Exact Computation of Crossing Numbers

Markus Chimani Friedrich-Schiller-University Jena, Germany

NP-hard Problems.... so what?

Unless P=NP:

Solving NP-hard problems requires exponential time in general

Traditional algorithmics

What can we achieve in polynomial time?

 \rightarrow Heuristics, Approximations, Fixed-parameter-tractability (FPT)

Alternative Approach

Ist the worst-case exponential time **really that bad**?

→ Consider algorithms that give exact solutions that are usually sufficiently fast.

But how?

Often successful: Mathematical Programming techniques.

Some Success Stories of Math.Prog.

Travelling Salesman Problem

Given *N* cities and distances in between them. Find the shortest round trip through all of them.

Applications: routing, soldering, robotics...

1954: Dantzig, Fulkerson, Johnson49 cities (US state capitals) ✓manually!

Pioneering Math.Prog.: Cuts, Branch-and-Cut,...

Now: Exact algorithms work even for large scale instances

Sweden	24.978	\checkmark
VLSI	85.900	\checkmark
World TSP	1.904.711	<0.05%

George B. Dantzig TSP 25.000 cities (by Robert Bosch)

Some Success Stories of Math.Prog.

Various success stories in many different fields of optimizations

Large Instances

e.g. **TSP...**

Fast

e.g. k-Cardinality Tree

- Given a weighted graph. Find the cheapest subtree with k edges.
- Applications: network design, oil-field leasing,...
- Exact algorithms solve all established benchmark sets; for small&medium graphs even faster than the best inexact approaches

Influence on other CS fields

e.g. Primal-Dual Approximation Algorithms

• based on math.prog. formulations and polyhedral studies

Linear Programming and Beyond

Linear Program (LP)

- Set of variables
- Linear objective function
- Set of linear constraints

Example:

min	$x_1 + 2 \cdot x_2 - 5 \cdot x_3$
s.t.	$x_1 + 4 \cdot x_2 \ge 7$
	$x_3 - x_1 \le 5$
	$x_{1} x_{2} x_{3} \ge 0$

LPs can be solved in polynomial time!

Integer Linear Program (ILP)

- Linear program
- require integrality for (some) variables
- NP-hard: Branch-and-Bound

Given:Graph G=(V,E)Variables:For each pair of (non-adjacent) edges $e, f \in E$:
 $x_{\{e,f\}} = \begin{cases} 1 & \text{if } e \text{ is crossed by } f, \\ 0 & \text{else} \end{cases}$ Objective function: $\min \sum_{e,f} x_{\{e,f\}}$

Current optimum solution: all zero

- \rightarrow Ensure that crossings occur when necessary
- \rightarrow Enforce that the solution gives a feasible solution \rightarrow **planarization**

Kuratowski-Constraints

Kuratowski's Theorem (1930):

G is planar (= **G** can be drawn in the plane without crossings)

⇔ G contains no Kuratowski subdivisions

Kuratowski subdivision \Leftrightarrow Subdivision of a K_5 or $K_{3,3}$

Planarity testing: linear-time algorithms [Hopcroft, Tarjan 74]

where *C(K)* are the edge pairs belonging to non-adjacent Kuratowski paths of *K*

Now only feasible solutions??

Problems

If the solution is feasible, it should induce a **planarization**:

Substituting crossings with dummy nodes (degree 4) should yield a planar graph.

Problem 1

The chosen crossings may not lead to a feasible solution, i.e., further crossings may be necessary, arising from "hidden" Kuratowskis.

Problems

Problem 2

How to order the crossings/dummy-nodes if multiple crossings per edge?

Realizability problem:

Given edge pairs that cross (our *x*-variables). Do they describe a feasible solution?

→ NP-complete! [Kratochvíl 91]

 \rightarrow The ILP has to encode the order of the crossings...

Observation

Realizability would be trivial if at most one crossing per edge:

Replace crossings by dummy nodes (no problem with order), test planarity

Such a restriction would give "wrong" crossing number on original graph

- \rightarrow Subdivide each edge into ℓ edge segments
- $\rightarrow \ell$ = upper bound of the crossing number (primal heuristic)

Drawback

- Before: **O(|E|²)** variables
- Now: O(|E|⁴) variables, since
 ∃G: with an edge requiring Ω(|E|) crossings

min
$$\sum_{e,f} x_{\{e,f\}}$$

Observation: each edge pair crosses at most once

Consider any orientation of *G*: each edge has a direction

For each pair of edges
$$e, f \in E$$
: $x_{\{e,f\}} = \begin{cases} 1 & \text{if } e \text{ is crossed by } f, \\ 0 & \text{else} \end{cases}$ For each ordered triple
of edges $e, f, g \in E$: $y_{e,f,g} = \begin{cases} 1 & \text{if } e \text{ is crossed by } f \text{ before } g, \\ 0 & \text{else} \end{cases}$

Linear order (LO) constraints:

•
$$x_{\{e,f\}} \geq y_{e,f,g}$$
 , $x_{\{e,g\}} \geq y_{e,f,g}$

•
$$x_{\{e,f\}} + x_{\{e,g\}} \le 1 + y_{e,f,g} + y_{e,g,f}$$

•
$$y_{e,f,g} + y_{e,g,f} \le 1$$

•
$$y_{e,f,g} + y_{e,g,h} + y_{e,h,f} \le 2$$
 (cyclic-order)

solution LO-feasible = it satisfies LO-constraints

[+] any optimal solution can be uniquely described by the variables
 [-] variables may describe infeasible solutions

[+] any integer LO-feasible solution (x',y') allows a unique partial planarization G[x',y']:

G, plus dummy nodes for the crossings decribed by (x',y')

An integer LO-feasible solution is feasible \Leftrightarrow G[x',y'] is planar

An integer LO-feasible solution is feasible \Leftrightarrow G[x',y'] is planar

G[x',y'] is non-planar $\Leftrightarrow \exists$ Kuratowski subdivision K

Crossing Shadow ($\mathscr{X}_{\kappa}[x',y'], \mathscr{Y}_{\kappa}[x',y']$):

- minimal description of crossing configuration allowing K
- $\mathscr{X}_{\kappa}[x',y']$... set of edge pairs $\{e,f\}$:

e is crossed by *f*; *e* and *f* are involved in a single crossing

\$\mathcal{Y}_{\vec{K}}[x',y']\$... set of ordered edge triples (e,f,g):
 e is crossed by f directly before g

An integer LO-feasible solution is **feasible** \Leftrightarrow *G***[***x***',***y***'] is planar**

G[x',y'] is non-planar $\Leftrightarrow \exists$ Kuratowski subdivision K

Crossing Shadow ($\mathcal{X}_{\kappa}[x',y'], \mathcal{Y}_{\kappa}[x',y']$)

Kuratowski constraints:

 \forall integer LO-feasible solutions (x',y'), \forall Kuratowski subdivisions K in G[x',y']:

$$\sum_{e,f\} \in C(K)} x_{\{e,f\}} \geq 1 - \sum_{\{e,f\} \in \mathcal{X}_{K}[x',y']} (1 - x_{\{e,f\}}) - \sum_{\{e,f,g\} \in \mathcal{Y}_{K}[x',y']} (1 - y_{e,f,g})$$

C(K)... edge pairs belonging to non-adjacent Kuratowski paths

Integer LO-feasible solution: satisfies all Kuratowski constraints \Leftrightarrow feasible

 \forall ordered triples of edges $e, f, g \in E$

How to solve such a formulation?

Necessary

- Integer solution required \Rightarrow Branch-and-Bound
- Many constraints (i.p. exponentially many Kuratowski constraints)
 ⇒ "cutting" = generate constraints on the fly as necessary
- \Rightarrow Branch-and-Cut algorithm

To make it practical

- Many variables $O(|E|^3) \Rightarrow$ column generation (Branch-and-Cut-and-Price)
- Preprocessing (shrink input graph)
 - \Rightarrow non-planar-core reduction [Ch., Gutwenger 05]
- Primal heuristic (upper bounds)
 - \Rightarrow planarization heuristic [Gutwenger, Mutzel 03], [Ch., Gutwenger 11]
- Efficient extraction of multiple Kuratowski-subdivisions in a non-planar graph [Ch., Mutzel, Schmidt 07]

Branch-and-Cut (no column generation)

- initialize current model:
 - all LO-constraints except for cyclic-order $(y_{e,f,g} + y_{e,g,h} + y_{e,h,f} \le 2)$
 - no Kuratowski constraints
- 1) Solve LP relaxation (i.e., ignore integrality req.) of current model $\rightarrow (x',y')$
- 2) Separation A: identify violated cyclic-order constraints; add and goto (1)
- 3) Integer interpretation (x'',y'') of (x',y')
 - a) Rounding: $x''_{\{e,f\}}=1$ if $x'_{\{e,f\}}>\tau$; $F_e=edges f$ with $x''_{\{e,f\}}=1$
 - b) $\forall e: \text{ complete graph } G_e \text{ on nodes } F_e: edge \{f, g\} \text{ has weight } y'_{e, f, g}$
 - c) $\forall e:$ (heuristically) solve linear order problem on $G_e \rightarrow$ gives y''
- 4) Separation **B** (heuristic): Kuratowski constraints
 - a) search for Kuratowski subdivisions in G[x'',y'']
 - b) add corresponding constraint if violated, goto (1)
- 5) Branch...

Branch-and-Cut (no column generation)

- initialize current model:
 - only x variables

- 1) Solve LP relaxation (i.e., ignore integrality req.) of current model $\rightarrow (x',y')$
- 2) Separation A: identify violated cyclic-order constraints; add and goto (1)
- 3) Integer interpretation (x'',y'') of (x',y')
 - a) Rounding: $x''_{\{e,f\}}=1$ if $x'_{\{e,f\}}>\tau$; $F_e=edges f$ with $x''_{\{e,f\}}=1$
 - +) if $y_{e,f,g}$ not in curent model for some $f,g \in F_e$: add $y_{e,f,g}$ + all necessary LO-constraints (except cyclic-order), goto (1)
 - b) $\forall e: \text{ complete graph } G_e \text{ on nodes } F_e: edge \{f,g\} \text{ has weight } y'_{e,f,g}$
 - c) $\forall e:$ (heuristically) solve linear order problem on $G_e \rightarrow$ gives y''
- 4) Separation **B** (heuristic): Kuratowski constraints, probably goto (1)
- 5) Branch...

Machine

- AMD Opteron 2.4 GHz, 32bit, 2GB RAM for program
- Open Graph Drawing Framework (OGDF) [GPL]
- Abacus (Branch&Cut&Price-Framework) [LGPL]
- IBM Ilog CPLEX [free for academic use]
- 30 min time-out per graph

Benchmark

- Rome graph library
- 11.389 "real world" graphs
- 10-100 vertices, average degree of non-planar graphs: 2.7

% solved (Rome instances)

- SECM, first implementation (5min)
 SECM, same reimplementation but 30min
 SECM + combinatoric column generation
 OECM + comb. col.gen., efficient extract.
- ---SECM, reimplementation, incl. preproc. (5min)
- SECM + algebraic column generation
- SECM tuned comb. col.gen., efficient extract.

Experimente (2)

Required Variables

Observations (for Rome graphs & similar)

• Planarization heuristic is really good!

For instances small enough for the ILP to solve: Heuristic typically gives the optimal solution (or 1 off), the ILP mainly proves optimality

• Column generation is crucial!

Otherwise: ILP **much** too large to tackle even small problems. Only very few *y*-Variables necessary!

 Kuratowski-constraints seem weak!
 Many constraints necessary, any single constraint raises the lower bound only very slightly YET: Kuratowski-subdivisions are facets of the polytope! [Ch. 11]

 \rightarrow Strong additional constraints would be VERY interesting!

Further constraints

Triangle Constraints

Triangle *e,f,g* Adjacent edges *a,b*

 $y_{e,a,b} + x_{\{f,a\}} + x_{\{g,b\}} \le 2 + x_{\{f,b\}} + x_{\{g,a\}}$

Further constraints

Triangle Constraints

Triangle e, f, gAdjacent edges a, b

 $y_{e,a,b} + x_{\{f,a\}} + x_{\{g,b\}} \le 2 + x_{\{f,b\}} + x_{\{g,a\}}$

Extended Triangle Constraints

Triangle *e,f,g* Non-adjacent edges *a,b*, joined over path *P*

 $y_{e,a,b} + x_{\{f,a\}} + x_{\{g,b\}} \le 2 + x_{\{f,b\}} + x_{\{g,a\}} + x_{\{a,b\}} + \sum_{e' \in \{e,f,g\}} \sum_{f' \in P} x_{\{e',f'\}}$

Special graph classes

What when we consider graph classes interesting for theory (not practice).

Typical graphs:

• Complete graphs, complete bipartite, Petersen graphs, Toroidal grids, etc.

Common properties:

- Often dense (-r than Rome&Co)
- Very regular! Symmetric solutions bad for branching → symmetry-breaking constraints

A lot of structure known! Simple to find "stronger" subgraphs than K₅, K_{3,3} subdivisions

E.g., Complete Graphs

Use theory-results

Consider some K_{2n+1} . All its solutions have the same parity [Kleitman 76]

- \rightarrow Assume we have an upper bound N, then any lower bound >N-2 suffices.
- \rightarrow Branch on the parity of the crossings of induces K₅-subdivisions

Symmetry-breaking: 2 Alternatives

Node/Kuratowski Symmetry Constraints

Label the nodes arbitrary 1...n, and let $X(v_i)$ be the crossings on edges incident to v_i .

 $X(v_1) \ge X(v_2) \ge \dots \ge X(v_n)$

Edge Symmetry Constraints

Pick arbitrary node as v_1 and label the incident edges arbitrary 1...n-1, and let $X(e_i)$ be the crossings on edges e_i .

$$\begin{split} X(e_1) &\geq X(e_2) \geq ... \geq X(e_{n-1}) \\ X(v_1) &\geq X(v_i) \quad \forall i > 1 \end{split}$$

E.g., Complete Graphs

Larger Kuratowski constraints

In a K_n it is trivial to enumerate all K_{n-1} , K_{n-2} ,... subgraphs, and we know their crossing numbers:

 $X(K_{n-1}) \ge cr(K_{n-1})$

Add further knowledge, e.g., proof of cr(K₁₁)=100 [Pan, Richter 07]

"A good drawing of K_{11} with fewer than 100 crossings contains a good drawing of K_{10} with at most 62 crossings. Any good drawing of K_{10} with at most 62 crossings contains an optimal drawing of K_9 . A good optimal drawing of K_9 contains a good drawing of K_8 with at most 20 crossings. Any good drawing of K_8 with at most 20 crossings contains an optimal drawing of K_7 ."

Still... we need more to solve K₁₃!

Theory (Computer Proof \rightarrow Certificate)

The ILP algorithm (if implemented totally bug free, using a bug-free LP-solver, complier, computer, etc.) gives a formal proof.

Current Status

Two different ILPs with implementation. When both are used and they prove the same number...

Next Steps (ongoing)

Extract easy-to-check proofs from the ILP after it was run:

- Case distinction from branch information (leaves of B&B tree)
- For each case: Set of Kuratowski subdivisions
- For each case: Independent/small program to transform each case and Kuratowski set into an LP.
- Use any LP-solver to obtain fractional solution (lower bound to the ILP) which is less then 1 smaller than the assumed optimal solution.

Command-line tool

http://webcompute.ae.uni-jena.de

(currently in Beta)

Conclusion

Observations

- SECM and OECM are able to solve many "real-world" graphs to provable optimality
- Even if computation is not successful within our time limits, we still obtain at least upper and lower bounds

Current/Future work

• Implement automatic proof/certification system

Open question

- Certain Kuratowski-constraints define facets (those without the crossing shadow). What about the others?
- Further strengthening constraint classes, either for general graphs or for special graph classes.

 \rightarrow Find something good enough to tackle K_{13} !

- Complete graphs: Realizability is polynomial [Kynčl 07]
 - \rightarrow ILP approach solely on *x* variables?