { " } \sum \text { all flags" }=2 \sum_{c=0}^{k-1}(-1)^{c} f^{c}=2 \times \text { "Schläfli" }
$$

and the local sum at $R_{i}, i>0$

$$
" \sum \text { flags in } R_{i}^{\prime \prime}=\sum_{c=0}^{k-1}(-1)^{c} f_{i}^{c}-\sum_{c=0}^{k-2}(-1)^{c} g_{i}^{c} .
$$

Local count at \boldsymbol{R}_{0} (the outer facet of R)

- Same arguments, but counting complementary, flags "pointing out":

$$
" \sum \text { flags in } R_{0} "=\sum_{c=0}^{k-1}(-1)^{c} f_{0}^{c}+\sum_{c=0}^{k-2}(-1)^{c} g_{0}^{c}
$$

New Proof: counting locally

Recall the global sum

$$
\text { " } \sum \text { all flags" }=2 \sum_{c=0}^{k-1}(-1)^{c} f^{c}=2 \times \text { "Schläfli" }
$$

and the local sum at $R_{i}, i>0$

$$
" \sum \text { flags in } R_{i}^{\prime \prime}=\sum_{c=0}^{k-1}(-1)^{c} f_{i}^{c}-\sum_{c=0}^{k-2}(-1)^{c} g_{i}^{c} .
$$

Local count at \boldsymbol{R}_{0} (the outer facet of R)

- Same arguments, but counting complementary, flags "pointing out":

$$
\text { " } \sum \text { flags in } R_{0}{ }^{\prime \prime}=\sum_{c=0}^{k-1}(-1)^{c} f_{0}^{c}+\sum_{c=0}^{k-2}(-1)^{c} g_{0}^{c}
$$

Towards the conclusion. . .

$$
" \sum \text { all flags" }=\sum_{a=1}^{t} " \sum \text { flags in } R_{i} "+" \sum \text { flags in } R_{0} "
$$

New Proof: wrapping up

Recall " \sum all flags" $=2 \times$ "Schläfli" $=2 \sum_{c=0}^{k-1}(-1)^{c} f^{c}$

$$
=\sum_{a=1}^{t} " \sum \text { flags in } R_{i}^{"}+" \sum \text { flags in } R_{0} "
$$

New Proof: wrapping up

Recall " \sum all flags" $=2 \times$ "Schläfli" $=2 \sum_{c=0}^{k-1}(-1)^{c} f^{c}$

$$
=\sum_{a=1}^{t} " \sum \text { flags in } R_{i}^{"}+" \sum \text { flags in } R_{0} "
$$

Induction assumption

$$
\begin{aligned}
" \sum \text { flags in } R_{i} " & =\sum_{c=0}^{k-1}(-1)^{c} f_{i}^{c}-\sum_{c=0}^{k-2}(-1)^{c} g_{i}^{c} \\
& =
\end{aligned}
$$

New Proof: wrapping up

Recall " \sum all flags" $=2 \times$ "Schläfli" $=2 \sum_{c=0}^{k-1}(-1)^{c} f^{c}$

$$
=\sum_{a=1}^{t} " \sum \text { flags in } R_{i}^{\prime "}+" \sum \text { flags in } R_{0} "
$$

Induction assumption

$$
\begin{aligned}
" \sum \text { flags in } R_{i}^{\prime \prime} & =\sum_{c=0}^{k-1}(-1)^{c} f_{i}^{c}-\sum_{c=0}^{k-2}(-1)^{c} g_{i}^{c} \\
& =1+(-1)^{k-1}-\left(1+(-1)^{k-2}\right)=2(-1)^{k-1}
\end{aligned}
$$

New Proof: wrapping up

Recall " \sum all flags" $=2 \times$ "Schläfli" $=2 \sum_{c=0}^{k-1}(-1)^{c} f^{c}$

$$
=\sum_{a=1}^{t} " \sum \text { flags in } R_{i} "+" \sum \text { flags in } R_{0} " .
$$

Induction assumption

$$
\begin{aligned}
" \sum \text { flags in } R_{i}^{\prime \prime} & =\sum_{c=0}^{k-1}(-1)^{c} f_{i}^{c}-\sum_{c=0}^{k-2}(-1)^{c} g_{i}^{c} \\
& =1+(-1)^{k-1}-\left(1+(-1)^{k-2}\right)=2(-1)^{k-1} \\
" \sum \text { flags in } R_{0} " & =\sum_{c=0}^{k-1}(-1)^{c} f_{0}^{c}+\sum_{c=0}^{k-2}(-1)^{c} g_{0}^{c} \\
& =1+(-1)^{k-1}+1+(-1)^{k-2}=2
\end{aligned}
$$

New Proof: wrapping up

Recall " \sum all flags" $=2 \times$ "Schläfli" $=2 \sum_{c=0}^{k-1}(-1)^{c} f^{c}$

$$
=\sum_{a=1}^{t} " \sum \text { flags in } R_{i} "+" \sum \text { flags in } R_{0} "
$$

where $t=f^{k}-1$.

New Proof: wrapping up

Recall " \sum all flags" $=2 \times$ "Schläfli" $=2 \sum_{c=0}^{k-1}(-1)^{c} f^{c}$

$$
=\sum_{a=1}^{t} " \sum \text { flags in } R_{i} "+" \sum \text { flags in } R_{0} "
$$

where $t=f^{k}-1$.
Putting together

$$
2 \sum_{c=0}^{k-1}(-1)^{c} f^{c}=\sum_{a=1}^{t} 2(-1)^{k-1}+2
$$

New Proof: wrapping up

Recall " \sum all flags" $=2 \times$ "Schläfli" $=2 \sum_{c=0}^{k-1}(-1)^{c} f^{c}$

$$
=\sum_{a=1}^{t} " \sum \text { flags in } R_{i}^{\prime \prime}+" \sum \text { flags in } R_{0} "
$$

where $t=f^{k}-1$.

Putting together

$$
\begin{aligned}
2 \sum_{c=0}^{k-1}(-1)^{c} f^{c} & =\sum_{a=1}^{t} 2(-1)^{k-1}+2 \\
\sum_{c=0}^{k-1}(-1)^{c} f^{c} & =\sum_{a=1}^{t}(-1)^{k-1}+1=\left(f^{k}-1\right) \cdot(-1)^{k-1}+1
\end{aligned}
$$

New Proof: wrapping up

Recall " \sum all flags" $=2 \times$ "Schläfli" $=2 \sum_{c=0}^{k-1}(-1)^{c} f^{c}$

$$
=\sum_{a=1}^{t} " \sum \text { flags in } R_{i}{ }^{\prime \prime}+" \sum \text { flags in } R_{0} "
$$

where $t=f^{k}-1$.

Putting together

$$
\begin{aligned}
2 \sum_{c=0}^{k-1}(-1)^{c} f^{c} & =\sum_{a=1}^{t} 2(-1)^{k-1}+2 \\
\sum_{c=0}^{k-1}(-1)^{c} f^{c} & =\sum_{a=1}^{t}(-1)^{k-1}+1=\left(f^{k}-1\right) \cdot(-1)^{k-1}+1 \\
\sum_{c=0}^{k}(-1)^{c} f^{c} & =-1 \cdot(-1)^{k-1}+1=1+(-1)^{k}
\end{aligned}
$$

4 Conclusions

4 Conclusions

Thank you for your attention. and

Long live the ACO!

