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NP-hard Problems…. so what?  

Unless P=NP: 

 

 

Traditional algorithmics 

What can we achieve in polynomial time? 

 Heuristics, Approximations, Fixed-parameter-tractability (FPT) 

 

Alternative Approach 

Ist the worst-case exponential time really that bad? 

 Consider algorithms that give exact solutions that are 
usually sufficiently fast. 

 

But how? 

Often successful: Mathematical Programming techniques. 

Solving NP-hard problems requires exponential time in general 
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Some Success Stories of Math.Prog. 

Travelling Salesman Problem 

Given N cities and distances in between them. 
Find the shortest round trip through all of them. 
 

Applications: routing, soldering, robotics… 
 

1954: Dantzig, Fulkerson, Johnson 
49 cities (US state capitals)  
manually! 

Pioneering Math.Prog.: Cuts, Branch-and-Cut,… 
 

Now: Exact algorithms work even for 
large scale instances 

 
Sweden 24.978  

VLSI 85.900  

World TSP 1.904.711 <0.05% 

George B. Dantzig 
TSP 25.000 cities 

(by Robert Bosch) 
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Some Success Stories of Math.Prog. 
Various success stories in many different fields of optimizations 

 

Large Instances 

e.g. TSP… 

 

Fast 

e.g. k-Cardinality Tree 

• Given a weighted graph. Find the cheapest subtree with k edges. 

• Applications: network design, oil-field leasing,… 

• Exact algorithms solve all established benchmark sets; 
for small&medium graphs even faster than the best inexact approaches 

 

Influence on other CS fields 

e.g. Primal-Dual Approximation Algorithms 

• based on math.prog. formulations and polyhedral studies 
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min x1 + 2·x2 – 5·x3 
 

s.t. x1 + 4·x2 ≥ 7 
    x3 – x1 ≤ 5 
  x1, x2, x3 ≥ 0 

Linear Programming and Beyond 

Linear Program (LP) 

• Set of variables 

• Linear objective function 

• Set of linear constraints 

 

 

 

 

 

 

LPs can be solved in polynomial time! 

 

 

Integer Linear Program (ILP) 
• Linear program 
• require integrality for (some) variables 

• NP-hard: Branch-and-Bound 

 

Example: 

x1=0 x1 ≥ 1 

x2=0 x2=1 
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Crossing Number as an ILP 

Given: Graph G=(V,E) 

 

Variables: For each pair of (non-adjacent) edges e,fE: 

 

 

 

Objective function: 

 

{ 
min         x{e,f}  

e,f 

x{e,f} = 

1 if e is crossed by f, 

0 else 

Current optimum solution: all zero 
 Ensure that crossings occur when necessary 
 Enforce that the solution gives a feasible solution  planarization 
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Kuratowski-Constraints 

Kuratowski’s Theorem (1930): 

G is planar  (= G can be drawn in the plane without crossings) 

  G contains no Kuratowski subdivisions  
 

Kuratowski subdivision   Subdivision of a K5 or K3,3 

Planarity testing: linear-time algorithms [Hopcroft, Tarjan 74] 
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Crossing Number as an ILP 

Given: Graph G=(V,E) 

 

Variables: For each pair of (non-adjacent) edges e,fE: 

 

 

 

Objective function: 

 

Kuratowski constraints: For each Kuratowski subdivision K in G: 

 
 
 where C(K) are the edge pairs belonging to 
 non-adjacent Kuratowski paths of K 

   

{ 
min         x{e,f}  

e,f 

x{e,f} = 

1 if e is crossed by f, 

0 else 

Now only feasible solutions?? 

 
{e,f}C(K) 

x{e,f}   1 
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Problems 

If the solution is feasible, it should induce a planarization: 

 Substituting crossings with dummy nodes (degree 4) should yield 
a planar graph. 

  

 

 

 

Problem 1 

The chosen crossings may not lead to a feasible solution, i.e., further 
crossings may be necessary, arising from “hidden“ Kuratowskis. 
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Problems 

Problem 2 

How to order the crossings/dummy-nodes if multiple crossings per edge? 

 

 

 

 

 

 

 

Realizability problem: 
Given edge pairs that cross (our x-variables). 
Do they describe a feasible solution?  

  NP-complete!    [Kratochvíl 91] 

 

 The ILP has to encode the order of the crossings… 
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Subdivision-based Exact Cr.Min. (SECM) 

Observation 

Realizability would be trivial if at most one crossing per edge: 
Replace crossings by dummy nodes (no problem with order), test planarity 
 

Such a restriction would give “wrong” crossing number on original graph 

 Subdivide each edge into l edge segments 

  l = upper bound of the crossing number (primal heuristic) 

 
 

 

Drawback 

• Before: O(|E|2) variables 

• Now: O(|E|4) variables, since 
 G: with an edge requiring (|E|) crossings 
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Crossing Number as an ILP 

Variables: For each pair of (non-adjacent) edges e,fE: 

 

 

 

Objective function: 

 

{ 
min         x{e,f}  

e,f 

x{e,f} = 

1 if e is crossed by f, 

0 else 

Observation:  each edge pair crosses at most once 
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Crossing Number as an ILP 

Variables: For each pair of (non-adjacent) edges e,fE: 

 

 

 

Objective function: 

 

 

Consider any orientation of G: 
each edge has a direction 

 

 

{ 
min         x{e,f}  

e,f 

x{e,f} = 

1 if e is crossed by f, 

0 else 

e 
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Crossing Number as an ILP 

Variables: For each pair of (non-adjacent) edges e,fE: 

 

 

 

Objective function: 

 

 

Consider any orientation of G: 
each edge has a direction 

 

 

Further variables: For each ordered triple of edges e,f,gE: 

 

{ 
min         x{e,f}  

e,f 

x{e,f} = 

1 if e is crossed by f, 

0 else 

ye,f,g = 

1 if e is crossed by f before g 

0 else { 

e 

f 

g 
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Ordering-based Exact Cr.Min. (OECM) 

For each pair of edges e,fE: { 
For each ordered triple 

of edges e,f,gE: ye,f,g = 

1 if e is crossed by f before g, 

0 else { 

Linear order (LO) constraints: 

•   x{e,f}  ≥  ye,f,g   ,      x{e,g}  ≥  ye,f,g 

•   x{e,f} + x{e,g}  ≤  1 + ye,f,g + ye,g,f 

•   ye,f,g + ye,g,f  ≤  1 

•   ye,f,g + ye,g,h + ye,h,f  ≤  2 (cyclic-order) solution LO-feasible 
= it satisfies LO-constraints 

e 

f 

g 

x{e,f} = 

1 if e is crossed by f, 

0 else 
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An integer LO-feasible solution is feasible     G[x',y'] is planar 

Ordering-based Exact Cr.Min. (OECM) 

[+] any optimal solution can be uniquely described by the variables 

[–] variables may describe infeasible solutions 

 

[+] any integer LO-feasible solution (x',y') allows a unique 
partial planarization  G[x',y']: 
 G, plus dummy nodes for the crossings decribed by (x',y') 

e 

f 

g 

e 

f 

g 



Valtice ‘12: Exact Crossing Minimization Markus . Chimani @ Uni – Jena . De 

17 

Ordering-based Exact Cr.Min. (OECM) 

G[x',y'] is non-planar       Kuratowski subdivision K 
 

Crossing Shadow (XK[x',y'], YK[x',y']): 

• minimal description of crossing configuration allowing K 

• XK[x',y']… set of edge pairs {e,f}:  
 e is crossed by f; e and f are involved in a single crossing 

• YK[x',y']… set of ordered edge triples (e,f,g):  
 e is crossed by f directly before g 

 

e f 

g 

h 
k 

(f,k,e) (e,f,h) 

An integer LO-feasible solution is feasible     G[x',y'] is planar 
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Ordering-based Exact Cr.Min. (OECM) 

G[x',y'] is non-planar       Kuratowski subdivision K 
 

Crossing Shadow (XK[x',y'], YK[x',y']) 
 

 

Kuratowski constraints: 

 integer LO-feasible solutions (x',y'),  Kuratowski subdivisions K in G[x',y']: 

e f 

g 

h 
k 

x{e,f}    ≥    1 –               (1 – x{e,f})   –             (1 – ye,f,g)  
{e,f} C(K) 

 
{e,f}  XK[x',y'] 

 
(e,f,g)  YK[x',y'] 

C(K)… edge pairs belonging to non-adjacent Kuratowski paths 

An integer LO-feasible solution is feasible     G[x',y'] is planar 

Integer LO-feasible solution: satisfies all Kuratowski constraints   feasible 
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Crossing Number as an ILP 

 
e,f 

min         x{e,f} 

 

x{e,f}  ≥  ye,f,g  

x{e,g}  ≥  ye,f,g 

x{e,f} + x{e,g}  ≤  1 + ye,f,g + ye,g,f 

 

ye,f,g + ye,g,f  ≤  1 

ye,f,g + ye,g,h + ye,h,f  ≤  2 

 

             x{e,f}    ≥    1 –            (1 – x{e,f})   –             (1 – ye,f,g) 

 

 

x{e,f}  {0,1}  pairs of (non-adjacent) edges e,fE 

ye,f,g  {0,1}  ordered triples of edges e,f,gE 

 

Linear order (LO) constraints 

Bind x and y 

Order y if set 

 
{e,f} C(K) 

 
{e,f}  XK[x',y'] 

 
(e,f,g)  YK[x',y'] 

 integer LO-feasible 
solutions (x',y'), 

 Kuratowski subdivisions 
K in G[x',y'] 
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How to solve such a formulation? 

Necessary 

• Integer solution required  Branch-and-Bound 

• Many constraints (i.p. exponentially many Kuratowski constraints) 
  “cutting“ = generate constraints on the fly as necessary 

 Branch-and-Cut algorithm 

 

To make it practical 

• Many variables O(|E|3)  column generation (Branch-and-Cut-and-Price) 

• Preprocessing (shrink input graph) 
  non-planar-core reduction [Ch., Gutwenger 05] 

• Primal heuristic (upper bounds) 
  planarization heuristic [Gutwenger, Mutzel 03], [Ch., Gutwenger 11] 

• Efficient extraction of multiple Kuratowski-subdivisions 
in a non-planar graph [Ch., Mutzel, Schmidt 07] 
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Branch-and-Cut (no column generation) 

• initialize current model:  

– all LO-constraints except for cyclic-order (ye,f,g + ye,g,h + ye,h,f  ≤  2) 

– no Kuratowski constraints 

 

1) Solve LP relaxation (i.e., ignore integrality req.) of current model  (x',y') 

2) Separation A: identify violated cyclic-order constraints; add and goto (1) 

3) Integer interpretation (x'',y'') of (x',y') 

a) Rounding: x''{e,f}=1 if x'{e,f}>; Fe=edges f with x''{e,f}=1 

b) e: complete graph Ge on nodes Fe: edge {f,g} has weight y'e,f,g  

c) e: (heuristically) solve linear order problem on Ge   gives y'' 

4) Separation B (heuristic): Kuratowski constraints 

a) search for Kuratowski subdivisions in G[x'',y''] 

b) add corresponding constraint if violated, goto (1) 

5) Branch… 
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Branch-and-Cut (no column generation) 

• initialize current model:  

– only x variables 

 

 

1) Solve LP relaxation (i.e., ignore integrality req.) of current model  (x',y') 

2) Separation A: identify violated cyclic-order constraints; add and goto (1) 

3) Integer interpretation (x'',y'') of (x',y') 

a) Rounding: x''{e,f}=1 if x'{e,f}>; Fe=edges f with x''{e,f}=1 

+) if ye,f,g not in curent model for some f,gFe: 
add ye,f,g + all necessary LO-constraints (except cyclic-order), goto (1) 

b) e: complete graph Ge on nodes Fe: edge {f,g} has weight y'e,f,g  

c) e: (heuristically) solve linear order problem on Ge   gives y'' 

4) Separation B (heuristic): Kuratowski constraints, probably goto (1) 

5) Branch… 
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Experiments 

Machine 

• AMD Opteron 2.4 GHz, 32bit, 2GB RAM for program 

• Open Graph Drawing Framework (OGDF) [GPL] 

• Abacus (Branch&Cut&Price-Framework) [LGPL] 

• IBM Ilog CPLEX [free for academic use] 

• 30 min time-out per graph 

 

Benchmark 

• Rome graph library 

• 11.389 “real world” graphs 

• 10-100 vertices, average degree of non-planar graphs: 2.7 
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% solved (Rome instances) 
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Experimente (2) 
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Required Variables 
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Observations (for Rome graphs & similar) 

• Planarization heuristic is really good! 
For instances small enough for the ILP to solve: 
 Heuristic typically gives the optimal solution (or 1 off),  
 the ILP mainly proves optimality 

 

• Column generation is crucial! 
Otherwise: ILP much too large to tackle even small problems. 
Only very few y-Variables necessary! 

 

• Kuratowski-constraints seem weak! 
Many constraints necessary, 
any single constraint raises the lower bound only very slightly 
YET: Kuratowski-subdivisions are facets of the polytope! [Ch. 11] 

  Strong additional constraints would be VERY interesting! 
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Further constraints 

Triangle Constraints 

Triangle e,f,g 

Adjacent edges a,b 

ye,a,b + x{f,a} + x{g,b}  2 + x{f,b} + x{g,a} 

e 

f 
g 

a 
b 
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Further constraints 

Triangle Constraints 

Triangle e,f,g 

Adjacent edges a,b 

ye,a,b + x{f,a} + x{g,b}  2 + x{f,b} + x{g,a} 

 

 

 

 

Extended Triangle Constraints 

Triangle e,f,g 

Non-adjacent edges a,b, joined over path P  

ye,a,b + x{f,a} + x{g,b}  2 + x{f,b} + x{g,a} + x{a,b} + e‘{e,f,g} f‘P x{e‘,f‘} 

 

e 

f 
g 

a 
b 
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Special graph classes 

What when we consider graph classes interesting for theory (not practice). 

 

Typical graphs: 

• Complete graphs, complete bipartite, Petersen graphs, Toroidal grids, etc. 

 

Common properties: 

• Often dense (-r than Rome&Co) 

• Very regular! 
Symmetric solutions bad for branching  symmetry-breaking constraints 

• A lot of structure known! 
Simple to find „stronger“ subgraphs than K5, K3,3 subdivisions 
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Use theory-results 
Consider some K2n+1. All its solutions have the same parity [Kleitman 76] 

 Assume we have an upper bound N, then any lower bound >N-2 suffices. 

 Branch on the parity of the crossings of induces K5-subdivisions 

 

Symmetry-breaking: 2 Alternatives 

Node/Kuratowski Symmetry Constraints 
Label the nodes arbitrary 1…n, and let X(vi) be the crossings on edges 
incident to vi. 
 X(v1)  X(v2)  …  X(vn) 

Edge Symmetry Constraints 
Pick arbitrary node as v1 and label the incident edges arbitrary 1…n-1, and 
let X(ei) be the crossings on edges ei. 
 X(e1)  X(e2)  …  X(en-1) 

  X(v1)  X(vi)     i>1 

E.g., Complete Graphs 
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E.g., Complete Graphs 

Larger Kuratowski constraints 

In a Kn it is trivial to enumerate all Kn-1, Kn-2,… subgraphs, and we know 
their crossing numbers: 
 X(Kn-1)  cr(Kn-1) 

 

Add further knowledge, e.g., proof of cr(K11)=100    [Pan, Richter 07] 

“A good drawing of K11 with fewer than 100 crossings contains a good drawing 
of K10 with at most 62 crossings. Any good drawing of K10 with at most 62 
crossings contains an optimal drawing of K9. A good optimal drawing of K9 
contains a good drawing of K8 with at most 20 crossings. Any good drawing of 
K8 with at most 20 crossings contains an optimal drawing of K7.” 

 

Still… we need more to solve K13! 
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Proofs / Certificate 

Theory (Computer Proof  Certificate) 

The ILP algorithm (if implemented totally bug free, using a bug-free LP-solver, 
complier, computer, etc.) gives a formal proof. 
 

Current Status 

Two different ILPs with implementation. 
When both are used and they prove the same number… 
 

Next Steps (ongoing) 

Extract easy-to-check proofs from the ILP after it was run: 

• Case distinction from branch information (leaves of B&B tree) 

• For each case: Set of Kuratowski subdivisions  

• For each case: Independent/small program to transform each case and 
Kuratowski set into an LP. 

• Use any LP-solver to obtain fractional solution (lower bound to the ILP) 
which is less then 1 smaller than the assumed optimal solution. 
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DEMO 

 

 

Command-line tool 
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DEMO 

 

 

 

 

http://webcompute.ae.uni-jena.de 

 

(currently in Beta) 
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Conclusion 

Observations 

• SECM and OECM  are able to solve many „real-world“ graphs to provable 
optimality 

• Even if computation is not successful within our time limits, we still obtain 
at least upper and lower bounds 

 

Current/Future work 

• Implement automatic proof/certification system 
 

Open question 

• Certain Kuratowski-constraints define facets (those without the crossing 
shadow). What about the others? 

• Further strengthening constraint classes, either for general graphs or for 
special graph classes. 
 Find something good enough to tackle K13! 

• Complete graphs: Realizability is polynomial [Kynčl 07]  
 ILP approach solely on x variables? 


