(ت)
 Twin-width of Planar Graphs is at most 119

Petr Hliněný

Faculty of Informatics, Masaryk University Brno, Czech Republic

1 Twin-Width

- A structural measure of how (recursively) diverse are vertex neighbourhoods in a graph - but it is not the neighbourhood diversity.

1 Twin-Width

- A structural measure of how (recursively) diverse are vertex neighbourhoods in a graph - but it is not the neighbourhood diversity.

Or, how similar the graph is to a cograph.

1 Twin-Width

- A structural measure of how (recursively) diverse are vertex neighbourhoods in a graph - but it is not the neighbourhood diversity.

Or, how similar the graph is to a cograph.
Nowadays, everybody is speaking about twin-width...

1 Twin-Width

- A structural measure of how (recursively) diverse are vertex neighbourhoods in a graph - but it is not the neighbourhood diversity.

Or, how similar the graph is to a cograph.
Nowadays, everybody is speaking about twin-width...

- Trigraph - a simple graph with some edges marked red (we want the maximum red degree to stay low).

1 Twin-Width

- A structural measure of how (recursively) diverse are vertex neighbourhoods in a graph - but it is not the neighbourhood diversity.

Or, how similar the graph is to a cograph.
Nowadays, everybody is speaking about twin-width...

- Trigraph - a simple graph with some edges marked red (we want the maximum red degree to stay low).
- Contraction sequence - a sequence of simple contractions of vertex pairs (arbitrary pairs, unlike in graph minors!);

1 Twin-Width

- A structural measure of how (recursively) diverse are vertex neighbourhoods in a graph - but it is not the neighbourhood diversity.

Or, how similar the graph is to a cograph.

> Nowadays, everybody is speaking about twin-width. . .

- Trigraph - a simple graph with some edges marked red (we want the maximum red degree to stay low).
- Contraction sequence - a sequence of simple contractions of vertex pairs (arbitrary pairs, unlike in graph minors!);
- a contraction of a pair makes an edge red if it existed to one of the contracted vertices but not to the other, and
- red edge stays red till the end.

Definition. The twin-width of a simple graph G is the least int. d

Definition. The twin-width of a simple graph G is the least int. d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Definition. The twin-width of a simple graph G is the least int. d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Definition. The twin-width of a simple graph G is the least int. d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Definition. The twin-width of a simple graph G is the least int. d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Definition. The twin-width of a simple graph G is the least int. d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Definition. The twin-width of a simple graph G is the least int. d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Definition. The twin-width of a simple graph G is the least int. d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Definition. The twin-width of a simple graph G is the least int. d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Definition. The twin-width of a simple graph G is the least int. d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Definition. The twin-width of a simple graph G is the least int. d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Definition. The twin-width of a simple graph G is the least int. d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

$$
\max . \text { red }=2
$$

Definition. The twin-width of a simple graph G is the least int. d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Definition. The twin-width of a simple graph G is the least int. d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

$$
\text { max. } \text { red }=2
$$

Definition. The twin-width of a simple graph G is the least int. d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Definition. The twin-width of a simple graph G is the least int. d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

$$
\max . \text { red }=2
$$

Definition. The twin-width of a simple graph G is the least int. d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Definition. The twin-width of a simple graph G is the least int. d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

$$
\max . \operatorname{red}=1
$$

Definition. The twin-width of a simple graph G is the least int. d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

Definition. The twin-width of a simple graph G is the least int. d such that there exists a contraction sequence of G in which every trigraph has maximum red degree $\leq d$.

$$
\begin{aligned}
\text { max. } \text { red } & =0 \\
\text { twin-width } & \leq 3
\end{aligned}
$$

Importance of Twin-Width

- The concept introduced by Bonnet, Kim, Thomassé and Watrigant in $2020 \sim$ [FOCS 2020, JACM 2022], and

Importance of Twin-Width

- The concept introduced by Bonnet, Kim, Thomassé and Watrigant in $2020 \leadsto$ [FOCS 2020, JACM 2022], and nowadays we already have tens of papers on twin-width and the number is quickly growing.

Importance of Twin-Width

- The concept introduced by Bonnet, Kim, Thomassé and Watrigant in $2020 \leadsto$ [FOCS 2020, JACM 2022], and nowadays we already have tens of papers on twin-width and the number is quickly growing.
- Among the key properties, graph classes of bounded twin-width have FO model cheking in FPT [FOCS 2020], and

Importance of Twin-Width

- The concept introduced by Bonnet, Kim, Thomassé and Watrigant in $2020 \sim$ [FOCS 2020, JACM 2022], and nowadays we already have tens of papers on twin-width and the number is quickly growing.
- Among the key properties, graph classes of bounded twin-width have FO model cheking in FPT [FOCS 2020], and
this new concept seems to be crucial in the ongoing quest to characterise hereditary classes with tractable FO model checking (cf. the subsequent talks...).

2 Classes of Bounded Twin-Width

Only few examples:

- Graphs of bounded tree-width or rank-width, cliques,

2 Classes of Bounded Twin-Width

Only few examples:

- Graphs of bounded tree-width or rank-width, cliques,
- also grids (incl. multidimensional), full grids, and their subgraphs,

2 Classes of Bounded Twin-Width

Only few examples:

- Graphs of bounded tree-width or rank-width, cliques,
- also grids (incl. multidimensional), full grids, and their subgraphs,
- proper interval graphs and their generalizations,
- proper hereditary subclasses of permutation or circle graphs,

2 Classes of Bounded Twin-Width

Only few examples:

- Graphs of bounded tree-width or rank-width, cliques,
- also grids (incl. multidimensional), full grids, and their subgraphs,
- proper interval graphs and their generalizations,
- proper hereditary subclasses of permutation or circle graphs,
- posets of bounded width,

2 Classes of Bounded Twin-Width

Only few examples:

- Graphs of bounded tree-width or rank-width, cliques,
- also grids (incl. multidimensional), full grids, and their subgraphs,
- proper interval graphs and their generalizations,
- proper hereditary subclasses of permutation or circle graphs,
- posets of bounded width,
- planar graphs and graphs embedded on surfaces,

2 Classes of Bounded Twin-Width

Only few examples:

- Graphs of bounded tree-width or rank-width, cliques,
- also grids (incl. multidimensional), full grids, and their subgraphs,
- proper interval graphs and their generalizations,
- proper hereditary subclasses of permutation or circle graphs,
- posets of bounded width,
- planar graphs and graphs embedded on surfaces,
- graphs drawn with limited number of crossings per edge, map graphs.

2 Classes of Bounded Twin-Width

Only few examples:

- Graphs of bounded tree-width or rank-width, cliques,
- also grids (incl. multidimensional), full grids, and their subgraphs,
- proper interval graphs and their generalizations,
- proper hereditary subclasses of permutation or circle graphs,
- posets of bounded width,
- planar graphs and graphs embedded on surfaces,
- graphs drawn with limited number of crossings per edge, map graphs.

NOT bounded twin-width

- Interval and permutation graphs in general,

2 Classes of Bounded Twin-Width

Only few examples:

- Graphs of bounded tree-width or rank-width, cliques,
- also grids (incl. multidimensional), full grids, and their subgraphs,
- proper interval graphs and their generalizations,
- proper hereditary subclasses of permutation or circle graphs,
- posets of bounded width,
- planar graphs and graphs embedded on surfaces,
- graphs drawn with limited number of crossings per edge, map graphs.

NOT bounded twin-width

- Interval and permutation graphs in general,
- small subdivisions of cliques,

2 Classes of Bounded Twin-Width

Only few examples:

- Graphs of bounded tree-width or rank-width, cliques,
- also grids (incl. multidimensional), full grids, and their subgraphs,
- proper interval graphs and their generalizations,
- proper hereditary subclasses of permutation or circle graphs,
- posets of bounded width,
- planar graphs and graphs embedded on surfaces,
- graphs drawn with limited number of crossings per edge, map graphs.

NOT bounded twin-width

- Interval and permutation graphs in general,
- small subdivisions of cliques,
- cubic graphs (!!!).

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.

All previous concrete bounds use in some (indirect) way the product structure machinery of planar graphs.

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.

All previous concrete bounds use in some (indirect) way the product structure machinery of planar graphs.

With a NEW approach:

- The twin-width of any simple planar graph is at most 9.

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.

All previous concrete bounds use in some (indirect) way the product structure machinery of planar graphs.

With a NEW approach:

- The twin-width of any simple planar graph is at most 9.

Lower bounds?

Bounding Twin-Width of Planar Graphs

- Astronomical upper bounds already since the first pap. [FOCS 2020].
- ArXiv Jan 2022: ≤ 183 by Jacob and Pilipczuk.
- ArXiv Feb 2022: ≤ 583 by Bonnet, Kwon and Wood.
- ArXiv Apr 2022: ≤ 37 by Bekos, Da Lozzo, PH and Kaufman.

All previous concrete bounds use in some (indirect) way the product structure machinery of planar graphs.

With a NEW approach:

- The twin-width of any simple planar graph is at most 9.

Lower bounds?
≥ 5 quite easily, but no better lower bound published so far...

3 Simplified Proof of Twin-Width ≤ 12

Preliminaries

- BFS tree - a spanning tree of shortest paths from the given root.

Vertical path - a subpath of a leaf-to-root path of the BFS tree.

3 Simplified Proof of Twin-Width ≤ 12

Preliminaries

- BFS tree - a spanning tree of shortest paths from the given root.

Vertical path - a subpath of a leaf-to-root path of the BFS tree.
Sink of a vertical path - the end vertex closest to the root.

3 Simplified Proof of Twin-Width ≤ 12

Preliminaries

- BFS tree - a spanning tree of shortest paths from the given root.

Vertical path - a subpath of a leaf-to-root path of the BFS tree.
Sink of a vertical path - the end vertex closest to the root.
Setup of the proof

- Given a simple planar graph G, extend G into a plane triangulation $G^{+} \supseteq G$ (but keep in mind original G regarding the twin-width).

3 Simplified Proof of Twin-Width ≤ 12

Preliminaries

- BFS tree - a spanning tree of shortest paths from the given root.

Vertical path - a subpath of a leaf-to-root path of the BFS tree.
Sink of a vertical path - the end vertex closest to the root.
Setup of the proof

- Given a simple planar graph G, extend G into a plane triangulation $G^{+} \supseteq G$ (but keep in mind original G regarding the twin-width).
- Choose a root on the outer f., and a BFS tree of G^{+}from this root. Note that all edges are only between same and successive BFS layers.

3 Simplified Proof of Twin-Width ≤ 12

Preliminaries

- BFS tree - a spanning tree of shortest paths from the given root.

Vertical path - a subpath of a leaf-to-root path of the BFS tree. Sink of a vertical path - the end vertex closest to the root.

Setup of the proof

- Given a simple planar graph G, extend G into a plane triangulation $G^{+} \supseteq G$ (but keep in mind original G regarding the twin-width).
- Choose a root on the outer f., and a BFS tree of G^{+}from this root. Note that all edges are only between same and successive BFS layers.
- Formulate a suitable (recursive) claim about partial contractions inside a bounded region of the plane triangulation. Prove by induction.

The Recursive Claim

Lemma. Given a subgraph of our G^{+}bounded by a cycle which is formed by two vertical paths P_{1}, P_{2} with a common sink and an edge f joining their far ends,

The Recursive Claim

Lemma. Given a subgraph of our G^{+}bounded by a cycle which is formed by two vertical paths P_{1}, P_{2} with a common sink and an edge f joining their far ends, there is a partial contraction sequence such that:

- only vert. of the same BFS layer inside are ever contracted in this Lemma,

The Recursive Claim

Lemma. Given a subgraph of our G^{+}bounded by a cycle which is formed by two vertical paths P_{1}, P_{2} with a common sink and an edge f joining their far ends, there is a partial contraction sequence such that:

- only vert. of the same BFS layer inside are ever contracted in this Lemma,
- on the boundary, red degrees are ≤ 6 during the whole subsequence,

The Recursive Claim

Lemma. Given a subgraph of our G^{+}bounded by a cycle which is formed by two vertical paths P_{1}, P_{2} with a common sink and an edge f joining their far ends, there is a partial contraction sequence such that:

- only vert. of the same BFS layer inside are ever contracted in this Lemma,
- on the boundary, red degrees are ≤ 6 during the whole subsequence,
- the sink has red degree $\mathbf{0}$,

The Recursive Claim

Lemma. Given a subgraph of our G^{+}bounded by a cycle which is formed by two vertical paths P_{1}, P_{2} with a common sink and an edge f joining their far ends, there is a partial contraction sequence such that:

- only vert. of the same BFS layer inside are ever contracted in this Lemma,
- on the boundary, red degrees are ≤ 6 during the whole subsequence,
- the sink has red degree $\mathbf{0}$,
- the red degrees inside are ≤ 12 during the whole subsequence,

The Recursive Claim

Lemma. Given a subgraph of our G^{+}bounded by a cycle which is formed by two vertical paths P_{1}, P_{2} with a common sink and an edge f joining their far ends, there is a partial contraction sequence such that:

- only vert. of the same BFS layer inside are ever contracted in this Lemma,
- on the boundary, red degrees are ≤ 6 during the whole subsequence,
- the sink has red degree $\mathbf{0}$,
- the red degrees inside are ≤ 12 during the whole subsequence,
- after the contractions, each BFS layer inside has only 1 vertex, except ≤ 2 vert. next to the sink.

The Proof (by induction)

- Take the triangle incident to the "far edge" $f=v_{1} v_{2}$, and the vertical path P_{3} from its tip v_{3} (to the boundary at u_{3}).

The Proof (by induction)

- Take the triangle incident to the "far edge" $f=v_{1} v_{2}$, and the vertical path P_{3} from its tip v_{3} (to the boundary at u_{3}).
- Apply the Lemma inductively to each of the two subregions:

- The partial contraction sequences from the inductive invocations can be put one after another, since there are no edges "across" P_{3}.

- The partial contraction sequences from the inductive invocations can be put one after another, since there are no edges "across" P_{3}.
- Then contract, by the BFS layers inside, the recursively contracted vertices with those of vertical "divisor" P_{3} down to one or two vert.

- The partial contraction sequences from the inductive invocations can be put one after another, since there are no edges "across" P_{3}.
- Then contract, by the BFS layers inside, the recursively contracted vertices with those of vertical "divisor" P_{3} down to one or two vert.

Proceed in increasing distance from the root.

- And, check the red degrees again...

4 Towards Proving Twin-Width ≤ 9

Several adjustments at different places are necessary (which make the proof quite technical)...

4 Towards Proving Twin-Width ≤ 9

Several adjustments at different places are necessary (which make the proof quite technical)...

- The key is to consider a left-aligned BFS tree instead of general one. This makes the left and right bounding paths non-symmetric, and their claimed recursive red degrees are ≤ 5 and ≤ 3, respectively.

4 Towards Proving Twin-Width ≤ 9

Several adjustments at different places are necessary (which make the proof quite technical)...

- The key is to consider a left-aligned BFS tree instead of general one. This makes the left and right bounding paths non-symmetric, and their claimed recursive red degrees are ≤ 5 and ≤ 3, respectively.
- We do not contract the partial solutions of the subcases layer-bylayer, but first fully contract the right subcase with the dividing path P_{3}, and then the outcome with the left subcase.

4 Towards Proving Twin-Width ≤ 9

Several adjustments at different places are necessary (which make the proof quite technical)...

- The key is to consider a left-aligned BFS tree instead of general one. This makes the left and right bounding paths non-symmetric, and their claimed recursive red degrees are ≤ 5 and ≤ 3, respectively.
- We do not contract the partial solutions of the subcases layer-bylayer, but first fully contract the right subcase with the dividing path P_{3}, and then the outcome with the left subcase.
- Now we proceed from the farthest BFS layers towards the root, and a few of the layers closest to the sink are possibly handled ad-hoc.

Illustrating the Proof Adjustments. . .

5 Conclusions

- Our proof technique seems to be at its limit. Quite possibly, 9 may be the right answer...

5 Conclusions

- Our proof technique seems to be at its limit. Quite possibly, 9 may be the right answer...
- So, again, what about lower bounds?

5 Conclusions

- Our proof technique seems to be at its limit. Quite possibly, 9 may be the right answer...
- So, again, what about lower bounds?
- Take the dual of the soccer ball graph;

5 Conclusions

- Our proof technique seems to be at its limit. Quite possibly, 9 may be the right answer...
- So, again, what about lower bounds?
- Take the dual of the soccer ball graph;

\rightarrow already the first contraction must create ≥ 5 red edges.

5 Conclusions

- Our proof technique seems to be at its limit. Quite possibly, 9 may be the right answer...
- So, again, what about lower bounds?
- Take the dual of the soccer ball graph;
 \rightarrow already the first contraction must create ≥ 5 red edges.
- Stepping further, inscribe a degree-3 vertex inside each face of the previous. The result seems to have twin-width ≥ 7, but a careful (computer asisted?) proof is needed.

5 Conclusions

- Our proof technique seems to be at its limit. Quite possibly, 9 may be the right answer...
- So, again, what about lower bounds?
- Take the dual of the soccer ball graph;
 \rightarrow already the first contraction must create ≥ 5 red edges.
- Stepping further, inscribe a degree-3 vertex inside each face of the previous. The result seems to have twin-width ≥ 7, but a careful (computer asisted?) proof is needed.
- Another, more complicated, construction may actually give a planar graph in which the lower-bound proof is easier...

5 Conclusions

- Our proof technique seems to be at its limit. Quite possibly, $\mathbf{9}$ may be the right answer...
- So, again, what about lower bounds?
- Take the dual of the soccer ball graph;
 \rightarrow already the first contraction must create ≥ 5 red edges.
- Stepping further, inscribe a degree-3 vertex inside each face of the previous. The result seems to have twin-width ≥ 7, but a careful (computer asisted?) proof is needed.
- Another, more complicated, construction may actually give a planar graph in which the lower-bound proof is easier. . .

Thank you for your attention.

