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Surfaces

A (topological) surface is something that, locally, looks like R2

We restrict ourselves to compact, orientable surfaces:
each is homeomorphic to a sphere with g handles attached to it
We say the genus of the graph is g
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Surfaces – Polygonal schema

A double torus (g = 2) using a polygonal schema
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Curves on Surfaces

A closed curve is a continuous mapping α : S1 → surface

It is simple if it has no self-intersections (injective)
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Topological Concepts

I α, β closed curves

I α, β are homotopic if α can be continuously deformed to β

I deformation within the surface
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Contractible

I α simple closed curve

I α is contractible if it is homotopic to a constant mapping

Theorem: α contractible and simple ⇒ α bounds a disk
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Separating

I α closed curve

I α is separating if removing its image disconnects the surface

I related to Z2-homology

Theorem: Non-separating ⇒ Non-contractible
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Embedded Graphs

G is embedded in a surface if:

I each vertex u ∈ V (G ) assigned to a distinct point u

I each edge uv assigned to a simple curve connecting u to v

I interior of edges disjoint from other edges and V (G )

I each face is a topological disk (2-cell embedding)
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Embedded Graphs – Polygonal Schema
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Representations of Embedded Graphs

I rotation system: for each vertex, the circular ordering of its
outgoing edges as DCL.

I coordinate-less DCEL:

• halfedges
• vertices
• faces
• adjacency relations between them

I flags or gem representation

I . . .

The surface is implicit in the representation of the graph.

Surgery should be doable efficiently.
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Embeddable vs Embedded

I planar graph: can be embedded in the plane

I plane graph: a particular embedding

I an embedding can be obtained from the abstract planar graph in
linear time

I g -graph: can be embedded in g -surface

I embedded g -graph: a particular embedding

I NP-complete: is G a g -graph? [Thomassen ’89]

I The problem is fpt wrt genus g [Mohar ’99]

• “simpler” algorithm by Kawarabayahi, Mohar and Reed 2008
• 2O(g)n time for any fixed surface
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Our scenario

Input: an embedded graph G with (abstract) edge-lengths
Cycles/closed walks in G are closed curves in the surface

Actors: algorithms, topology, and the metric dG

n ≡ complexity of the input graph: |E (G )|
The case g � n or even g = O(1) is relevant
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Algorithmic problems

Input: embedded graph with edge-lengths

I find a shortest non-contractible/non-separating cycle

I find a shortest contractible cycle/walk

I given α, find the shortest cycle homotopic/homologous to α

I find a cycle shortest in its homotopy/homology class

I max s-t flow

I find a shortest planarizing set

I a ’good’ representation of distances in embedded graphs
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Shortest non-contractible cycle

I most popular and traditional problem

I subroutine for other problems

• crossing number: does a graph have crossing number ≤ k?
• approximation algorithms for TSP in embedded graphs or

near-planar graphs [Demaine, Hajiaghayi, Mohar ’07]
• numerical analysis for Hodge decomposition

I overlap with analysis of meshes arising from scanned data

• removal of topological noise [Wood et al. ’04]
• identification of handles and tunnels [Dey et al. ’08]
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Find a shortest non-contractible cycle

Race

I C. Thomassen – O(n3 log n) ’90

I J. Erickson and S. Har-Peled – O(n2 log n) ’02

I S. Cabello and B. Mohar – O(gO(g)n3/2 log n) ’05

I S. Cabello – O(gO(g)n4/3) ’06

I M. Kutz – O(gO(g)n log n) ’06

I S. Cabello, E. Chambers and J. Erickson O(g2n log n) ’12

I S. Cabello, E. Colin de Verdiere and F. Lazarus O(gnk) ’12

All them also work for non-separating, but no metatheorem
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Shortest contractible curve

I contractible closed walk

• does not need to be a circuit
• not difficult to solve in polynomial time
• O(n log n) [Cabello, DeVos, Erickson, Mohar ’10]

using [Lkacki, Sankowski ’11]

I contractible cycle without repeated vertices

• O(n2 log n) [Cabello ’10]
• shortest cycle in planar graph with forbidden pairs
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Separating cycles

I does it exists any separating cycle without repeated vertices?

• NP-hard [Cabello, Colin de Verdière, and Lazarus ’10]
• reduction from Hamiltonian cycle in 3-regular planar graphs
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Summary of results (up to date?)

Contractible

Separating

Non-contractible

Non-separating

Tight

Cycle Closed walk

O(n2 log n)

NP-hard

← same

O(n log n)

???, FPT wrt g

O(min{g2, n}n log n)

O(min{g2, n}n log n) ← same

↑ same O(n log n)

Prescribed homotopy ??? nice polynomial

Splitting NP-hard NP-hard, FPT wrt g

Prescribed homology NP-hard, FPT wrt g ← same
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Unique shortest paths via Isolation Lemma

I unique shortest path between any two vertices

I probabilistically enforced using Isolation Lemma:

• perturb each edge-length `(e) by ke · ε, where
ke ∈ {1, . . . , |E |2} at random

• each shortest path is unique whp
• more efficient than lexicographic comparison

I simpler arguments
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3-path condition

P1,P2,P3 three paths from x ∈ V (G ) to a common endpoint

loops P1 + P3 and P2 + P3

contractible
⇓

loop P1 + P2 contractible

P1

P2

P3

x

I shortest non-contractible loop from x made of two shortest paths

I if Tx shortest path tree from x , only loops loop(Tx , e) are
candidates

I there are |E (G )| − (n − 1) candidate loops
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3-path condition

Set Lx of loops from x satisfies 3-path condition if:

for any three paths P1,P2,P3 from x to a common
endpoint, if P1 + P3 and P2 + P3 are in Lx ,
then P1 + P2 is in Lx

I Lx ∼ zeros in some sense

I contractible loops

I loops with even number of edges

I shortest loop from x outside Lx (non-zero) is
made of two shortest paths and an edge

I if membership in Lx is testable in polynomial time,
finding shortest loop outside Lx solvable in polynomial time

I iterate over x ∈ V (G ) for global shortest
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Tree-cotree partition - Planar

G planar. T a spanning tree

G ∗ − E (T )∗ is a spanning tree of the dual graph G ∗
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Tree-cotree partition - General

G embedded graph.
T a spanning tree of G
C ⊂ E (G ) cotree: C ∗ spanning tree of G ∗ disjoint from E (T )∗

X edges not in T or C . X = {e ∈ E (G ) | e /∈ E (T ) ∪ E (C )}
I (T ,C ,X ) is a tree-cotree partition

I X has 2g edges (orientable) or g edges (non-orientable)

I (C ∗,T ∗,X ∗) a tree-cotree partition of G ∗

I for any e ∈ X , the cycle in T + e is non-separating
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Tree-cotree partition - Example
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Tree-cotree partition - Example
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Tree-cotree partition - Example 2

e1e2

e1

e2

e3

e4

e3

e4
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Tree-cotree partition - Example 2
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Tree-cotree partition - Example 2
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Tree-cotree partition - Cut graph

G embedded graph
H ⊂ G a cut graph if G H is planar

I (T ,C ,X ) is a tree-cotree partition of G

I T ∪ X is a cut graph: join faces according to C ∗

I By duality, C ∗ ∪ X ∗ is a cut graph
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Cut graph - Example
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Tree-cotree partition - Nice loops

G embedded graph
(T ,C ,X ) is a tree-cotree partition of G
A = C ∪ X
e ∈ A

⇒ loop(T , e) contractible ifff A∗ − e∗ has a tree component

I if loop(T , e) contractible ⇒ loop(T , e) bounds a disk D ⇒
A− e contains a cotree of G ∩ D

I if A− e contains a cotree of G ∩ D ⇒ deform e along A∗ − e∗

⇒ cycle homotopic to A− e loop(T , e) disjoint from A∗ ⇒
loop(T , e) contractible
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Nice loops - Contractible
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Nice loops - Contractible
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Nice loops - Contractible
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Tree-cotree partition - Nice loops

G embedded graph
(T ,C ,X ) is a tree-cotree partition of G
A = C ∪ X
e ∈ A

⇒ loop(T , e) separating ifff A∗ − e∗ disconnected

I A∗ − e∗ gives a way to merge faces
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Shortest non-contractible loop

G embedded graph
x ∈ V (G )
Lx contractible loops from x Compute shortest loop outside Lx

I compute shortest path tree T from x

I compute dual A∗ = G ∗ − E (T )∗

I compute B = {e ∈ A | A∗ − e∗ has no tree-component}
I compute

e = arg min
uv∈B
{dT (x , u) + dT (x , v) + |uv |}

I return loop(T , e)

⇒ linear time per vertex x
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Representation of some distances

Theorem
Let f be a specified face in an embedded graph G.
Preprocess G in O(g2n log n) time such that:

query (u, v) ∈ V × f
O(log n) time−−−−−−−−−−−→ distance dG (u, v)

I compute sp-tree (shortest path) at one vertex
I iteratively move to the neighbor in the face and update the

sp-tree
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Representation of some distances - Planar

Approach for planar graphs

I compute sp-tree at one vertex of the face

I iteratively move to the neighbor in the face and update the
sp-tree

I efficient dynamic data structures to detect what edges come in
and out

I reminiscence of kinetic data structures

I use of tree-cotree decomposition

I each (directed) edge appears in a contiguous family of sp-trees
(via crossing argument)

I persistence
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Shortest separating cycle

I max independent set reduces to:
shortest cycle in planar graph with forbidden pairs

1 2

34 s1

1

1(2)

1(3)

1(4) t1 s2

2

2(1)

2(3)

t2 s3

3

3(1)

3(2)

3(4) t3 s4

4

4(1)

4(3)

t4

s

1’ 2’ 3’ 4’

I surgery to represent the forbidden pairs

v(u) u(v)

αv(u) αu(v)

v(u) = u(v)

I separating cycle ⇔ crosses any closed curve even nb of times
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FPTness crossing number

I Input: graph G and integer k > 0

I Parameter: k

I Question: cr(G ) ≤ k?

• Solvable in O(f (k) · n2) time [Grohe ’04]
• Solvable in O(f (k) · n) time [Kawarabayashi and Reed ’07]
• for each constant k, linear time
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FPTness crossing number – Ingredients

1. Embedding in surface of genus g = k

2. face-width ≥ a(k) ⇒ crossing number > k

3. find a subset A ⊂ V (G ) of b(k) = k · a(k) such that H = G − A
planar

4. while treewidth of H = G − A is ≥ t(k) = 4000k2

• H has a (600k2)-grid minor
• inside there is a flat (6k)-grid minor of G
• inside a flat (6k)-grid minor the middle (2k)-grid minor is

irrelevant
• find and remove irrelevant vertices

5. when treewidth of H ≤ t(k) ⇒ use MSO on H + A

• H + A has treewidth t(k) + b(k)

Sergio Cabello Embedded graphs



Small treewidth

Input: integer k > 0 and a graph H with n vertices and treewidth
f (k).
Paremeter k
Question: is cr(H) ≤ k?

I Solvable in O(n) time for each fixed k

I Monadic second order expression

I Courcelle’s theorem MSO
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Facewidth

I G embedded in Σ

I facewidth fw(G ) is min cr(γ,G ) over all non-contractible curves
γ on Σ

I ∼ facial distance

I measure of local planarity

I 1
2 shortest non-contractible cycle in vertex-face incidence graph
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Example facewidth 1
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Large facewidth ⇒ Large crossing number

Theorem
There is some a(k) such that fw(G ) ≥ a(k) ⇒ cr(G ) ≥ k

I fw(G ) ≥ a(k) implies G has a Ck�Ck minor
[minors][Brunet, Mohar, Richter ’96]

I cr(Ck�Ck) ≥ k

I H a minor of G , ∆(H) ≥ 4 ⇒ cr(G ) ≥ cr(H)/4
[Garcia-Moreno, Salazar ’01]
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Constructing A – Cutting

1. H := G

2. repeat until H is planar

2.1 If fw(H) ≥ a(k), reply “cr(G ) > k”
2.2 Else

2.2.1 Take a curve γ defining fw(H)
2.2.2 Remove in H vertices in γ ∩ V (H)
2.2.3 Cut Σ along γ and attach disks to the boundaries

I we end up with H planar

I the set A of removed vertices has ≤ g · a(k) = b(k) vertices
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FPTness crossing number – Ingredients

1. Done! Embedding in surface of genus g = k

2. Done! face-width ≥ a(k) ⇒ crossing number > k

3. Done! find a subset A ⊂ V (G ) of b(k) = k · a(k) such that
H = G − A planar

4. while treewidth of H = G − A is ≥ t(k) = 4000k2

• H has a (600k2)-grid minor
• inside there is a flat (6k)-grid minor of G
• inside a flat (6k)-grid minor the middle (2k)-grid minor is

irrelevant
• find and remove irrelevant vertices

5. Done! when treewidth of H ≤ t(k) ⇒ use MSO on H + A

• H + A has treewidth t(k) + b(k)
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Grid minor

Theorem (Robertson, Seymour, Thomas ’94)

If H is planar and tw(G ) ≥ 4000k2 ⇒ H has a (600k2)-grid minor
and can be found in O(f (k) · n) time

I when adding A there are non-planar parts
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Flat grid minor

Theorem (Thomassen ’97)

If G has max genus k and a (600k2)-grid minor J, then there is a flat
(6k)-grid minor J ′ ⊂ J. It can be found in O(f (k) · n) time.

I consider 2k + 2 disjoint subgrids of J
I if none of them flat, then genus(G ) > k
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Irrelevant vertices

Lemma
If G has a flat (6k)-grid minor J ′ and cr(G ) ≤ k then the middle
(2k)-grid and its attachments do not participate in any crossing.

I one of the middle k + 1 grid cycles has no crossings

k + 1
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Irrelevant vertices

Lemma
If G has a flat (6k)-grid minor J ′ and cr(G ) ≤ k then the middle
(2k)-grid and its attachments do not participate in any crossing.

I the exterior of that cycle cannot be drawn inside without
producing k2 crossings
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Irrelevant vertices

Lemma
If G has a flat (6k)-grid minor J ′ and cr(G ) ≤ k then the middle
(2k)-grid and its attachments do not participate in any crossing.

I in any drawing of G − J ′ we can redraw J ′ without crossings
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Irrelevant vertices

Lemma
If G has a flat (6k)-grid minor J ′ and cr(G ) ≤ k then the middle
(2k)-grid and its attachments do not participate in any crossing.

I finding and removing irrelevant regions doable in O(k2)
amortized time
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Crossings of cycles

I G a graph embedded in orietable Σ

I α and β cycles in G

I cr(α, β) = min cr(α′, β) over all tiny deformations α′ of α

I cr2(α, β) = cr(α, β) mod 2

I computing cr(α, β) is not obvious

I computing cr2(α, β) is easy

• invariant under tiny deformations

Sergio Cabello Embedded graphs



Stretch – Definition

I G a graph embedded in orientable Σ

I stretch is
min |α| · |β|

over all cycles α and β with cr(α, β) = 1

I original definition via 1-leaping

I introduced by Chimani and Hliněný
related to lower bound for crossing number of G embedded in
surface

I here: computing it in O(16gg2n log n) time
Cabello, Chimani, Hliněný, Štefankovič TBW-TBS-TBP
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Stretch – Modulo 2

I G a graph embedded in orientable Σ

I stretch is
min |α| · |β|

over all cycles α and β with cr(α, β) = 1

I stretch is also
stretch2 = min |α| · |β|

over all cycles α and β with cr2(α, β) = 1

I let (α∗, β∗) be the pair attaining stretch2

• if they cross ≥ 2, uncrossing argument gives a better
stretch2
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1-cycles

Introduction to Z2 homology

I a 1-cycle γ is a subset of edges with even degree

I an even subgraph

I union of

I symmetric sum ⊕ is nice operation between 1-cycles

γ ⊕ α = {e ∈ E (γ) ∪ E (α) | e 6∈ γ or e 6∈ α}

I set of 1-cycles Z1 is a vector space over Z2

I each 1-cycle is the union of some (graph-theory) cycles

I cr2( , ) meaningful for 1-cycles
independent of decomposition into cycles
not possible for cr( , )
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Stretch – Modulo 2 and 1-cycles

I stretch2 is also

stretch2,1−cycle = min |α| · |β|

over all 1-cycles α and β with cr2(α, β) = 1

I let (α∗, β∗) be the pair attaining stretch2,1−cycle
I α∗ = γ1 ⊕ · · · ⊕ γk where each γi cycle

I β∗ = σ1 ⊕ · · · ⊕ σt where each σj cycle

1 = cr2(α∗, β∗) =
∑
i ,j

cr2(γi , σj)

I cr2(γi , σj) = 1 for some i and j
γi , σj define smaller stretch2,1−cycle
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Boundary 1-cycles – Homology

I A 1-cycle α is a boundary cycle if α = f1 ⊕ · · · ⊕ fk for some
facial walks f1, . . . , fk .

I set of 1- boundaries B1 form a vector space over Z2

I B1 ⊆ Z1

I H1 := Z1/B1 homology group

I [0] = B1

I for 1-cycle α, the class [α] is

{β ∈ Z1 | β = α⊕ f1 ⊕ · · · ⊕ fk for some f1, . . . , fk}

{β ∈ Z1 | β = α⊕ γ, γ ∈ B1}
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Crossings of 1-cycles – Homology

I cr2(α⊕ α′, β) = cr2(α, β) + cr2(α′, β)

I α ∈ B1 ⇒ cr2(α, β) = 0

I cr2(α, β′) is invariant over all β ∈ [β]

I cr2([α], [β]) := cr2(α, β) is well defined

I not so nice properties for cr( )
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Crossings of 1-cycles – Properties

1. stretch =∞
2. for each homology classes [α] and [β]

2.1 find shortest 1-cycle α′ ∈ [α]
2.2 find shortest 1-cycle β′ ∈ [β]
2.3 if α′ and β′ cycles,

cr2(α, β) = 1 AND
|α′| · |β′| < stretch
THEN stretch := |α′| · |β′|

Shortest 1-cycles in each homology class computable in
O(16gg2n log n)

[Erickson,Nayyeri ’11]
(There are 2g homology classes.)
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